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Abstract

We investigate the problem of weakly-supervised video

grounding, where only video-level sentences are provided.

This is a challenging task, and previous Multi-Instance

Learning (MIL) based image grounding methods turn to

fail in the video domain. Recent work attempts to de-

compose the video-level MIL into frame-level MIL by ap-

plying weighted sentence-frame ranking loss over frames,

but it is not robust and does not exploit the rich tempo-

ral information in videos. In this work, we address these

issues by extending frame-level MIL with a false positive

frame-bag constraint and modeling the visual feature con-

sistency in the video. In specific, we design a contextual

similarity between semantic and visual features to deal with

sparse objects association across frames. Furthermore, we

leverage temporal coherence by strengthening the cluster-

ing effect of similar features in the visual space. We con-

duct an extensive evaluation on YouCookII and RoboWatch

datasets, and demonstrate our method significantly outper-

forms prior state-of-the-art methods.

1. Introduction

Grounding textual signals to visual-spatial regions have

various applications, e.g., robotics [3, 2], human-computer

interaction [27] and image retrieval [11]. While vi-

sual grounding in static images has witnessed great

progress [11, 24, 4, 34, 35], visual grounding in videos

is still challenging—first, a video contains many frames,

which induces the temporal visual-language alignment

problem that is unique to video grounding; second, de-

spite rich source of online videos, constructing a large-

scale video dataset with grounding annotation is expensive

and time-consuming. Therefore, in this paper, we aim to

do weakly-supervised video grounding: localize language

queries in video frames without object location annotation.

Kapathy and Fei-Fei [11] introduce a Multiple Instance

Learning (MIL) based grounding method that only requires

Description: add the potatoes to the pot. Query: potato

(a) Video-level MIL 
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(b) Frame-level MIL 
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Figure 1. The illustration of (a) video-level MIL and (b) frame-

level MIL. V1 to V4 are uniformly sampled from a video seg-

ment. Region proposals in different frames are distinguished by

color. Video-level MIL puts region proposals from all frames into

one bag while frame-level MIL constructs a bag for each frame.

The positive instances are denoted with black shadow. Here is the

dilemma: video-level MIL suffers from monotonically increased

bag size w.r.t. the number of frames, while frame-level MIL may

contain false positive bags such as bags for V3, and V4.

the alignment of images and sentences. It reasonably as-

sumes that each image contains at least one region corre-

sponding to the sentence query. If we define an image as the

“bag,” regions as instances in the bag and language query as

the label of the bag, then the image satisfies the definition

of the positive bag in MIL: a bag is positive if at least one of

its instances is positive. However, directly extending MIL

based grounding method from image to video easily falls

into a dilemma as shown in Fig. 1. The first way is to

regard each video as a bag, which contains all region pro-

posals across frames as the instances. However, the bag size

will drastically increase as video becomes longer. We call

this brute-force video-level MIL. Another option is to con-

struct a bag for every frame, and assign the same video label

to all frame bags, but it is easy to trigger false-positive bags.

This option is named as frame-level MIL. Zhou et al. [40]
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try to jump out of the dilemma by choosing the frame-level

MIL, but weight the loss function for each frame by mea-

suring how “positive” each frame is. Namely, each frame

loss is multiplied with a positive index which is defined by

the similarity between the frame and the query. However,

such method suffers from a problematic penalty term, which

will indistinguishably enlarge the similarity score of both

aligned and unaligned pairs and has very sensitive hyper-

parameters.

To overcome the above limitations, we first compare

the performance of vanilla brute-force video-level MIL and

frame-level MIL and decide to follow the latter choice.

Then, to better conquer the downsides of Zhou et al. [40],

we propose a contextual similarity to measure the similarity

score between the frame and the language query based on

two intuitions:

1. If a sentence contains multiple queries, then each

query should focus on its most relevant frames.

2. If an object appears sparsely across frames, the no-

object frames should be insignificant compared with

the frames where the object appears.

