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Abstract

Convolutional Neural Networks (CNNs) became a very

popular tool for image analysis. Convolutions are fast to

compute and easy to store, but they also have some limita-

tions. First, they are shift-invariant and, as a result, they

do not adapt to different regions of the image. Second, they

have a fixed spatial layout, so small geometric deformations

in the layout of a patch will completely change the filter re-

sponse. For these reasons, we need multiple filters to handle

the different parts and variations in the input.

We augment the standard convolutional tools used in

CNNs with a new filter that addresses both issues raised

above. Our filter combines two terms, a spatial filter and a

term that is based on the co-occurrence statistics of input

values in the neighborhood. The proposed filter is differen-

tiable and can therefore be packaged as a layer in CNN and

trained using back-propagation.

We show how to train the filter as part of the network

and report results on several data sets. In particular, we

replace a convolutional layer with hundreds of thousands of

parameters with a Co-occurrence Layer consisting of only a

few hundred parameters with minimal impact on accuracy.

1. Introduction

A common solution to many computer vision problems

is based on Convolutional Neural Networks (CNNs). CNNs

gained popularity, in part, because they offer a flexible ar-

chitecture that can be adapted to many different tasks. At

their core, CNNs are based on simple primitives that include

convolutions, non-linearity and pooling.

A convolutional layer is the most informative layer, be-

cause it stores the parameters of the network. But convolu-

tions (i.e., filters) are shift invariant and one needs a large

number of filters to deal with different regions of the input.

Moreover, filters depend on the spatial layout of the input

and are not suitable to deal directly with the distribution of

the input values. As a result, a small geometric deformation

in the input patch will be considered as a different pattern

that requires additional filters to deal with it.

We propose a new filter that addresses these issues. The

filter is based on the Co-occurrence Filter (CoF) [10]. CoF

combines a spatial filter and a component that is based on

the co-occurrence of pixel values. The co-occurrence com-

ponent will mix (i.e., smooth) pixel values that co-occur fre-

quently in the image plane, while pixel values that do not

co-occur frequently will not mix. This makes CoF a bound-

ary preserving filter that can smooth textured regions while

preserving the boundaries between them. A unique property

of the co-occurrence term is that it depends on pixel values

and not on the spatial layout of pixels in the image plane.

We take this idea one step further. Instead of collect-

ing co-occurrence statistics, as is done in CoF, we learn

weights based on co-occurrence statistics that optimize the

objective function of the network. So if values in the input

co-occur often in the training set, we learn the best weight

to take advantage of this fact and minimize the loss func-

tion of the network. This deep co-occurrence matrix differs

from a standard co-occurrence matrix in two ways. First,

the weights of a co-occurrence matrix are positive, because

they describe distributions. In contrast, the weights of the

deep co-occurrence matrix can be negative. Second, the co-

occurrence matrix is symmetric by definition. This is not

necessarily the case for the deep co-occurrence matrix.

The new filter is embedded in a Co-occurrence Layer

(CoL) that can replace standard convolutional layers. CoL

offers a number of useful properties. To begin with, CoL

uses a small number of parameters to generate a large num-

ber of filters, depending on the values in a given neighbor-

hood. In addition, the new layer is differentiable and can

be trained using back-propagation without any pre- or post-

processing. On top of that, CoL can handle different pat-

terns of the input, as well as distributions (i.e., histograms)

or re-arrangement of values, because of its co-occurrence

term. We show how to train CoL using back-propagation

and evaluate its performance on a number of data sets.
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2. Background

Almost as soon as neural networks re-gained popularity

there has been a surge of interest in ways to speed them up

and reduce their memory footprint.

Some early work exploited the linear structure of convo-

lutions for efficient evaluations. This includes, for example,

works by Denton et al. [4] and Jaderberg et al. [8]. The

key insight of these works is to approximate the 4D tensor

that defines the network using various decomposition tech-

niques.

In Han et al. [7] the authors propose a three stage

pipeline to compress a network: Pruning, trained quantiza-

tion and Huffman coding. This leads to impressive reduc-

tion in the network size by about ×35 of ×49 depending on

the network. But the authors use standard filters to achieve

the significant savings and do not offer new filters similar to

the one proposed here.

