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Abstract

Image classifiers based on deep neural networks suffer

from harassment caused by adversarial examples. Two de-

fects exist in black-box iterative attacks that generate ad-

versarial examples by incrementally adjusting the noise-

adding direction for each step. On the one hand, existing

iterative attacks add noises monotonically along the direc-

tion of gradient ascent, resulting in a lack of diversity and

adaptability of the generated iterative trajectories. On the

other hand, it is trivial to perform adversarial attack by

adding excessive noises, but currently there is no refine-

ment mechanism to squeeze redundant noises. In this work,

we propose Curls & Whey black-box attack to fix the above

two defects. During Curls iteration, by combining gradi-

ent ascent and descent, we ‘curl’ up iterative trajectories to

integrate more diversity and transferability into adversar-

ial examples. Curls iteration also alleviates the diminishing

marginal effect in existing iterative attacks. The Whey op-

timization further squeezes the ‘whey’ of noises by exploit-

ing the robustness of adversarial perturbation. Extensive

experiments on Imagenet and Tiny-Imagenet demonstrate

that our approach achieves impressive decrease on noise

magnitude in ℓ2 norm. Curls & Whey attack also shows

promising transferability against ensemble models as well

as adversarially trained models. In addition, we extend our

attack to the targeted misclassification, effectively reducing

the difficulty of targeted attacks under black-box condition.

1. Introduction

The output of deep neural networks (DNNs) is highly

sensitive to tiny perturbation on input images [23, 5].

Among all methods that generate adversarial examples, it-

erative attacks [9, 4, 27] strike a better balance between

attack effect and efficiency of adversarial example gener-

ation. However, there are two severe drawbacks in current

mainstream black-box iterative attacks based on substitute

model [16]. In the first place, decision boundaries between
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Figure 1. Iterative trajectory of Curls. Background is contour of

cross entropy. The redder the color, the lower the loss. The con-

secutive black curve represents decision boundary between cate-

gory ‘snow bird’ and ‘snail’. Green and purple polylines represent

trajectories with simply gradient ascend and Curls iteration with

binary search, respectively. Blue and red rings represent the orig-

inal image x and adversarial example found after binary search.

Original image and three adversarial examples on both sides cor-

respond to four rings with the same color as the image border.

models in black-box scenario are far apart [11]. Iterative

trajectories have difficulties crossing decision boundary of

target model with a small noise magnitude, because they are

based on monotonic search along the gradient ascent direc-

tion of substitute model. This impairs adversarial examples’

transferability[11]. In the second place, although noise

magnitude determines the performance of attack methods,

adversarial examples generated by iterative attacks contain

a certain amount of redundant noises that cannot be com-

pletely removed by simply increasing the iteration number.

A post-iteration refinement mechanism is needed to squeeze

out the ‘whey’ of adversarial noises.

In this paper, we propose Curls & Whey black-box at-

tack. During Curls iteration, we iterate along both the gradi-

ent ascent and descent directions of substitute model’s loss

function, as demonstrated by green and purple polylines in

Fig. 1. The dual-direction setting ‘curls’ up the iterative

trajectories and is hence more likely to cross target model’s

decision boundary at a closer distance, which effectively en-

hances the diversity as well as transferability of adversarial

examples. Diminishing marginal effect caused by monoton-
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ically adding noises along the direction of gradient ascent

is also weakened. Mechanisms to refine adversarial noises

(red arc in Fig. 1) and guide initial direction are included at

the end and beginning of Curls iteration, respectively.

Whey optimization is applied to further squeeze the mag-

nitude of noise by exploiting adversarial perturbation’s ro-

bustness. We firstly divide adversarial perturbation into

groups according to pixel value and attempt to filter out

the noises of each group. Then we distill each pixel in ad-

versarial example stochastically to squeeze out redundant

noises little by little. Experiments on Imagenet [18] and

Tiny-Imagenet [3] verify that our method generates adver-

sarial examples with higher transferability and smaller per-

turbation in ℓ2 norm under the same query limitation. We

also systematically investigate the influence of each itera-

tive parameter on the performance of the proposed method.

