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Abstract

Recently, deep learning based image Compressed Sens-

ing (CS) methods have been proposed and demonstrated su-

perior reconstruction quality with low computational com-

plexity. However, the existing deep learning based image

CS methods need to train different models for different sam-

pling ratios, which increases the complexity of the encoder

and decoder. In this paper, we propose a scalable convo-

lutional neural network (dubbed SCSNet) to achieve scal-

able sampling and scalable reconstruction with only one

model. Specifically, SCSNet provides both coarse and fine

granular scalability. For coarse granular scalability, SC-

SNet is designed as a single sampling matrix plus a hier-

archical reconstruction network that contains a base layer

plus multiple enhancement layers. The base layer provides

the basic reconstruction quality, while the enhancement lay-

ers reference the lower reconstruction layers and gradu-

ally improve the reconstruction quality. For fine granular

scalability, SCSNet achieves sampling and reconstruction

at any sampling ratio by using a greedy method to select

the measurement bases. Compared with the existing deep

learning based image CS methods, SCSNet achieves scal-

able sampling and quality scalable reconstruction at any

sampling ratio with only one model. Experimental result-

s demonstrate that SCSNet has the state-of-the-art perfor-

mance while maintaining a comparable running speed with

the existing deep learning based image CS methods.1

1. Introduction

Compressed Sensing (CS) [11] depicts a new paradig-

m for signal acquisition and reconstruction, which imple-

ments sampling and compression jointly. Given a sampling

matrix Φ ∈ R
m×n with m << n, CS states that a signal

x ∈ n×1, which can be represented sparsely in a transform

domain, can be well reconstructed from its linear measure-

ments y = Φx. Since the CS theory guarantees that a signal

1Test code is available at: https://github.com/wzhshi/SCSNet.

Figure 1. The reconstruction quality and running speed compar-

ison on CPU. The compared traditional CS methods are marked

with blue font, and the compared deep learning based CS meth-

ods are marked with green font. The chart is based on Set11 [20]

results of sampling ratio of 0.1.

can be reconstructed with high quality at low sampling ra-

tio when the signal is sparse in some domain, there has been

significant interest in CS. Some works have been proposed

to apply CS to image acquisition [12, 17], source coding

[28, 15], wireless broadcast [37, 21], and so on.

In the study of CS, the two main challengges are (1) the

design of sampling matrix and (2) reconstructing the origi-

nal signal from its linear measurements [14, 1]. To the first

challenge, the representative sampling matices include: the

random matrix [14], the binary matrix [1, 23], and the struc-

tural matrix [9, 15]. To the second challenge, the representa-

tive methods include: convex-optimization algorithms (e.g.

[8, 35, 13]), the greedy algorithms (e.g. [24, 33, 30]), and

the iterative thresholding algorithms (e.g. [16]). The iter-

ative nature of these traditional methods lead to high com-

putational complexity, which hampers their practical appli-

cations. Recently, a few deep learning based image CS re-

construction methods [26, 20, 4, 32, 39, 36] have been pro-

posed. As shown in Figure 1, the deep learning based im-
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age CS methods can achieve better performance with lower

computational complexity than the traditional methods.

The common problem of the existing deep learning

based image CS methods is that they train different mod-

els for different sampling ratios, which increases the com-

plexity of the encoder and decoder. Too many models con-

sume considerable storage, memory bandwidth, and com-

putational resources. Especially, these resource demands

become prohibitive for embedded mobile applications. In

addition, if the reconstruction quality at a given sampling

ratio is not satisfied, the existing deep learning based im-

age CS methods have to resample all measurements. This

will lead to oversampling and harm the object being cap-

tured (e.g. medical imaging). Furthermore, some works

[37, 21] investigate the image CS for wireless broadcast,

in which different users will decode different quality im-

ages from different amount of measurements based on their

channel conditions. Thus, scalable reconstruction is pre-

ferred. Both these two cases (medical imaging and wire-

less broadcast) expect scalable sampling and scalable re-

construction, which are not considered by the existing deep

learning based image CS methods.