Using new filters in Neural Networks can be found in the

work of Wang et al. on non-local neural network [17]. In

their work, the response at a pixel location is a weighted

sum of the features at all locations in its neighborhood.

While this approach helps improve the performance of the

network, it does not offer a new filter as the one described in

this proposal. Another work is that of Cohen et al. [3]. They

propose a steerable CNN approach where the filter response

at each pixel location is a linear combination of some base

filters. The emphasis of the work is that transformed ver-

sions of the same image region should be treated the same

by the network. Instead of taking an axiomatic approach,

Weiler et al. [18] propose to learn filters that are rotation

equivariant. Excellent results on the rotated MNIST dataset

and the ISBI 2012 2D EM segmentation challenge are re-

ported.

Jampani et al. [9] embed bilateral filters within a neural

network. They treat bilateral filters as filters in higher di-

mensional space and propose to learn the weights of these

filters as part of the network training. Recently, SPLATNet

[15] used this idea of sparse bilateral convolutional layers

for direct processing of point clouds with impressive results.

Battaglia et al. [1] proposed an interactive network to

learn interaction between objects. This is related to co-

occurrences with a couple of important differences. First,

we operate at the pixel level and not at the object level.

Second, and more importantly, they use existing building

blocks to capture the interaction between objects. We, on

the other hand, propose a filter that directly captures co-

occurrence statistics.

There has been a considerable amount of work at the in-

tersection of edge-preserving filters and CNNs. However,

most of this effort is focused on learning the parameters of

the edge-preserving filter. They are not designed to intro-

duce the edge-preserving filter into the network.

For example, Wu et al. [19] propose a very fast deep

version of the guided image filter where the parameters of

the filter are learned by the network. They use standard

building blocks in their network.

Gharbi et al. [6] use pairs of input/output images to train

a convolutional neural network to predict the coefficients

of a locally-affine model in bilateral space. This lets them

perform real-time image enhancement.

Our work is also inspired by the Network in Network

approach [12] where the goal is to replace the linear con-

volution with a micro neural network. However, they use

standard building blocks to build the micro neural network.

Cohen et al. [2] described an architecture that is driven

by two operators: generalization of inner product and a

long-mean-exp function. The proposed structure does not

deal with statistical context of the input. Moreover, SimNet

requires pre-process on the input data while CoL can be just

defined as a part of the network without additional effort.

We, as opposed to previous work, propose a novel build-

ing block to be used in neural networks.

3. Method

A linear filter is of the form:

Jp =
∑

q∈Np

wqIq (1)

where I is the input image, J is the output image, the sub-

script Iq denotes pixel q in image I , Np denotes the neigh-

borhood of pixel p and wq is the weight assigned to pixel

q.

In Convolutional Neural Networks (CNNs) the weights

wq of each layer are adjusted so as to optimize the objec-

tive function of the network. In this section we define a

Co-occurrence Layer (CoL) that is based on a variation of

the co-occurrence filter and show how to use it as part of a

neural network.

3.1. The Co­occurrence filter

The Co-occurrence filter (CoF) [10] extends the Bilateral

Filter (BF) [16] by replacing the range Gaussian Gr with a

co-occurrence matrix M . Specifically, a BF is defined as:

Jp =
1

Z

∑

q∈Np

Gs(p, q)Gr(Ip, Iq)Iq (2)

where Z is a constant designed to ensure the weights sum

to 1. The CoF is defined as:

Jp =
1

Z

∑

q∈Np

Gs(p, q)M(Ip, Iq)Iq (3)

where the co-occurrence matrix M is given by:

M(a, b) =
C(a, b)

h(a)h(b)
(4)
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Figure 1. Applying CoL: The CoL is based on Equation 7. In

the input image for a center pixel p and a neighboring pixel q, we

use deep co-occurrence matrix entry L([Ip], [Iq]) to create a filter

based on co-occurrence statistics. Multiplying this filter (element

wise) with the spatial filter w leads to the filter that is actually

applied at pixel location p. This way different filters are used at

different regions of the image.

and

C(a, b) =
∑

p,q

exp−
d(p, q)2

2σ2
[Ip = a][Iq = b] (5)

counts the number of times pairs of pixel values co-occur

within a window, weighted by their distance. This count is

normalized by h(a), h(b) which are the histogram values for

pixel values a and b, respectively. The σ is a user specified

parameter and [·] is the indicator function.