In addition, our method shows strong transferability against

ensemble models and adversarially trained models [24].

Targeted misclassification in black-box scenario has long

been considered intractable [11], for differences on deci-

sion boundaries and classification spaces between substitute

and target model hampers adversarial examples’ penetration

from source class to target class. Most existing iterative at-

tacks try to solve this problem by simply replacing gradient

descent in untargeted misclassification with gradient ascent

towards the target class [9, 4]. In this paper, by integrating

interpolation to iterative process, we boost original image

into the direction towards the target category and signifi-

cantly decrease the difficulty of targeted misclassification.

We summarize our contributions as follows:

(1) We bring forward Curls iteration, a black-box attack

method aiming at improving diversity of iterative trajecto-

ries and transferability of adversarial examples by combin-

ing both gradient ascent and gradient descent directions.

(2) We propose Whey optimization, the first noise-

squeezing method exploiting robustness of perturbations.

(3) We expand our iterative method to targeted attacks

and significantly improve attack effect of iterative methods

under black-box scenario.

2. Related Work

In black-box attack, attackers can only query target

model and get the score of each category [14]. One prac-

tical solution exploits transferability between two models,

i.e., phenomenon that adversarial examples generated by lo-

cal substitute model can fool the target model [16]. Four

existing attacks are introduced in the following.

Fast Gradient Sign Method (FGSM). As a classical

one-step attack, FGSM [5] finds the noise’s direction by cal-

culating the gradient of cross-entropy loss J(x, yT ):

x′ = x+ ε · sign(▽J(x, yT )). (1)

Iterative FGSM (I-FGSM). I-FGSM [9] splits uppper

bound of noise ε into several small step size α and adds

noises step by step:

x′

t+1 = Clipx,ε{x
′

t + α · sign(▽J(x′

t, yT ))}. (2)

I-FGSM possesses the highest attack effect among all

current iterative attacks in white-box scenario. Its main

drawback is the diminishing marginal effect of iterative

steps. In other words, as the number of iterations t increases

and the step size α decreases, keeping adding the iteration

step has little improvement on attack effect.

Momentum Iterative FGSM (MI-FGSM). MI-FGSM

[4] introduced a momentum term to make the adjustment

of the noise-adding direction smoother, but the impact of

diminishing marginal effect on iteration number still exists:

mt+1 = µ ·mt +
▽J(x′

t, yT ))

‖ ▽ J(x′

t, yT ))‖
, (3)

x′

t+1 = Clipx,ε{x
′

t + α · sign(gt+1)}. (4)

Variance-Reduced Iterative FGSM (vr-IGSM). Vr-

IGSM [27] uses an averaged gradient of original image with

gaussian noises to eliminate local fluctuation in substitute

model and therefore improves the transferability.

Gt+1 =
1

m

m
∑

i=1

▽J(xt + ξi), ξi ∼ N (0, σ2I), (5)

x′

t+1 = Clipx,ε{x
′

t + α · sign(Gt+1)}. (6)

A series of defense methods have been proposed to im-

prove robustness of target models [15, 10, 12]. Among

them, adversarial training [24] and model ensemble are two

most widely-used methods. Adversarial training vaccinates

against adversarial examples by including them into the

training set of target model, while model ensemble reduces

specific error made by single model.

3. Curls & Whey Attack

3.1. Notation

An image classifier based on DNN can be represented

as N : XW×H×C → Y K , where X represents the input

space with dimension of Width×Height×Channel and

Y represents the classification space with K categories. A

successful adversarial attack changes the original classifi-

cation result of image classifier, i.e., the target model, after

adding as little noise as possible to the original image [26]:

min ‖x′ − x‖v, s.t. N(x) 6= N(x′) , (7)

where v refers to the norm used to measure the noise

magnitude including ℓ1, ℓ2 and ℓ∞ norm. In this paper

we discuss noise magnitude in ℓ2 norm. Some existing
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Figure 2. Diminishing marginal effect on iteration number T . The

small blue ring at the bottom left represents the original image.