In this paper, we propose a scalable convolutional neu-

ral network (dubbed SCSNet) to achieve scalable sampling

and scalable reconstruction that provides both coarse and

fine granular scalability with only one model. For coarse

granular scalability, SCSNet is designed as a single sam-

pling matrix plus a hierarchical reconstruction network that

contains a base layer (BL) and multiple enhancement lay-

ers (EL). The same with the coarse granular scalability of

H.264 and H.265 [5], the BL of SCSNet provides the basic

reconstruction quality. The ELs reference the lower layers

and gradually improve the reconstruction quality. For fine

granular scalability, SCSNet achieves sampling and recon-

struction at any sampling ratio by using a greedy algorithm

to select the measurement bases2. Compared with the exist-

ing deep learning based methods, SCSNet implements scal-

able sampling and scalable reconstruction at any sampling

ratio with only one model. Experimental results show that

SCSNet has the state-of-the-art reconstruction quality while

maintaining a comparable running speed with the existing

deep learning based image CS methods.

The main contributions of this paper are as follows:

• A scalable convolutional neural network (dubbed SC-

SNet) is proposed to achieve scalable sampling and s-

calable reconstruction with only one model.

• Coarse granular scalable sampling and scalable recon-

struction using CNN is presented, in which the BL

provides the basic reconstruction quality and the EL-

s gradually improve the reconstruction quality.

2Each row of the sampling matrix is called as a measurement base in

this paper.

• Fine granular scalable sampling and scalable recon-

struction is introduced, which employs a greedy

method to select the measurement bases. The fine

granular scalability can sample and recover the image

at any sampling ratio.

2. Related work and motivation

We review the related work by grouping the existing

methods into traditional CS methods and deep learning

based CS methods. Generally, the traditional CS meth-

ods recover a signal from the CS measurements by solv-

ing a sparsity-regularized optimization problem. The well-

known methods include: the convex optimization meth-

ods [7], the greedy algorithms [24, 33], and the gradient-

descent methods [8, 35, 13]. For image CS, some methods

introduce image prior as a regularization item. For exam-

ple, Li et al. [22] used the total variation (TV) regularized

constraint to replace the sparsity-based one for enhancing

the local smoothness. In [40], Zhang et al. proposed group

sparse representation (GSR) for image CS recovery by en-

forcing image sparsity and non-local self-similarity simulta-

neously. In addition, the block based compressed sampling

(BCS) and projected Landweber based CS reconstruction

methods [14, 27, 6] have also been proposed, in which ad-

ditional optimization criteria can be easily incorporated. In

[27], discrete wavelet transform (DWT) is used to encour-

age image sparsity. In [6], multi-hypothesis (MH) predic-

tions is considered for CS reconstruction of both still im-

ages and video sequences.

Recently, some deep learning based image CS methods

have been explored. These methods can be roughly divid-

ed into block-by-block reconstruction methods [26, 20, 39,

36] and end-to-end reconstruction methods [32]. In [26],

Mousavi et al. proposed a stacked denoising autoencoder

(SDA) to capture statistical dependencies between the d-

ifferent elements of certain signals and improve signal re-

construction performance. In [20], Kulkarni et al. used

a CNN (ReconNet) for image block reconstruction and an

off-the-shelf denoiser for deblocking. In [39], Zhang et al.

cast the iterative shrinkage-thresholding algorithm as CN-

N (ISTA-Net). In [36], Xu et al. proposed a Laplacian

pyramid reconstructive adversarial network (LAPRAN) that

generates multiple outputs with different resolution simul-

taneously. These block-by-block reconstruction method-

s [26, 20, 39, 36] will cause blocking artifact. Compared

with these methods, CSNet [32] can avoid blocking artifact

by learning an end-to-end mapping between measurements

and the whole reconstructed images. However, the exist-

ing deep learning based CS methods need to train different

models for different sampling ratios, which increases the

complexity of the encoder and decoder.

Image CS has been explored for many kinds of applica-

tions such as image acquisition [12, 17], image/video source
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coding [28, 15], medical imaging [31], and wireless broad-

cast [37, 21]. The existing deep learning based CS methods

use different models for different sampling ratios. This will

cause difficulty for storage and hardware implementation.