Intuitively, the CoF mixes pixel values that co-occur fre-

quently, while preserving pixel values that do not co-occur

frequently.

In the case of a gray scale image, the size of the ma-

trix M is conveniently set to 256 × 256, but if the input

is a color image then the co-occurrence matrix becomes a

2563 × 2563 matrix. This is clearly too large a matrix to

work with and the solution proposed in [10] was to quantize

the RGB values into, say, 256 color clusters using k-means.

The co-occurrence filter can then be written as:

Jp =
1

Z

∑

p,q

Gs(p, q)M([Ip], [Iq])Iq (6)

where we denote by [Iq] the index of the cluster to which Iq
was assigned.

3.2. The Co­occurrence layer

The co-occurrence matrix M captures the joint proba-

bility of observing activation values a and b together. This

does not have a direct link to the actual objective function

Forward pass

Backward pass

    ;              ; 

Figure 2. Training CoL: In the forward pass we use equation 7 to

propagate pixel values from the input layer I , using current w and

L. In the backward pass we update the weights of w and L using

equations 13, 14 and propagating the total loss using equation 12.

of the network. To this end, we use a deep co-occurrence

matrix L that is trained to learn weights that are based on co-

occurring activation values. The entries of L are trained to

optimize the objective function of the network. With slight

abuse of notation, we will define a Co-occurrence Layer

(CoL) function as:

Jp = CoL(I, w, L([Ip], [Iq])) =
∑

q∈Np

wqL([Ip], [Iq])Iq

(7)

where the Np denotes the neighborhood of activation p.

In words, the value of activation Jp in the output layer is

a weighted sum of activation values Iq from the input layer.

The weights are defined both by the spatial filter wq and a

matrix L([Ip], [Iq]). The implementation details of CoL are

illustrated in Figure 1. We quantize the pair of the input

activations Ip, Iq and fetch the relevant entry from the deep

co-occurrence matrix L. Then we multiply the fetched filter

with the spatial filter w in order to calculate a total filter for

each point. The final step is simply applying the total filter

to the input layer at that particular location.

Because the input activation values can take any real

value, we quantize them uniformly into k bins. Specifically,

we normalize the values of every channel to be in the range

[0, 1] and then for each x ∈ [0, 1], we define the index of x

as [x] = round(kx).
The difference between the co-occurrence matrix M

used for CoF and the matrix L used for CoL is the core of

this work. The co-occurrence matrix M counts the number

of times pixel values co-occur in the input image. The ma-

trix L, on the other hand, learns weights that are designed

to optimize the performance of the network.

This difference is also evident in the way CoL and CoF

are calculated and applied. In CoF, there is a collection

stage in which we scan the image and collect co-occurrence

statistics. Once the co-occurrence matrix M is collected, we

apply it to the image using equation 6. The situation is com-

pletely different with CoL. In the CoL case we start with
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Figure 3. Applying the CoL filter: We apply the matrix L and

filter w to the image using equation 7. For a center pixel p and

a neighboring pixel q, we use matrix entry L([Ip], [Iq]) and the

weight in the filter w at the corresponding spatial location to obtain

the weight of pixel q. This leads to different filters at different

regions of the image. In the sky region, the filter remains roughly

the same. On the horse, the filter flips sign. Near the rear leg of

the horse we have a completely different filter.

a randomly generated matrix L. The forward pass of the

training algorithm applies it to the input using equation 7,

while the back-prop pass updates the weights of the matrix

L (see Figure 2). We give the details of the back-prop stage

in section 3.3.

Because of the different ways M and L are calculated,

they have different properties. The entries of M must be

positive because they form a probability distribution func-

tion. The entries of L can, and often do, have negative val-

ues. Also, by definition, M is symmetric but L is not nec-

essarily so.