In the case of MIL, the contextual similarity can be viewed

as an augmented similarity by considering the possibility

of a frame to be the true positive bag of a query. Moreover,

such possibility for one frame is calculated by looking at the

other frames in the same video, which makes it more reli-

able. By replacing ordinary frame-sentence similarity with

our contextual similarity, one can alleviate the difficulty of

false positive bags in frame-level MIL.

Furthermore, the aforementioned methods fail to con-

sider the visual consistency in the video, which is a unique

property to video grounding; hence, we propose visual clus-

tering to leverage the temporal information better. Visual

clustering is inspired by the idea:

3. If two regions have high similarity to a common query,

then they should also be similar to each other.

In this case, the visual similarity is not restricted to the

adjacent frames, but can also work with sparsely sampled

frames in a video segment.

We conduct extensive experiments on YouCookII

dataset [41], which is the largest unconstrained instructional

video dataset available for visual grounding. Experimental

results demonstrate the effectiveness of our proposed tech-

niques compared to other state-of-the-art methods. Further-

more, we show that our techniques can also lead to im-

proved performance on RoboWatch dataset [26].

The rest of this paper is organized as follows. We review

related work in visual grounding, weakly-supervised object

localization and feature embedding in Sec. 2. We present

formal description of contextual similarity and visual clus-

tering in Sec. 3. Experimental settings and evaluation re-

sults are presented in Sec. 4. Finally, the paper is concluded

in Sec. 5.

2. Related Work

Visual grounding. Supervised image grounding has

been successfully explored in [21, 20, 37]; however, the

task requires expensive labels for box location. Recently,

weakly-supervised image grounding draws much attention

from the community. Most weakly-supervised grounding

methods can be classified as either proposal-based [11, 24,

4] or proposal-free [34, 35]. Given region proposals, Karpa-

thy and Fei-Fei [11] formulated it as a ranking problem to

rank the proposals according to visual-semantic similarity

scores in a MIL fashion. Rohrbach et al. [24] encoded a

phrase as its most similar region to reconstruct the region

back to the phrase. Chen et al. [4] transferred the knowl-

edge from the off-the-shelf object detector to help phrase

grounding. For proposal-free methods, the region location

is often obtained from phrase-salient map via subwindow

search. Xiao et al. [34] generated the salient map by re-

garding language structure as additional supervision for the

location relationship among objects. Raymond et al. [35]

conducted hypothesis tests over the existence of image con-

cept given words in a statistic view.

Weakly-supervised grounding has also been attempted

in videos [36, 10, 40]. Yu and Siskind [36] grounded sen-

tence to object in constraint lab-recorded videos. Huang et

al. [10] addressed language reference and grounding to-

gether to enhance the grounding performance with the

inspiration of graphical structure modeling [12, 38, 30]

Zhou et al. [40] extended [11] to the video domain with

frame-wise weighting and achieved the best performance so

far on video visual grounding. In this work, we follow the

proposal-based MIL methods [11, 40] due to the simplicity

and effectiveness of the MIL learning framework.

Weakly-supervised object localization. Methods, e.g.,

[8, 6, 7, 18, 29], are related to visual grounding, but they

typically localize an predefined object class or a video tag,

while, in visual grounding, the target can be any words or

phrases that are loosely defined. Most weakly-supervised

object localization problem can be formulated as a MIL

problem as well. The image that contains the label is re-

garded as positive instance and otherwise not. Among the

methods, [15, 22] have studied the weakly-supervised video

localization. Kwak et al. [15] combined object discovery

and object tracking while Prest et al. [22] extracted candi-

date spatio-temporal tubes for a better localization. Com-

paring to these methods, we propose an easier way to em-

ploy temporal information on the feature level that does not

require tracking or forming tubes, which are often compu-

tationally expensive.
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Feature embedding. In metric learning, contrastive loss

[9, 31] and triplet loss [25] are widely used to enhance the

feature space with a clustering property. When it comes

to the cross-model embedding, they are still feasible with

the elements forming pairs and triplets coming from dif-

ferent modalities (e.g., language and image [11]). How-

ever, Collell and Moens [5] showed that the projection of

the source modality does not resemble the target modal-

ity, in the sense of neighborhood topology, which drives

researchers to develop more discriminative mappings. One

way is to reduce the intra-class feature variations using cen-

ter loss [33] which has been used in tasks such as face ver-

ification [17], and object retrieval [39]. However, center

loss typically needs supervision and cannot fit into our task.