In addition, some applications need scalable sampling and

scalable reconstruction. In medical imaging, oversampling

may harm the object being captured. Scalable reconstruc-

tion is preferred in wireless broadcast. However, scalable

sampling and scalable reconstruction are not considered by

the existing deep learning based image CS methods.

3. Proposed method

3.1. Overview of SCSNet

Figure 2 shows the network structure schematic of SC-

SNet with two ELs. SCSNet uses a convolution layer with

specific filter size and stride to implement BCS. The recon-

struction network of SCSNet has a BL and multiple ELs.

Both BL and EL have an initial reconstruction network and

a deep reconstruction network. The initial reconstruction

network of BL directly generates the initial reconstructed

image from the measurements. The initial reconstruction

networks of ELs first use the measurements to obtain the

supplementary information (i.e. residual), and then add the

initial reconstruction of the lower reconstruction layers to

generate the initial reconstruction of ELs. A deep recon-

struction network is used to refine the initial reconstruction

in each reconstruction layer. This hierarchical reconstruc-

tion network structure is similar to the decoder architecture

of scalable video coding [5], and provides coarse granular

scalability.

To implement fine granular scalable sampling and scal-

able reconstruction, SCSNet first recognizes the importance

of each measurement base offline. The higher reconstruc-

tion layers reference the initial reconstruction of the low-

er reconstruction layers, so the measurement bases in the

lower reconstruction layers are more important than those

in the higher reconstruction layers. The importance of the

measurement bases in the same reconstruction layer are de-

termined by a greedy method. SCSNet achieves sampling

and reconstruction at any sampling ratio by removing some

unimportant measurement bases and the corresponding con-

nection to the reconstruction network.

3.2. Coarse granular scalability

3.2.1 BCS with a convolution layer

BCS divides the images into non-overlapping blocks of size

B×B×l, where B and l are the spacial size and the amount

of channel, respectively. Note that all our experiments are

conducted on grayscale images, so l = 1 in this paper. To

the jth block xj , BCS is represented as yj = ΦBxj , where

ΦB is the sampling matrix of size nB × lB2 (for sampling

ratio α, nB =
⌊

αlB2
⌋

). This process can be converted to a

convolution layer with specific filer size and stride as

y = S (x) = Ws ∗ x (1)

where Ws corresponds to nB filters of support B × B × l.
This convolution layer is represented as Conv(B, l, nB) in

Figure 2, . There is no bias in the layer, and no activation

function after this layer. To ensure the fixed sampling ratio,

the stride of this convolution layer is B × B to implemen-

t non-overlapping sampling. With this specific convolution

layer, the sampling matrix can be learned by jointly optimiz-

ing this convolution layer and the reconstruction network.

3.2.2 Hierarchical initial reconstruction network

The measurements obtained by the sampling layer can be

treated as nB feature maps that are divided into multiple

groups as marked with different colors in Figure 2. BL

uses only one group of measurements to get the initial re-

construction. Each EL uses one group of measurements to

generate a reconstruction residual, and reference the lower

layers to improve the initial reconstruction quality.

Given the measurements y, CSNet [32] obtains the initial

reconstruction by using a convolution layer and a combina-

tion layer that is expressed as

Ĩ (y) = Wint ∗ y (2)

x̃ = I (y) = κ











γ
(

Ĩ11 (y)
)

· · · γ
(

Ĩ1w (y)
)
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...

γ
(

Ĩh1 (y)
)

· · · γ
(

Ĩhw (y)
)











(3)

where Wint corresponds to lB2 filters, Ĩab (y) is a 1 × 1 ×
lB2 vector, a and b are the space indices of Ĩ (y), h and

w represent the numbers of blocks in row and column re-

spectively, γ (·) is the reshape function that converts the

1×1×lB2 vector to a B×B×l block, κ (·) is the concatena-

tion function that concatenates all these blocks to generate

a whole image.