The neighborhood Np = [Nx0
, Ny0

, Nz0 ] of CoL can be

2D or 3D depending on Nz0 . If Nz0 = 1 then the spatial

support is 2D which means that each input channel is pro-

cessed separately. If Nz0 > 1 the support is a 3D cube that

spans several input channels at once.

For k bins and a neighborhood of size Np =
[Nx0

, Ny0
, Nz0 ] the total number of parameters in CoL is

k · k + Nx0
· Ny0

· Nz0 . Such a CoL has the potential to

create a k(Nx0
·Ny0

·Nz0
) filters, depending on input content.

For example, for k = 5 bins and a filter of size 3 × 3 × 3
there are a total of 527 different filters that can be generated

with as few as 52 parameters, which is the number of pa-

rameters needed to store L and w. This, we believe, is one

of the reasons that a single CoL equation can replace a typi-

cal convolution layer with tens or even hundreds of regular,

shift-invariant filters.

Figure 3 illustrates the properties of CoL that were de-

tailed above. We trained a network on CIFAR-101 with CoL

(with filter sizes L[5× 5] and w[3× 3]) as a first layer, that

works directly on raw pixel values. As can be seen, the fil-

ter looks different at different locations in the image. Since

the spatial filter is shift invariant the differences in the fil-

ters are because of the co-occurrence term. For example,

the pixel in the sky of the image has a filter that is very sim-

ilar to w. The reason for this is the values of neighboring

pixels are close to the value of the central pixel and quan-

tized to the same bin, so the fetched co-occurrence filter is

constant. The sample on the horse also captures a fairly uni-

form region, only this time the corresponding entry in L has

a negative value and, as a result, the w filter is flipped. This

example demonstrates that indeed our algorithm can learn

negative weights. Near the rear leg of the horse the pixel

values are much more diverse, leading to a completely dif-

ferent filter. Finally, as shown in Figure 3, observe that L is

not symmetric.

3.3. Backpropagation

Equation 7 is used in the forward pass of the net-

work. We now define its derivatives as required for back-

propagation.

The general formulation of the co-occurrence layer is a

function of the input layers, convolution, and co-occurrence

filter. Specifically, let En
p denote the error function of the

n-th layer for pixel p, and let Jn
p denote the output of the

n-th CoL at pixel p, then:

Jn
p = CoL(In−1, wn, Ln([In−1

p ], [In−1
q ])) (8)

is the forward pass equation. Applying the chain rule we

have:

∂En
p

∂In−1
k

=
∂En

p

∂Jn
p

∂CoL(In−1, wn, Ln([In−1
p ], [In−1

q ]))

∂In−1
k

(9)
∂En

p

∂wn
k

=
∂En

p

∂Jn
p

∂CoL(In−1, wn, Ln([In−1
p ], [In−1

q ]))

∂wn
k

(10)
∂En

p

∂Ln(a, b)
=

∂En
p

∂Jn
p

∂CoL(In−1, wn, Ln([In−1
p ], [In−1

q ])

∂Ln(a, b)
(11)

By substituting the CoL definition, the derivatives are:

∂En
p

∂In−1
k

=
∂En

p

∂Jn
p

· wn
k · Ln([In−1

p ], [In−1
k ]) (12)

∂En
p

∂wn
k

=
∂En

p

∂Jn
p

· Ln([In−1
p ], [In−1

k ]) · In−1
k (13)

1Taken from https://github.com/seansoleyman/cifar10-resnet.
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∂En
p

∂Ln
(a,b)

=
∂En

p

∂Jn
p

·

∑

q∈Np

wn
q · In−1

q · δ(a, b) (14)

Equation 12 expresses the back-propagated error function.

Equations 13 and 14 show the derivatives of the spatial fil-

ter and the co-occurrence matrix, respectively. The delta

function

δ(a, b) = δ(a = [In−1
p ], b = [In−1

q ]) (15)

in equation 14 verifies if the input values are quantized to

the relevant indices of the deep co-occurrence matrix L.