Five polylines marked 1© - 5© are iterative trajectories for T =
1, 2, 3, 5,∞ cross the decision boundary.

works [28, 29, 4] compare the misclassification rate with

a fixed ℓ∞ norm, but we concentrate on the quality of ad-

versarial noises generated by different attacks on one im-

age. Here the black-box attack using substitute model [16]

is used to solve the problem that the target model cannot be

back propagated. The gradient information at step t refers

to the gradient value of the substitute model’s loss function

Jsub, i.e., cross-entropy loss, to adversarial example x′

t.

3.2. Diminishing Marginal Effect on Iteration Steps

Iterative attacks perform well in white-box scenarios,

where the transferability is guaranteed to be 100% [13].

However, when attacking against a black-box target model,

the drawbacks of iterative attacks gradually expose. First

of all, discrepancy on decision boundary burdens transfer-

ability between substitute model and target model [25]. It-

erative attacks always step toward the direction in which

loss function of substitute model increases. But there is a

huge gap on classification spaces between different models.

Their gradient directions may be even orthogonal to each

other [11]. Therefore, simply searching for adversarial ex-

amples along the gradient ascent direction of the substitute

model may no longer be suitable for black-box attacks.

What’s more, diminishing marginal effect on the num-

ber of iterations exists. Now assume that in order to min-

imize the noise magnitude, the step size α of each step is

inversely proportional to the total iteration numbers. In I-

FGSM, when the number of iterations T increases by 1, the

marginal gain for the decrease in the noise magnitude is

T+1
∑

t=1

1

T + 1
· ▽Jsub(xt)−

T
∑

t=1

1

T
· ▽Jsub(xt). (8)

In general, as T increases and the single step size

shortens, the iterative trajectory tends to be consistent and

smooth and gradually converges, as shown in Fig. 2. Con-

sidering that the number of queries to the target model in

black-box attack is also limited, increasing the iteration

number has little effect on adversarial noise reducing if the

iteration number is already high.

3.3. Curls Iteration

Iterative trajectories of current iterative attacks in black-

box scenario are monotonic. First, monotonically employ-

ing gradient ascent along substitute model’s loss function

is more likely to bring iterative trajectories into local opti-

mum of substitute model, rather than passing through the

decision boundary of target model. Second, simply rely-

ing on transferability between substitute model and target

model, but ignoring the feedback of target model after each

query makes the iterative trajectories lack adaptability.

To ‘curl’ up and diversify the iterative trajectory may be

a more cost-effective solution [19]. Fig. 1 shows one pos-

sible distribution of target model loss function. In the case

that loss function rises slowly along the direction of gradi-

ent ascend, like the green trajectory, it may be possible to

find a shortcut across the decision boundary from a nearby

starting point, as shown by the purple polyline in Fig. 1. We

abandon the monotonic search strategy base on gradient as-

cend to increase the diversity of iterative trajectories:

x′

0 = x, x′

1 = Clipx,ε{x
′

0 − α · ▽Jsub(x
′

0)}, (9)

gt+1 =

{

−▽ Jsub(x
′

t) J(x′

t) < J(x′

t−1),

▽Jsub(x
′

t) J(x′

t) ≥ J(x′

t−1),
(10)

x′

t+1 = Clipx,ε{x
′

t + α · gt+1}, (11)

where Jsub(x
′

t) and J(x′

t) represent the cross entropy loss

of adversarial example x′

t on the substitute model and the

target model, respectively. First, update the original image

for one step along the direction of gradient descent. When

the cross entropy loss of current adversarial example on tar-

get model is lower than the previous step, usually the ‘valley

floor’, i.e., the local minimum of loss function has not yet

been reached. Therefore, when the loss on the target model

is still declining, continue to update along the direction of

gradient descend, and vice versa. We regard this ‘first go

down then go up’ iterative method as Curls iteration.