Other methods such as the structure-preserving loss [32]

would introduce extra hyper-parameters due to the margin

and the neighborhood. Different from the above works, we

employ temporal visual consistency as an additional cue to

reduce intra-class feature variations.

3. Methodology

3.1. Problem Formulation

Given a video segment and its sentence description, we

would like to locate each query in the sentence to each

frame of the video, where the query can be either a word

or a phrase. Formally, we denote a video segment as a set

of T frames V = {Vt}
T
t=1

, and each frame Vt contains a

set of N region proposals {vtn}
N
n=1

, where the superscript t

indexes the frames and the subscript n indexes the propos-

als on the current frame. We denote a sentence as a set of

K queries Q = {qk}
K
k=1

, and each qk corresponds to one

or more words in the sentence. Here, the visual feature and

query feature are all encoded into a common d-dimensional

space such that vtn, qk ∈ R
d.

Following [11] and [40], we define the similarity be-

tween the query qk and the region vtn as:

a
t,n
k = qTk vtn , (1)

where T denotes transpose. We define the negative samples

Q′ and V ′ as queries and region proposals that are neither

paired with Q nor V . Next, we introduce two approaches

for visual grounding: the brute-force video-level MIL and

the frame-level MIL. Our final model builds upon the latter.

Brute-force video-level MIL. Brute-force video-level

MIL regards a video as a bag and all regions across frames

in the video as the instances in the bag, and then be trained

with ranking loss on the bag level. Hence the similarity

score between the video segment V and the description Q is

written as:

S(V,Q) =
1

K

K∑

k=1

max
t,n

a
t,n
k , (2)

and the ranking loss with margin ∆ is defined as:

Lrank =max(0, S(V,Q′)− S(V,Q) + ∆)+

max(0, S(V ′,Q)− S(V,Q) + ∆) . (3)

Intuitively, Eq. (2) transforms the region-query similarity

to video-sentence similarity, where max is the key opera-

tion in MIL to select the most positive instance from the

positive bag, which can be paraphrased as to select the re-

gion from the video with the highest similarity to the query.

Then the loss is constructed as a pair-wise ranking loss to

embed the aligned video-sentence pairs with higher simi-

larity than the unaligned pairs. However, such method has

a fatal drawback—the bag size will monotonically increase

as the number of frames in video increases. Nonetheless,

we still compare it with our model in Sec. 4.2.

Frame-level MIL. The frame-level MIL is an alternative

approach to the brute-force video-level MIL. Frame-level

MIL regards a frame as a bag and all regions in the frame

as the instances in the bag, and then be trained with ranking

loss on the frame level. Here, we define the similarity score

between sentence and frame as:

S(Vt,Q) =
1

K

K∑

k=1

max
n

a
t,n
k , (4)

and the ranking loss on each frame with margin ∆ is:

Lt
rank =max(0, S(Vt,Q

′)− S(Vt,Q) + ∆)+

max(0, S(V ′
t ,Q)− S(Vt,Q) + ∆) . (5)

Therefore, the final ranking loss averages over all frames:

Lrank =
1

T

T∑

t=1

Lt
rank . (6)

Intuitively, frame-level MIL allows the queries to find their

most similar regions in each frame to represent the similar-

ity score. While this method has fixed bag size, it assumes

that all frames in a video segment are positive bags. This

assumption breaks when the queried object sparsely ap-

pears across frames and would trigger false positive bags, as

shown in Fig. 1. We follow this framework because it makes

use of more positive instances in a video segment; this can

potentially increase the training samples and is more flexi-

ble. Next, we show how to alleviate these drawbacks of a

vanilla frame-level MIL.