3.4. A Toy Example

We illustrate the power of CoL on a toy example and

compare its performance with two other popular layers:

fully-connected and convolutional. We generated a syn-

thetic set of 6000 training images and 1000 test images

of size 10 × 10 and 4 pixel values that were sampled i.i.d

from two different distributions (i.e., histograms). The pixel

values of the first distribution came from the histogram

[0.4, 0.1, 0.1, 0.4], and the pixel values of the second came

from the histogram [0.1, 0.4, 0.4, 0.1]. The mean pixel value

of both histograms is the same. (See Figure 4(a)). We eval-

uated a number of network architectures:

1. conv(1× 1× 9) → avg(9× 9) → fc(36× 2)

2. conv(3× 3× 2) → avg(7× 7) → fc(32× 2)

3. conv(3× 3× 9) → avg(9× 9) → fc(36× 2)

4. fc(100× 36) → fc(36× 2)

5. CoL(4× 4) → avg(5× 5) → fc(36× 2)

All networks use a stride step of 1. The CoL in network 5

only uses a co-occurrence term of size L[4 × 4] and a spa-

tial filter that is set to one. In the first three architectures,

the size of convolutions and average pooling was designed

to reduce the image. In all cases, the last fully connected

layer is trained to output an estimated distribution of the

two classes as the output. See details in Figure 4(b). The

average pooling layer is used to decrease the power of the

final fully connected layer and still preserve enough infor-

mation about the input. The CoL network (item (4) above)

consists of 16 parameters and the spatial filter is constant 1
of size (10× 10).

Figure 4(b) shows the different instances of networks and

Figure 4(c) shows the results of this experiment. As can be

seen, the CoL-based network, which uses far less parame-

ters compare to a standard convolutional layer , achieves a

far lower loss, and does so in a lower number of iterations.

This shows that CoL can capture complex visual patterns in

a very compact form.

This experiments highlights a number of properties of

the CoL. First, it does not depend on the spatial layout of

pixel values and can handle distributions of pixel values.

Avg_pool

Input

Output

(ii)

Avg_pool

Output

(i)

Output

(iii)

Input Input

CoL

FC

Conv

FC

FC

FC

(b)

(a)

(c)

Figure 4. Toy example: (a) Two examples of images where the

pixels are sampled i.i.d from two different 4-bin histograms. (b)

Three toy network architectures with different initial layers: (i) the

first layer is Conv with different sizes of filter (ii) the first layer is

CoL (iii) the network contains a fully-connected layer. (c) Graphs

of the loss function of the different networks. As can be seen, the

CoL architecture converges faster and to a much lower loss. See

more details about the different architectures in the text 3.4.

Second, the number of parameters of the co-occurrence ma-

trix does not depend on the spatial support, and a [4×4] deep

co-occurrence matrix can be used with a filter with a spatial

support of [10× 10].

4. Experiments and Results

The code was implemented in TensorFlow and tested on

a GPU TITAN X (Pascal) with 12G memory. We tested the

proposed layer on two datasets: CIFAR-10 [11] that is used

for image classification, and the ADE20k dataset [20] that

is used for semantic pixel labeling. In each case, we used

an existing, publicly available code.

Implementation details: We use a single CoL filter for

all the input data. That is, all input channels contribute to

a single co-occurrence term. We found that this gives the

best trade-off in terms of computer time and memory re-

quirements. We do believe that further research is required

on this topic. To speed up computation, we follow the ap-

proach used by Durand and Dorsey [5] to speed up the bi-

lateral filter. Specifically, we loop over the bin values, and

for each bin perform a regular shift-invariant convolution,

which is fast to compute. As a result, our algorithm is k

times slower than a regular CNN both in training and test-

ing (where k is the number of bins we use). We use k = 5
in all the experiments reported here. The initializer that was
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# stacks # blocks layer size

first convolutional layer [3× 3× 3× 32]

stack(1)

block(1)
conv1 [3× 3× 32× 32]
conv2 [3× 3× 32× 32]

block(2)
conv1 [3× 3× 32× 32]
conv2 [3× 3× 32× 32]

stack(2)

block(1)
conv1 [3× 3× 32× 64]
conv2 [3× 3× 64× 64]

block(2)
conv1 [3× 3× 64× 64]
conv2 [3× 3× 64× 64]

stack(3)

block(1)
conv1 [3× 3× 64× 128]
conv2 [3× 3× 128× 128]

block(2)
conv1 [3× 3× 128× 128]
conv2 [3× 3× 128× 128]

Table 1. the original ResNet that used in CIFAR10 experiments.