On the basis of Curls, we introduce two heuristic strate-

gies before and after each round of iteration. For an im-

age, the closest adversarial examples are more likely to dis-

tribute in roughly the same direction in the feature space.

Therefore, we record and update the average direction of

all adversarial examples of one image, R̄, and add a vector

pointing to this direction in the first step when calculating

gradients for each round:

R̄ =
1

K

K
∑

i=1

x′, s.t. N(x) 6= N(x′) , (12)

x′

1 = Clipx,ε{x
′

0 + α · ▽J(x′

0 + α · R̄)}. (13)
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Algorithm 1 Curls Iteration

Input: Target DNN N(x), substitute model Sub(x)
Original image x and label y
Initial noise magnitude limit ε
Iteration step T and variance of gaussian noise s
Step size α and binary search step bs

Output: Adversarial example x′

1: Initialize R̄ and two starting points

2: R̄ = 0, xA
0 = x, xB

0 = x
3: downhill = True // Set the gradient descend flag to True

4: for t = 0 to T do

5: ξAt , ξ
B
t ∼ N (0, s2I)

6: Calculate gradient on substitute model

7: gAt = ▽Jsub(x
A
t + ξAt + α · R̄)

8: gBt = ▽Jsub(x
B
t + ξBt + α · R̄)

9:

xA
t+1 =

{

Clipx,ε{x
A
t − α · gAt } downhill = True

Clipx,ε{x
A
t + α · gAt } downhill 6= True

xB
t+1 = Clipx,ε{x

B
t + α · gBt }

10: if downhill = True and J(xA
t+1) > J(xA

t ) then

11: downhill = False
12: end if

13: if N(xA
t+1) 6= N(x) or N(xB

t+1) 6= N(x) then

14: update R̄ by Eqn. (12)

15: end if

16: end for

17: if N(xA
T ) 6= N(x) or N(xB

T ) 6= N(x) then

x′ =

{

xA
T ‖xA

T − x‖2 < ‖xB
T − x‖2

xB
T else

18: refine x′ by Eqn. (15)

19: end if

20: return x′

Since the iterative trajectory cannot be a straight line in

the high-dimensional feature space, situation shown in the

red arcs in Fig. 1 exists: there are adversarial examples

with smaller ℓ2 distance between the adversarial example

found and original image. We perform binary search be-

tween original image x and adversarial example x′ after

each round to fully exploit the potential of this round:

L = x,R = x′, (14)

BS(L,R) =



















BS(L, (L+R)/2),

if N(x) 6= N((L+R)/2),

BS((L+R)/2, R),

if N(x) = N((L+R)/2).

(15)

In the actual implementation of Curls iteration, in order

to prevent the oscillation of adversarial noise update, we do

not directly determine the gradient symbol on account of

target model’s loss function, but divide each iterative round

into two stages. In the first stage, carry out gradient de-

scend to the original image. Once the cross entropy on tar-

get model is lower than the previous step, the second stage

starts and carries out gradient ascend until the last step. At

the same time, the normal iterative trajectory of direct gra-

dient ascent is performed simultaneously. In addition, in-

spired by vr-IGSM [27], we add gaussian noise to image in

gradient calculation process to improve the transferability.

Algorithm 1 details Curls iteration.

3.4. Whey Optimization

Usually an iterative attack ends as soon as it finds adver-

sarial example or runs out of iteration number. However,

adversarial examples generated may still contain redundant

‘whey’ noises after iteration. Or the maximum extent to

which noises can be reduced, while ensuring the adversar-

ial example can still fool the target model [1]:

max(‖ x′−x ‖2 − ‖ x◦−x ‖2), s.t. N(x′) = N(x◦),

where x, x′ and x◦ refers to original image, adversarial ex-

ample found by now and the closest adversarial example to

the original image, respectively.