3.2. Contextual Similarity

We alleviate the false positive frame bag problem by cre-

ating a contextual similarity between frame and query; its

high-level illustration is shown in Fig. 2. In the perspective

of MIL, the contextual similarity can be viewed as a bet-

ter similarity augmented by considering the possibility of a
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Place  lettuce and 
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query bread
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0 1 0.3

frame-query contextual similarity

S

region-query similarity
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Figure 2. Diagram for evaluating the frame-query contextual simi-

larity score. Region-query similarity scores are calculated between

each region and the query “bread” with inner product similarity,

which is best viewed in color. A 0-1 normalization along frames

is applied to obtain its contextual gain.

frame to be the true positive bag of a query. Furthermore,

such possibility for one frame is calculated by looking at

the other frames in the same video making it more reliable.

Concretely, we start by defining the original similarity be-

tween the frame Vt and the query qk as:

S(Vt, qk) = max
n

a
t,n
k , (7)

then the contextual similarity between frame and query is

defined as:

S̄(Vt, qk) = S(Vt, qk)S̃(Vt, qk) , (8)

where S̃(Vt, qk) is expanded as:

S̃(Vt, qk) =
S(Vt, qk)−min

t
S(Vt, qk)

max
t

S(Vt, qk)−min
t

S(Vt, qk)
. (9)

In fact, S̃(Vt, qk) is a 0-1 normalization of the original

frame-query similarity over all frames in a video segment,

but plays an important role as a weighting score over frames

so as to guide the qk to match its most correlated frames.

Multiplying such weighting score to the original frame-

query similarity yields the contextual score. Then, by av-

eraging the contextual frame-query scores over all queries

in a sentence, we obtain the sentence-frame score as:

S(Vt,Q) =
1

K

K∑

k=1

S̄(Vt, qk) . (10)

Next, we put Eq. (10) into Eq. (5) to get Lt
rank, and the

video-level ranking loss is the same as Eq. (6).

The reason to design Eq. (9) is that the S̃(Vt, qk) guar-

antees the validity of the key frame with the highest frame-

query score in the video segment, because it corresponds

to S̃(Vt, qk) = 1. And, it can directly abandon the triv-

ial frame which has the lowest frame-query score since its

S̃(Vt, qk) = 0. Hence, we decay the importance of each

frames by their relative importance to the key frame and the

trivial frame. Furthermore, our formulation will not intro-

duce additional hyper-parameters and is robust in training.

Also, we find that letting gradient propagate to Eq. (9) leads

to better performance.

3.3. Visual Clustering

Visual grounding is intrinsically a cross-model mapping

problem. We would like to map the visual and textual fea-

tures to a common space. In this sense, regions grounded by

the same query should be embedded as a neighbor structure

in feature space and will form a cluster. The visual cluster-

ing method assumes that the queried objects show similar

appearance across video frames, and their visual features

are within the same cluster. If we have region class label, it

is natural to use center loss [33], which directly drives ob-

jects in the same class to be close to the class center. How-

ever, in weakly-supervised setting, the class label for each

object is unknown. Instead, we first let query qk select its

most similar region proposal in frame t, and we denote the

selected region as:

v̂t,k = argmax
vn

t
∈{v1

t
,...,vN

t
}

qTk vnt . (11)

Then we want to further cluster all the visual features v̂t,k
in different frame t together because they all belong to the

common query qk. Hence, we minimize the negative cosine

similarity of any two region features belonging to the same

query in a video segment, which is defined as:

Lvis = −
∑

k

∑

t<t′

cos(v̂t,k, v̂t′,k) . (12)

The cluster hypothesis tries to make use of the temporal

connectivity so as to learn a more discriminative visual em-

bedding.