In this work, BL uses Eq.(2) and Eq.(3) to get the initial

reconstruction, but each EL just uses Eq.(2) and Eq.(3) to

get a reconstruction residual as shown in Figure 2. The ini-

tial reconstruction in the ith EL is the reconstruction residu-

al of the ith EL plus the initial reconstruction of the (i−1)th

EL or BL. Suppose the ith group of measurements are ob-

tained with ni measurement bases, Wint in Eq.(2) corre-

sponds to lB2 filters of support 1× 1× ni.

3.2.3 Hourglass-shape deep reconstruction network

After getting the initial reconstruction, there is a non-

linear reconstruction process in the traditional BCS meth-

ods [14, 27]. In this work, a deep reconstruction network
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Figure 2. The network structure schematic of SCSNet with two ELs.

Figure 3. The network structure of Deep Reconstruction.

is used to further refine the reconstructed images in BL and

ELs. Dong et al. [10] shows that hourglass-shape network

has good performance with low computational complexity.

In addition, many works [18] show residual learning can ac-

celerate the network convergence speed and boost the net-

work performance. Based on the existing works, our deep

reconstruction network is a hourglass-shape residual learn-

ing network as shown in Figure 3.

The hourglass-shape residual learning network includes

six kinds of operations, i.e. feature extraction, shrinking,

non-linear mapping, expanding, feature aggregation, and

skip connection. All these operations are convolution layers

with different size filters except skip connection. This forms

a symmetric structure, thick at the ends, and thin in the mid-

dle. We represent a convolution layer as conv(f, in, out),
where f , in, and out are the spacial size of the filters, the

amount of the input channels, and the amount of the output

channels, respectively. Then, feature extraction, shrinking,

non-linear mapping, expanding and feature aggregation are

represented as conv(f, l, d), conv(f, d, s), conv(f, s, s),
conv(f, s, d), and conv(f, d, l), where l is the amount of

image channel. Note that d >> s, which ensures that the

deep reconstruction is a compact hourglass-shape network.

To increase the network non-linear, the non-linear mapping

is cascaded k times. All these convolution layers are fol-

lowed with a ReLu [29] activation layer except the last con-

volution layer. A skip connection is added between the ini-

tial and the final reconstruction.

3.2.4 Loss function

Suppose the reconstruction network has T initial recon-

structions and T final reconstructions, we have 2T objec-

tives to minimize. We adopt the mean square error (MSE)

as the loss function to supervise each initial reconstruction

and final reconstruction. With these constraints, all initial

and final reconstructions are expected to correctly recon-

struct the desired image, which can accelerate network con-

vergence and boost the final reconstruction quality. Adap-

tive moment estimation (Adam) [19] is used to optimize all

network parameters.

3.3. Fine granular scalability

Fine granular scalability is necessary, which increases

the flexibility in applications. For example, if BL is for the

sampling ratio of 0.01 and the first EL is for the sampling

ratio of 0.05 in a well-trained model, it cannot be applied

directly to reconstruct image at sampling ratio of 0.04. The

fine granular scalability makes it possible to sample and re-

construct image at any sampling ratio with one model. To a

given sampling ratio r, which is smaller than the sampling

ration ri of the ith EL (for convenience, BL is treated as a

specific EL) but larger than the sampling ratio ri−1 of the

(i − 1)th EL, we remove some unimportant measurement

bases and the corresponding connections to the reconstruc-

tion network in the ith EL. To obtain as good reconstruction

as possible, we use a greedy algorithm to preserve the most
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Algorithm 1 The greedy method for measurement base se-

lection. M orders the measurement bases from least impact

on PSNR to most impact.

Input: Validation set {xj}, and the index i of EL

Output: the order M of measurement bases in the ith EL

1: M ← ∅, Z = {1, 2, · · · , L};
2: for k = 1 to L do

3: max psnr ← −∞;

4: for z ∈ Z and z /∈M do

5: M ′ ←M ∪ {z};
6: compute avg psnr when the measurement bases

indexed by M ′ are removed in the ith EL;

7: if avg psnr > max psnr then

8: max psnr = avg psnr,max z ← z;

9: end if

10: end for

11: M ←M ∪ {max z};
12: end for

important measurement bases.