Since binary search between x and x′ is already per-

formed, adversarial examples with less redundant noises

are more likely to exist in a linearly independent direction

with respect to x′ − x. We propose Whey optimization

to squeeze out the remaining ‘whey’ of redundant noises

in black-box attack. Whey optimization maintains a bal-

ance between noise-squeezing amplitude and the number of

squeezes. Squeezing excessive noises at a time may return

adversarial examples to the original category. Nevertheless,

an incremental squeeze makes it impossible for optimiza-

tion to complete within a limited number of queries. A com-

promise solution is to divide adversarial noises into groups

first, then try to reduce noise magnitude group by group:

z0 = x′ − x, (16)

zwhc
t+1 = zwhc

t /2, s.t. zwhc
t = L(V (z0), t), (17)

where z is the noise, L(V, t) represents number with the

tth largest absolute value in pixel value set V :

V (z) = {v | v = zwhc, w ∈ [0,W ], h ∈ [0, H], c ∈ [0, C]}

W,H,C represents the width, height and channel of orig-

inal image x, respectively. Whey optimization divides

noise z into several groups according to the pixel value, se-

lects one group each time in descending order, reduces all

pixel value in z which equals to L(V, t) by half and check

whether the trimmed noises can still fool the target model.

After squeezing in groups, we perform more fine-grained

squeeze. The last step of Whey optimization set the value
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Algorithm 2 Whey Optimization

Input: Target DNN N(x) and adversarial example x′

Original image x and label y
Max attempt number for two squeeze steps, T1, T2

Pixel value set of x′ − x, P
Random number generator over [0, 1], random()

Output: Refined adversarial example x∗

1: z = x′ − x
2: t1 = 0, t2 = 0
3: for p in P and t1 < T1 do // Step 1: Squeeze in groups

4: Reduce the pixel value by half

5: z [z = p] / = 2
6: if N(z) = y then

7: Cancel the update of this step

8: end if

9: t1 = t1 + 1
10: end for

11: while t2 < T2 do // Step 2: Squeeze stochastically

12: Generate a random mask same shape as the image

maskwhc =

{

0 random() ≤ 0.01,
1 else.

13: z = z ·mask // Element-wise product

14: if N(z) = y then

15: Cancel the update of this step

16: end if

17: t2 = t2 + 1
18: end while

19: x∗ = z + x
20: return x∗

of each pixel to 0 with probability of δ:

zt+1 = zt ·maskt, (18)

maskwhc =

{

0 random() ≤ δ,
1 else,

(19)

where mask is the same shape as z. Algorithm 2 gives the

detail of Whey optimization.

3.5. Targeted Attack

Unlike untargeted attack, targeted attack requires not

only the adversarial example be misclassified by the tar-

get model, but also it can be misclassified into the speci-

fied category. This is especially difficult in black-box attack

because the decision boundaries between different models

vary greatly, and the gradient direction are even orthogo-

nal to each other [11]. Even if the update of each step is

changed from gradient ascend with respect to the original

category ▽Jsub(x
′, yori) to gradient descend with respect

to the target category −▽ Jsub(x
′, ytarget) [4], an iterative

trajectory from original image is almost impossible to reach

the target category space, due to the difference in gradient

values between target model and substitute model.

We abandon the ‘start from scratch’ strategy and inte-

grate interpolation to the iterative attack to get a better ini-

tial update direction. First, we collect a legitimate image xT

that can be classified into the target category by the target

model. Second, we use binary search to find an image x′

0

between the original image x and xT , making sure that x′

0

can also be classified into the target category. After that, we

use x′

0 to guide the first gradient ascent step starting from x:

x′

0 = (1− s) · x+ s · xT , (20)

x′

1 = Clipx,ε{x− α · ▽J(x′

0)}, (21)

x′

t+1 = Clipx,ε{x
′

t − α · ▽J(x′

t)}, t ≥ 1, (22)

where 0 < s < 1 indicates the interpolation coefficient

determined by binary search. In this way, we boost original

example into the direction towards the target category. After

the first boosting step, we continue to apply Curls&Whey

attack as in untargeted attacks.