Nonetheless, Eq. (12) has an implicit assumption that the

queried object is required to appear in each frame of a video

segment. According to the validation set of YouCookII

dataset [40], the queried objects show up in 51.32% of the

total frames, and in our experiment, such assumption does

not hurt the performance. In order to better relax such as-

sumption, we weight the visual similarity by the similar-

ity between word feature and visual feature. Therefore, the

contextual visual similarity is formulated as:

Lctx
vis = −

∑

k

∑

t<t′

cos(v̂t,k, v̂t′,k)S̃(Vt, qk)S̃(Vt′ , qk) ,

(13)

where S̃(Vt, qk) is defined in Eq. (9).
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Finally, the full loss function combining the contextual

similarity and visual clustering is constructed as:

L =
T∑

t=1

Lt
rank + λLctx

vis , (14)

where λ is the weighting parameter of the two parts of

the loss function. The visual clustering can contribute to

a more discriminative visual feature by reducing the intra-

class variance, which achieves the same effect as the center

loss. Moreover, we also have tried the loss that reduces the

similarity of visual features of different classes, but the per-

formance does not improve; hence we only force the sim-

ilarity between similar visual features across frames in a

same video segment.

3.4. Method Details

Learning & Inference. We employ two training strate-

gies: Finite-Class Training (FCT) and Infinite-Class Train-

ing (ICT). In FCT, only words from a small size of vocabu-

lary set are chosen to construct the ranking loss; whereas in

ICT, any noun contributes to the loss. FCT has the advan-

tage of higher grounding accuracy on the vocabulary but

sacrifices the generalizability to other datasets. On the con-

trary, ICT generalizes easily by compromising accuracy in

finite vocabulary set. We conduct both strategies in Sec. 4.

Visual embedding. To get visual embedding v, we

first extract the 4096-dimensional vcnn from the last fully-

connected (FC) layer of a convolutional network, then add

an additional FC layer with parameter Wv and hyperbolic

tangent function to encode it to a 512-dimensional common

space. In other words, v = tanh(Wvvcnn).
Textual embedding. Each word is first embeded with

200-dimensional GloVe [19] feature sglv . For FCT, each

word s = tanh(Wssglv), where Ww is a linear layer.

While for ICT, the ith word in a sentence is formulated as

si = tanh(Ws[BiLSTM(si)]i, where BiLSTM(·) repre-

sents a bi-directional LSTM. If the query is a phrase, simply

average the word features in the phrase, which has the same

dimension as the visual feature.

Compare to other methods. We are not the first one to

explore video grounding with MIL. Zhou et al. [40] con-

structed the frame-sentence similarity ranking loss with the

weighted frame importance:

L =
1

T

T∑

t=1

[λS(Vt,Q)Lt
rank +(1−λ)(− log(2S(Vt,Q))],

(15)

which does weighted-sum over each frame loss by the

frame-sentence similarity S(Vt,Q). Notice that it does not

simply calculate Lrank like Eq. (6) because it tries to reduce

the negative effect of false positive bags in frame-level MIL.

The lower S(Vt,Q) indicates the higher possibility that the

frame Vt is a false positive bag. By multiplying this term to

frame-wise ranking loss, the model down-weights the false

negative bags and thus yields better result. Moreover, in

order to avoid the trivial solution S(Vt,Q) = 0, the second

term in Eq. (15) is the penalty term that pulls S(Vt,Q) to be

greater than 0. While Eq. (15) tries to construct better posi-

tive sentence-frame pairs by applying a strong (weak) frame

ranking loss if the frame has higher (lower) similarity to the

sentence, such method has two obvious disadvantages: (1)

the hyper-parameter λ is very sensitive to the model ground-

ing accuracy; (2) the penalty term tries to penalize all the

similarity of sentence-frame pairs even if the frame does

not contain the queried object, which is not reasonable.

4. Experiments

4.1. Datasets and Evaluation Metric

We train our model in a weakly-supervised manner on

YouCookII dataset [41] and conduct generalizability analy-

sis on RoboWatch dataset [26].

YouCookII. YouCookII [41] is a large-scale dataset in-

cluding 2000 YouTube cooking videos from 89 recipes.

Each video recipe consists of 3 to 15 steps, where each

step is annotated with a sentence description and temporal

boundaries of the corresponding video segment. For evalu-

ation and testing, [10] and [40] contribute to the bounding

box annotation independently. [10] focuses on the union of

grounding and co-reference, hence it annotates roughly 5

frames per object in a video segment with the reference of

previous step with phrase. [40] aims at general video ob-

ject grounding and thus annotates the boxes at 1 fps with 67

kinds of objects in vocabulary. We conduct experiments on

YouCookII dataset following [40], which is more similar to

our work.