The table describe all the convolutional layers with sizes: the first

convolutional layer changes the number of channels other has the

same size per stack.

used in all our experiments is a common truncated normal

distribution with a standard deviation of 0.1.

Experiments on CIFAR-10: For the CIFAR-10 dataset,

we used the ResNet architecture2. The architecture con-

sists of three stacks, each consisting of two blocks. Every

block contains batch-normalization - convolution - batch-

normalization - convolution. The first convolution maps the

input channels to a different number of output channels and,

as was explained in section 3, CoL requires that the number

of input and output channels be equal. See Table 1.

The results are reported in Figure 5. We compared the

performance of networks where we removed all instances

of conv2 from a stack (see Table 1) completely or replaced

them with CoL. Since there are three stacks we have tried

all possible combinations of stacks. The graph shows the

test error as a function of compression ratio and emphasizes

the gap in test error between different types of blocks. The

original block, which is marked with ”X” in Figure 5, has

the lowest test error, but also the largest number of param-

eters (its compression ratio is 1 and every other network is

compared to it). As can be seen, CoL does not help per-

formance at the early stages of the network and, in some

cases, slightly hurts performance. However, using CoL in

the third stack consistently reduces the error by about 1%,

while cutting the total number of parameters by almost a

half.

Ablation test on CoL components: We conducted an

ablation test to measure the contribution of the spatial term

and the co-occurrence term to the performance of CoL.

Specifically, we replaced both conv2 layers of the third

stack of the ResNet architecture. Then, we evaluated two

2Taken from https://github.com/seansoleyman/cifar10-resnet.
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compression ratio
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stacks(1,2)

stacks(3)

stacks(1,3)

stacks(2,3)

stacks(1,2,3) w/o CoL
w/ CoL
original

Figure 5. CIFAR10 test results: The x-axis denotes the compres-

sion ratio of the number parameters and the y-axis denotes the test

error. Each point corresponds to a different configuration of the

network with and without CoL. ”w/o CoL” means dropping the

conv2 layer in that stack and ”w/ CoL” means replacing the conv2

layer with a CoL. The text indicates which stacks were modified

(i.e., ”stacks(2,3)” means that we modified the second and third

stacks). The result of the original network is marked by ’X’. As

can be seen, the modifying of the last stack (i.e., stack number

3) leads to a decrease of between 0.5% to 1% in the error, while

cutting the number of parameters by approximately half.

variants: in the first, CoL contains only the L[5 × 5] term,

and in the second, CoL only uses w[3× 3× 3]. The test er-

ror in both cases was 8.53. Only when we trained with both

the spatial and co-occurrence terms did the test error drop

to 8.13, which is similar to the error of the original network.

Pruning experiment: In another experiment, we com-

pared CoL with two pruning techniques to see how much

can a convolutional layer be compressed using existing

techniques. Specifically, we evaluated two methods. The

first is a magnitude-based method: prune weights with mag-

nitude less than a chosen threshold. The second method cal-

culates an SVD decomposition of the weights, set to zero a

fixed number of eigenvalues and reconstructs the weights

with the truncated eigenvalues. This experiment was con-

ducted on the third stack of the network. In both methods

we pruned the network to be of size as similar as possible to

the size of the network with CoL in the third stack. Results

are reported in Table 2. As can be seen, both magnitude and

SVD-based pruning give inferior results to CoL.