4. Experiments

4.1. Experiment Settings

All our experiments are performed on Tiny-Imagenet

used in NIPS 2018 Adversarial Vision Challenge [3] and

Imagenet [18], with image shape of 64 × 64 × 3 and

224 × 224 × 3, respectively. Imagenet contains 1000 im-

age categories. We picked 10000 images from its valida-

tion set that can be correctly classified by all target models,

10 images for each category. As for Tiny-Imagenet with

200 image categories, we choose 2000 images, 10 images

for each category. 8 neural network models with different

structures are compared: resnet-18 [6], resnet-101, incep-

tion v3 [22], inception-resnet v2 [21], nasnet [30], densenet-

161 [8], vgg19-bn [20], senet-154 [7].

We implement our black-box iterative attack on Foolbox

[17] framework. In order to accurately measure the attack

effect of each method, a large loop for determining ε is

added outside the iterative process. For evaluation criterion,

we choose the median and average size of adversarial per-

turbation transferred from substitute model to target model,

as applied in NIPS 2018 Adversarial Vision Challenge [3]:

mid(Sub,N) = median({d(x, x∗) | x ∈ X}),(23)

avg(Sub,N) =
1

N

N
∑

i=1

({d(x, x∗) | x ∈ X}), (24)

d(x, x∗) = ‖x− x∗‖2, (25)

where sub and N represent substitute model and target

model, respectively. x is an original image in the test set

X. x∗ is the adversarial example found that is closest to

x. d(x, x∗) returns the ℓ2 distance between x and x∗. A
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Table 1. Median and average ℓ2 distance of adversarial perturbation crafted from pairwise attack between four models.

resnet18 inceptionv3 inception resnet v2 nasnet

attack methods median average median average median average median average

FGSM 0.1321 0.8893 4.3085 7.4580 3.6764 5.3257 3.4187 4.5589

I-FGSM 0.0800 0.0881 1.9686 2.9287 2.4624 3.3192 2.1865 2.9644

resnet 18 MI-FGSM 0.0866 0.1029 2.3220 3.4386 2.9526 3.9267 2.0174 2.9723

vr-IGSM 0.0941 0.1120 1.8737 2.8228 2.4803 3.4085 1.7991 2.7645

Curls 0.0731 0.1182 1.6443 2.4739 1.8507 2.6290 1.6773 2.4919

Curls&Whey 0.0627 0.1040 1.1942 1.7387 1.4549 1.9450 1.3902 1.9696

FGSM 0.9944 3.6262 0.1521 1.9010 2.6171 4.9078 2.8729 4.5217

I-FGSM 0.6699 1.8883 0.1132 0.1518 1.3415 1.9095 1.3774 2.1675

inception v3 MI-FGSM 0.8124 2.2895 0.1283 0.1989 1.6248 2.4642 1.6800 2.7336

vr-IGSM 0.6072 1.7973 0.1297 0.1834 1.3214 2.0991 1.3569 2.3010

Curls 0.5760 1.6781 0.1243 0.2194 1.1163 1.8997 1.2335 2.1067

Curls&Whey 0.5140 1.4941 0.1252 0.9200 0.9058 1.7913 0.9398 1.9315

FGSM 1.6729 5.0270 4.2482 6.6191 0.2855 4.5974 4.1107 5.5487

I-FGSM 0.7019 2.3966 1.3314 2.3834 0.1293 0.3814 1.3761 2.3732

inception resnet v2 MI-FGSM 0.8561 2.8611 1.6342 3.0884 0.1602 0.5419 1.6594 3.0469