RoboWatch. The test set of RoboWatch [26] contains

225 YouTube videos mainly about cooking. Similar to

YouCookII, these videos are annotated with temporal inter-

vals and description for each step. [10] extends the bound-

ing box annotation for a part of those videos, and the query

can be either word or phrase. One important difference of

[10] compared with this paper is that [10] is a reference-

aware grounding method which can ground a query to its

unaligned video segment referred by such query, while our

paper focuses more on the MIL strategy within a single

video segment. Hence we only evaluate our model on the

aligned video segment and query pairs in RoboWatch.

Evaluation metric. We evaluate the models using both

Box accuracy [40] and Query accuracy [10]. For each

query, we propose its top-1 grounded box. The box accu-

racy is defined as the ratio of correctly grounded boxes to all

grounded boxes, where the correctly grounded boxes have

more than 50% Intersection-over-Union (IoU) with ground-

truth boxes. Query accuracy is defined as the ratio of cor-
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Method

Box accuracy (%) Query accuracy (%)

macro micro macro micro

val test val test val test val test

Upper Bound 62.42 62.41 - - - - - -

Compared method

GroundR [24] 19.63 19.94 - - - - - -

DVSAfrm∗[11] 36.90 37.55 44.26 44.16 38.48 39.31 46.27 46.14

DVSAvid∗[11] 36.67 36.30 43.62 42.87 38.20 37.98 45.60 44.79

Zhou et al. [40] 30.31 31.73 - - - - - -

Zhou et al. *[40] 35.69 35.08 43.04 42.42 37.26 36.69 44.99 44.34

Our method

VisClus 37.80 38.04 45.35 45.53 39.44 39.72 47.41 47.58

CtxSim 38.12 38.78 46.10 45.74 39.78 40.45 48.20 47.80

VisClus+CtxSim 39.54 40.71 46.41 46.33 41.29 42.45 48.52 48.41

Table 1. Weakly-supervised grounding results on YouCookII in FCT. The compared methods implemented by us are indicated with *.

rectly grounded queries to all queries, and a grounded query

is correct if it is matched with correctly grounded box. Also,

we denote macro-accuracy as the average of each class ac-

curacy and denote micro-accuracy as the global accuracy

without distinction of classes.

Implementation details. The description sentence is

parsed by Stanford CoreNLP parser [16] into nouns. For

each video segment, 5 frames are uniformly sampled and

then fed into RPN [23] with VGG-Net [28] backbone pre-

trained on [14] to get top-20 region proposals. The num-

ber of sampled frames and region proposals are set follow-

ing [10] and [41]. We use Adam [13] with learning rate

0.01 for optimization, and dropout rate 0.1 for regulariza-

tion. The hyper-parameters are searched by Bayesian opti-

mization [1] as λ = 4.13 and ∆ = 10. At training phase,

each batch contains 8 aligned video-sentence pairs and can

form totally 64 pairs for ranking loss.

Grounding approaches. We compare the following

models and variants of our model for visual grounding:

- Deep Visual-Semantic Alignment (DVSA) [11]. DVSA is

the grounding by ranking method upon which we build our

models. For a fair comparison, the image-based DVSA has

been adapted to videos in both frame-level MIL (DVSAfrm)

as in Eq. (3) and video-level MIL (DVSAvid) as in Eq. (6).

- Zhou et al. [40]. This approach weights the frame loss by

using Eq. (15) and is test on a limited word vocabulary. we

re-implemented this method to draw a fair comparison.

- RA-MIL [10]. We compare this method for testing the gen-

eralizability of our model.

- CtxSim. Our model variant that uses only the contextual

similarity loss defined in Sec. 3.2.

- VisClus. Our model variant that uses only the visual clus-

tering loss in Sec. 3.3.

- Upper Bound. This is calculated by regarding all 20 pro-

posed boxes as the grounded boxes of each query, rather

than the top-1 box.