Distribution of filters: CoL can encode a large number

of different filters in a compact representation. We suspect

that at the deeper layers of a network the number of different

filters captured by CoL is higher than in the early layers, and

this might lead to increased representation power that leads

to improved performance. To quantify this, we collected

the filters used by CoL, clustered them into prototypes us-
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Method Test error(%)

Original network 8.11

Magnitude-based pruning 9.57

SVD-based pruning 8.75

CoL (ours) 8.13

Table 2. Pruning evaluation: We compare two pruning tech-

niques to CoL. As can be seen, both magnitude and SVD-based

pruning give inferior results to CoL. Compression ratio for all

methods is about 55%.

0 1 2 3 4 5 6 7 8 9 10
prototype

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fra
ct

io
n

CIFAR-10 CoL input first stack
CIFAR-10 CoL input third stack

Figure 6. Distribution of filters by prototype (i.e., clusters), in the

CIFAR-10 experiment, for the first and third stacks. As can be

seen, the first prototype of the first stack accounts for almost 70%
of the filters generated by CoL. In contrast, the first prototype of

the third stack captures only 50%. See text for more details.

ing k-means, and calculated a histogram of filters. That is,

we count, for each prototype (i.e., cluster center) filter, how

many similar filters were generated by the CoL layer.

Figure 6 shows the distribution of filter prototypes for the

CIFAR-10 experiments. In particular, we collected statis-

tics from the first and third stacks. As can be seen, the first

prototype of the first stack accounts for almost 70% of the

filters generated by CoL. In contrast, the first prototype of

the third stack accounts for only 50%. This shows a corre-

lation between the distribution of filters generated by CoL

and its performance. The more uniform the distribution, the

higher the performance of CoL.

Experiments on ADE20k: We tested CoL on the MIT

Scene Parsing Benchmark that is based on the ADE20k

dataset [20]. This dataset contains 22k scene-centric im-

ages with 150 semantic categories. The training set consists

of 20k images and we report results on the validation set that

consists of 2k images. Our network is largely based on the

Fully Connected Network (FCN) of [13]3. The input to the

3We use the TensorFlow implementation found at

Accuracy Total IoU Score

1st conv(7× 7) (orig.) 62.69 0.1362 0.3815

1st conv(3× 3) 62.02 0.1374 0.3788

1st conv(3× 3)/w CoL 64.41 0.1618 0.4029

without 2nd conv 62.09 0.1218 0.3713

CoL as 2nd layer 63.27 0.1332 0.3829

Table 3. ADE20k result: Results (on validation set) of semantic

segmentation network with and without CoL. Reducing the filter

size from the original size of (7 × 7) to (3 × 3) cuts the number

of parameters of this layer by half but hurts performance slightly.

Adding a single CoL layer increases performance by about 1%. A

similar behaviour is observed for the second layer. See details of

different architectures in Table 4.

network is the result of a preprocessing stage that takes each

image from the dataset and passes it through VGG19 [14].

We evaluated a number of different architectures, as

shown in Table 4. In the first experiment the first convoluti-

nal layer of size [7× 7× 512× 4096] is replaced by a layer

with a smaller spatial support of size [3× 3× 512× 4096],
followed by a CoL of size L[5 × 5] and w[7 × 7 × 13]. As

shown in Table 3 we have reduced the number of parame-

ters by a factor of 9
49 while increasing accuracy by 2.4%.

In the second experiment we replaced the second convolu-

tion with CoL. In this case replacing a convolutional layer

of size [1 × 1 × 4096 × 4096] with a CoL of size L[5 × 5]
and w[7× 7× 13] increased accuracy by 1%.

5. Conclusions

We proposed a new filter that augments regular filters

with a term that is based on co-occurrence statistics. The re-

sulting filter is differentiable and can be trained using back-

propagation.

The filter is not shift-invariant and as such can adapt to

different regions of the input image. In addition, the co-

occurrence term lets the filter handle local geometric de-

formations in the image plane. The filter is defined by a

small number of parameters yet can generate many differ-

ent regular filters, based on input content. This property lets

us replace many regular filters with a single co-occurrence

based filter.