vr-IGSM 0.6463 2.4453 1.3166 2.6256 0.1640 0.5197 1.3292 2.6710

Curls 0.6040 2.0220 1.1325 1.9407 0.1501 0.3450 1.0978 1.9644

Curls&Whey 0.5227 1.2404 0.8431 1.3437 0.1485 0.3199 0.8483 1.4403

FGSM 3.7356 6.0550 3.5277 7.2388 3.4829 7.1657 0.2008 6.3891

I-FGSM 1.5575 4.1401 1.5926 4.3745 1.4180 4.2968 0.1173 1.8225

nasnet MI-FGSM 0.9518 3.0544 1.8850 3.9685 1.6458 3.7643 0.1317 0.3632

vr-IGSM 0.5659 2.4410 1.5006 3.2440 1.3066 3.1112 0.1371 0.3197

Curls 0.5821 2.1520 1.2719 3.9490 1.2048 4.1637 0.1360 2.7491

Curls&Whey 0.5543 1.8582 1.0003 3.6760 0.9599 3.6069 0.1354 2.5653

smaller ℓ2 distance indicates a stronger attack effect and

higher the transferability of generated adversarial examples.

4.2. Black­box Attack on Multiple Models

We report the median and average adversarial perturba-

tion on Tiny-Imagenet in Table 1. In this 4× 4 matrix, each

element represents the result of substitute model of this row

against the target model of this column over the entire 2000

images. Elements on diagonal are results of white-box at-

tacks (marked in italics). Fig. 4 shows median perturba-

tion on three target models when using vgg19-bn as substi-

tute model. More experiments on Imagenet can be found in

supplemental material. For each pair of substitute and tar-

get model, we compare our methods (Curls&Whey as well

as Curls only) with FGSM [5] and three other iterative at-

tacks, I-FGSM [9], MI-FGSM [4] and vr-IGSM [27]. Since

ℓ2 norm is used to measure noise magnitude, we no longer

use sign function to update adversarial examples. For the

fairness of comparison, the number of queries to the target

model is basically equal for the iterative attacks. Table 2

reports parameters related to query number, including iter-

ative round number T0, iteration step T , binary search step

bs, max attemp number for two squeeze steps in Whey opti-

mization T1 and T2. The total query number for our method

Table 2. Parameter set for experiments on two datasets.

T0 T bs T1 T2 Total

Tiny- Others 20 10 – – – 200

Imagenet Ours 10 4 2 40 40 200

Imagenet Others 24 24 – – – 576

Ours 14 7 3 200 100 580

is T0×(T +bs)×2+T1+T2, and T0×T for other iterative

methods. The initial noise magnitude ε and stepsize α are

0.3 and 1/2T , respectively. For variance of gaussian noise

in vr-IGSM and our method, we set s = 1.

It can be seen from Table 1 that Curls&Whey achieves

smaller median noise magnitude in ℓ2 norm than all other

methods, and smaller average magnitude than most other

methods, on black-box attacks, i.e., off-diagonal elements.

With the diversification of iterative trajectories and squeeze

of redundant noises, noises are reduced by 20%-30%, in

some cases even 40%, over most model combinations.

Curls iteration alone also outperforms existing methods in

almost all black-box attacks. Due to gaussian noises in

gradient-calculating process, noise magnitude of our meth-

ods are slightly higher than I-FGSM in white-box attacks,

where transferability is no need to be considered. However,
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Figure 4. Median ℓ2 distance comparison of adversarial noises

generated using vgg19-bn as substitute model on Imagenet.

white-box noise of our method is still smaller than that of

vr-IGSM, which validates the effectiveness of Whey opti-

mization. Fig. 5 shows adversarial examples crafted on two

datasets. Curls & Whey achieves targeted and untargeted

misclassification with nearly imperceptible noises.

4.3. Ablation Study

Here we investigate influence of iteration step T , binary

search step bs and variance of gaussian noise s to black-

box attack effect. We use inception-resnet v2 and incep-

tion v3 as substitute and target model, respectively. Results

on Tiny-Imagenet under different T , s and bs is shown in

Fig. 3. As discussed in Section 3, although T is negatively

correlated with noise magnitude, diminishing marginal ef-

fect exists. The noise drop of T = 20 relative to T = 16
is obviously not as great as the drop of T = 8 relative to

T = 4. Our method does not simply increase the iteration

number, but improve the diversity of iterative trajectories.