4.2. Main Results

We conduct FCT on YouCookII dataset for fair compar-

ison with Zhou et al. [40], because the ground-truth object

belongs to a finite set of words. And, for comparison with

RA-MIL on generalization test on RoboWatch, ICT is em-

ployed on YouCookII, due to the ground-truth query is a

word or a phrase without constraints. Quantitative results

on YouCookII in FCT mode are shown in Table 1. We re-

port macro-accuracy and micro-accuracy on both box and

query accuracy.

Frame-level MIL and video-level MIL. We report both

video-level and frame-level MIL extensions of DVSA and

show that the frame-level MIL outperforms video-level

MIL. To further analyze the reason, we go through the val-

idation set of YouCookII and find that the queried objects

show up in 51.32% of the total frames, suggesting that

half of the frame-level MIL bags are false positive. On

the other side, frame-level MIL has intrinsically more bags

than video-level MIL, which is equivalent to say frame-level

MIL have more training data. Experimental results show

that even half of the positive bags are false positive, frame-

level MIL still outweighs its video counterpart due to more

training samples.

Contextual similarity and visual clustering. Both con-

textual similarity and visual clustering outperform DVSA

and Zhou et al.’s method. Experimental results show

that contextual similarity has larger improvement compared

with visual clustering. We suspect that it is because visual

clustering relies more heavily on the occurrence of objects

in frames. Our full model outperforms the individual mod-

els in all the metrics, and higher Box macro-accuracy than

DVSAfrm, i.e., 3.16%, which demonstrates that visual clus-

tering and contextual similarity are mutually beneficial. No-

tice that Zhou et al. [40]’s implementation has a lower ac-

curacy than ours, which can be partially attributed to our
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DVSAfrm

VisClus

CtxSim

(a) Put a pan on medium to high heat

VisClus+CtxSim

(b) Heat the butter and some sea salt flakes in the pan

Figure 3. Visualization of grounding results from frame-level DVSA and our proposed methods on YouCookII. Bold words are queries.

Red, green and grey boxes represent model prediction, ground-truth and region proposals, respectively.

bread

-4.8516.86 38.86 -43.18

!" 0.73 0.47 1 0

̅" 12.30 -2.28 38.86 0

query:

"

Figure 4. Example to show how the contextual similarity works

with numerical demos. The grounded boxes are localized by our

full model and box color is defined the same as Fig. 2.

higher upper bound then theirs. Our RPN is pretrained on

Visual Gnome [14], which has richer visual semantic and

enables RPN to generate better proposals. In addition, our

implementation of Zhou et al. [40] is lower than DVSAfrm

baseline, because of the sensitivity of the hyper-parameter

in its loss function rendering the difficulty for parameter

tuning.

Analysis. We analyze the reason why our proposed

methods work with the help of qualitative results. Fig. 3

visualizes two sequences of video frames from YouCookII

Dataset. As expected, in both sequences, our proposed

methods ground better than DVSA basline and our full

model looks better than the individual ones. We observe

that visual clustering performs better when localizing tem-

porally consistent object. For example, in video segment

(a) in Fig. 3, visual clustering and full model capture all

the pans across frames while contextual similarity missed

half of them. This observation indicates that visual cluster-

ing will push the model learn a more discriminative visual

feature embedding. Also, the small objects such as butter in

Wrap sauce egges tofu and green onions and place in jar.

Figure 5. Failure cases. The grounded box are localized by our full

model and box color is defined the same as Fig. 3.

video segment (b), which cannot be grounded by DVSA, are

correctly matched in our proposed method. This is another

evidence that our model has higher recognition ability.

Contextual similarity qualitative analysis. Contextual

loss attaches the normalized weights to different frames,

which is experimentally proved effective. For instance, in

Fig. 4, the query “bread” is not a positive label for the last

frame, which will mislead the model by feeding the model

with wrong samples. Fortunately, with the help of con-

textual loss, the normalization S̃ assigns the false positive

frame bag with lower importance, with 0 in extreme.

Failure cases. Figure 5 presents the common failure

cases: the object occlusion, object out of scene, and small

size object. For example, the egg is out of scene in the left

figure and occluded by hand in the right figure, which are

quite often in cooking, e.g., the camera is set statically and

human-object interaction can easily deviate from the screen.