We defined a new layer, termed Co-Occurrence Layer

(CoL), that encapsulates this filter and have shown that it

can be used in different places of a network. Finally, exper-

iments on two data sets demonstrate the advantages of our

method.
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Original network

Layer Type Filter Shape Input Size

Conv1 7× 7× 4096 7× 7× 512
Conv2 1× 1× 4096 7× 7× 4096
Conv3 1× 1× 150 7× 7× 150

Modified Conv1

Layer Type Filter Shape Input Size

Conv1 3× 3× 4096 7× 7× 512
Conv2 1× 1× 4096 7× 7× 4096
Conv3 1× 1× 150 7× 7× 150

Modified Conv1 + CoL

Layer Type Filter Shape Input Size

Conv1 3× 3× 4096 7× 7× 512
CoL L[5× 5], w[7× 7× 13] 7× 7× 4096
Conv2 1× 1× 4096 7× 7× 4096
Conv3 1× 1× 150 7× 7× 150

W/O Conv2

Layer Type Filter Shape Input Size

Conv1 3× 3× 4096 7× 7× 512
Conv3 1× 1× 150 7× 7× 4096

CoL instead of Conv2

Layer Type Filter Shape Input Size

Conv1 3× 3× 4096 7× 7× 512
CoL L[5× 5], w[7× 7× 3] 7× 7× 4096
Conv3 1× 1× 150 7× 7× 4096

Table 4. FCN: The table describes the five different architectures

evaluated on ADE20k. See results of different architectures in Ta-

ble 3.

References

[1] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, and

k. kavukcuoglu. Interaction networks for learning about ob-

jects, relations and physics. In D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances

in Neural Information Processing Systems 29, pages 4502–

4510. Curran Associates, Inc., 2016.

[2] N. Cohen, O. Sharir, and A. Shashua. Deep simnets. In 2016

IEEE Conference on Computer Vision and Pattern Recogni-

tion, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,

pages 4782–4791, 2016.

[3] T. S. Cohen and M. Welling. Steerable cnns. CoRR,

abs/1612.08498, 2016.

[4] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in Neural Infor-

mation Processing Systems 27: Annual Conference on Neu-

ral Information Processing Systems 2014, December 8-13

2014, Montreal, Quebec, Canada, pages 1269–1277, 2014.

[5] F. Durand and J. Dorsey. Fast bilateral filtering for the dis-

play of high-dynamic-range images. In Proceedings of the

29th Annual Conference on Computer Graphics and Inter-

active Techniques, SIGGRAPH ’02, pages 257–266. ACM,

2002.

[6] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Du-

rand. Deep bilateral learning for real-time image enhance-

ment. ACM Trans. Graph., 36(4):118:1–118:12, 2017.

[7] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-

pressing deep neural network with pruning, trained quanti-

zation and huffman coding. CoRR, abs/1510.00149, 2015.

[8] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions. In

British Machine Vision Conference, BMVC 2014, Notting-

ham, UK, September 1-5, 2014, 2014.

[9] V. Jampani, M. Kiefel, and P. V. Gehler. Learning sparse high

dimensional filters: Image filtering, dense crfs and bilateral

neural networks. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), June 2016.

[10] R. J. Jevnisek and S. Avidan. Co-occurrence filter. In 2017

IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,

pages 3816–3824, 2017.

[11] A. Krizhevsky. Learning multiple layers of features from

tiny images. 2009.

[12] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,

abs/1312.4400, 2013.

[13] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional

networks for semantic segmentation. IEEE Trans. Pattern

Anal. Mach. Intell., 39(4):640–651, Apr. 2017.

[14] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[15] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H.

Yang, and J. Kautz. Splatnet: Sparse lattice networks for

point cloud processing. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2018.

[16] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In Proceedings of the Sixth International Con-

ference on Computer Vision, ICCV ’98, pages 839–, Wash-

ington, DC, USA, 1998. IEEE Computer Society.

[17] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural

networks. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018.

[18] M. Weiler, F. A. Hamprecht, and M. Storath. Learning steer-

able filters for rotation equivariant cnns. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018.

[19] H. Wu, S. Zheng, J. Zhang, and K. Huang. Fast end-to-end

trainable guided filter. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018.

[20] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Tor-

ralba. Scene parsing through ade20k dataset. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017.

4804