Therefore, Curls&Whey is able to find adversarial exam-

ples with smaller ℓ2 norm with equal queries, and use part

of the query to refine adversarial noises.

Variance s is related to the transferability between sub-

stitute and target model. The higher the s, the greater the

likelihood that adversarial example may transfer from one

Table 3. Incremental comparison on each part of Curls&Whey.

Curls +BS +Whey(1) +Whey(2)

median 1.3138 1.1111 0.9354 0.8431

average 2.3154 1.9039 1.4723 1.3437

model to another highly different model. However, as the

variance of gaussian noise increases, the proportion of orig-

inal image in gradient calculation process will gradually de-

crease, resulting in decline in transferability. Therefore, a

local minimum appears in the results on different s. As can

be seen from Fig. 3, when using inception-resnet v2 to at-

tack inception v3, the local optimal value of s is around 10.

As for binary search step, a larger bs means more binary

search between the adversarial example and original image.

As an auxiliary process in Curls iteration, a relatively small

bs is sufficient to reduce the noises.

To verify the effectiveness of each part of our attack

method, we conduct ablation experiment on Curls&Whey.

As can be seen from Table 3, whether it is Curls iteration,

binary search (BS), or two steps in Whey optimization, each

component can effectively reduce the noise magnitude.

4.4. Targeted Attack Results

For targeted attack, we assign 5 target categories for each

image and calculate the ℓ2 distance between original im-

age and adversarial examples of each category. We select

one image from the test set that can be classified into target

category for interpolation. We choose resnet18 and incep-

tionv3 as our substitute model and three other models as

target models. As shown in Fig. 6, three existing itera-

tive attacks have difficulties achieving targeted misclassifi-

cation. Compared to three decision-based attacks, boundary

attack [2], pointwise attack and vanilla interpolation [17],

noise magnitude of our method is also significantly reduced.

This confirms the effectiveness of integrating interpolation

method into Curls & Whey attack.
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Figure 6. Median ℓ2 distance comparison of targeted adversarial

noises generated using resnet18 (up) and inceptionv3 (down) as

substitute model on Tiny-Imagenet.

4.5. Attack on Defence and Ensemble Models

Adversarial training [24] and model ensemble are two

widely used defend methods. In Table 4, we use resnet18 as

substitute models to attack two adversarially trained models

(inceptionv3 and inception-resnet v2) and ensemble model

consisting of three models. Although defence methods in-

crease the difficulty of adversarial attack compared with Ta-

ble 1, the noise magnitude of adversarial examples built by

Curls & Whey is still much lower than other attacks.

5. Conclusion

We propose Curls & Whey, a new black-box attack con-

taining Curls iteration and Whey optimization, to diversify

Table 4. Median and average ℓ2 distance of adversarial perturba-

tion against adversarially trained models and ensemble model.

target model attack methods median average

FGSM 6.5812 9.1681

I-FGSM 2.8839 3.76

inceptionv3(adv) MI-FGSM 3.8039 4.6529

vr-IGSM 3.2752 4.1449

Curls&Whey 2.0633 2.6349

FGSM 4.7029 6.2954

I-FGSM 3.3195 3.9606

inc-resnet v2(adv) MI-FGSM 3.9919 4.9481

vr-IGSM 3.3829 4.2706

Curls&Whey 2.2852 2.7884

FGSM 4.5826 5.9755

inceptionv3+ I-FGSM 2.7742 3.595

inc-resnet v2+ MI-FGSM 3.5819 4.5227

nasnet vr-IGSM 3.0785 4.0499

Curls&Whey 2.0321 2.6187

the iterative trajectory and squeeze the adversarial noises

respectively. In addition, we integrate interpolation to it-

erative attack to reduce the difficulty of targeted attacks in

black-box scenario significantly. Experimental results on

Tiny-Imagenet and ImageNet demonstrate that compared to

existing iterative attacks, Curls & Whey generates adversar-

ial examples with smaller ℓ2 distance and stronger transfer-

ability against a variety of target models.
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