Also, ingredients or foods can be easily occluded by hand

due to manual operation over them. In addition, objects be-

come smaller while camera zooming out, which also adds

difficulty to the grounding task. Overall, objects falling into
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Method
YouCookII RoboWatch

val (%) test (%) test (%)

Upper Bound 62.42 62.41 -

Compared method

DVSAfrm [11] 35.87 37.33 28.25

RA-MIL [10] - - 19.80

Our method

VisClus 36.44 37.80 28.68

CtxSim 37.99 37.67 31.08

VisClus+CtxSim 37.43 38.49 31.68

Table 2. Generalizability to unseen video classes (RoboWatch)

in ICT. The score for YouCookII is the box macro-accuracy, for

RoboWatch is the query micro-accuracy.

the three typical failure cases are usually not covered by re-

gion proposals, which is also true for the egg in Fig. 5.

4.3. Generalizability Test

To further test the generalization ability, we do ICT on

YouCookII and test it on videos in RoboWatch including

different recipes and other miscellaneous videos such as

“How to remove gum from clothes,” and “How to tie a tie.”

And, there is no recipe or video overlap with YouCookII.

The generalization performance is shown in Table 2 with

metric of query micro-accuracy. For consistency consid-

eration, the number reported on YouCookII is still evalu-

ated in [40]’s box annotation, even if [10] also annotated

the box in YouCookII. We observe that visual clustering

and contextual similarity both show good generalizability

and our full model outperforms all the other methods on the

testing set of both datasets, with 3.43% higher than frame-

level MIL baseline in RoboWatch, proving our method has

a good generalization ability. Contextual similarity has a

higher score on the validation set of YouCookII, but lower

on testing set, suggesting it overfits to the validation set.

Though we are not in an absolute fair comparison with [10]

due to the reference-awareness, we list [10]’s result as a ref-

erence. Different from the experiment set up in [10], we

have filtered out those ground-truth boxes corresponding to

language queries in unpaired descriptions, which means the

number of testing samples are smaller than [10]. However,

we still can observe an improvement of our method by test-

ing accuracy on RoboWatch.

The qualitative results of RoboWatch are shown in Fig. 6.

We observe that the model has comparative grounding abil-

ity for the queries known by YouCookII, but for some un-

seen query such as “hanger,” the model can still correctly

ground it. Also, we find the model tend to localize hand,

so we suspect that “hanger” has similar textual embedding

with “hand” thus the model transfers the knowledge of hand

toward hanger.

FCT and ICT. FCT and ICT are adopted respectively

ሚ𝑆 ҧ𝑆

egg

mongo

Cream,

pan

hanger

.
Figure 6. Visualization of grounding results with our full model

on RoboWatch. The green queries have been seen in YouCookII

while the red one has not. Box colors are defined in Fig. 3.

over all methods in Tables 1 and 2. Comparing their per-

formance on YouCookII uncovers that the ICT is inferior to

FCT according to accuracy but stronger then FCT on gener-

alizability. The accuracy gain of FCT can be explained by

a reduced complexity in feature embedding space for FCT

because it only need to push the visual feature embedded to

finite word feature cluster centers.

5. Conclusion

In this paper, we propose two techniques to improve the

video grounding accuracy. Contextual similarity remedies

the overly-strong assumption that each frame in a video seg-

ment needs to contain the grounded object. Visual cluster-

ing better exploits the temporal consistency in video and

embeds a more discriminative visual feature. Experimental

results on two prevalent datasets demonstrate the effective-

ness and generalizability of our methods.

Limitations. As pointed out in the failure case, our

model is limited by the quality of region proposals, which

constrains the model’s upper bound. The model’s ability

is also confined by the quality of the pretrained visual and

textual feature encoders. With shallow learnable embedding

layers, our model mainly relies on pretrained deep feature

extractor.

Future work. This work tries to improve frame-wise

MIL and incorporate temporal visual information extractor.

However, the visual consistency is now only employed

at feature level. We plan to add the visual consistency

constraint at spatial level as future work.
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