Suppose the ith EL uses L measurement bases that their

indexes are represented as Z = {1, 2, · · · , L}. When some

measurement bases and their connections to the reconstruc-

tion network are removed, we hope the remaining measure-

ments provide as good reconstruction as possible. Hence, to

preserve the most important measurement bases, we solve

the following optimization problem

argmin
M

N
∑

j=1

(

R
(i)
M

(

S
(i)
M (xj)

)

+R(i−1)
(

S(i−1) (xj)
)

− xj

)2

s.t. M ⊂ Z = {1, 2, · · · , L}
(4)

where xj is a validation sample, S(i−1) and R(i−1) are the

measurements and the reconstruction of the (i − 1)th EL,

S
(i)
M and R

(i)
M are measurements and the reconstructed resid-

ual of the ith EL after removing those measurements in-

dexed by a subset M of Z.

We use a greedy method to solve Eq.(4). The idea is to

select a best option in each step. For a given amount of mea-

surement bases, the solution of Eq.(4) is those measurement

bases that provide highest average PSNR. As illustrated in

Algorithm 1, M is the order set of the measurement bases

in the ith EL, and it is empty in the beginning. In Step 3

to Step 11, we select only one index to move into M that

has less impact on the average PSNR. That is, the index be

moved into M in first is more unimportant than the index

be moved into M in later. After L iterations, we obtain the

order of the measurement bases in the ith EL based on their

importance to the reconstruction quality.

As the importance order of the measurement bases can

be obtained by using Algorithm 1, it is easy to implement

sampling and reconstruction at any desired sampling ratio

with only one model and provides as good reconstruction

as possible, which provides fine granular scalability.

4. Experiments

4.1. Dataset and implementation details

Similar to the traditional image CS methods [27, 22, 6,

40], the block size is set B = 32 and l = 1. In our ex-

periment, SCSNet contains one BL and six ELs that corre-

sponds to sampling ratio of 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and

0.5, respectively. The filter size in the initial reconstruction

is computed based on the sampling ratio and the block size

as introduced in Subsection 3.2.2. In the deep reconstruc-

tion network, we set f = 3, l = 1, d = 128, s = 32, and

k = 13 respectively. To optimize the network parameter-

s, the learning ratios of the first 50, the 51 to 80 and the

last 20 epochs are 10−3, 10−4, and 10−5, respectively. The

training data is the same with CSNet. That is, the training

set (200 images) and test set (200 images) of the BSDS500

database [2] form the training dataset. Each image is cut

into multiple patches of size 96 × 96. Finally, only 89600

patches are used to optimize the network parameters.

4.2. Comparison with the stateofthearts

4.2.1 Comparison with traditional methods

The compared traditional methods include: wavelet method

(DWT) [27], total variation (TV) method [22], multi-

hypothesis (MH) method [6], and group sparse represen-

tation (GSR) method [40]. CSNet [32] is also listed for

comparison. All these methods are popular BCS method-

s. The implementation codes of the compared methods are

downloaded from the author’s websites and the default pa-

rameter settings are used in our experiments. We compare

these methods on three popular test dataset, i.e. Set5 (5 im-

ages) [3], Set14 (14 images) [38] and the BSD100 (100 im-

ages) [25]. Note that all experiments are conducted on the

Y channel of the YUV color space. Seven sampling ratios,

i.e. 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, are investigated.

Both quantitative and qualitative comparisons are given.

The average PSNR and SSIM on the three test datasets

are shown in Table 1. The best results are marked in bold

font. The quantitative results show that SCSNet outper-

forms the five compared CS methods at all sampling ratios.

Specially, compared with DWT, TV, MH, GSR, and CSNet,

SCSNet gains by average 7.45 dB, 5.16 dB, 4.31 dB, 2.58

dB, and 0.50 dB, respectively, over seven sampling ratios

and three datasets. The average SSIM also shows SCSNet

is significantly superior to the five compared methods.

Figure 4 shows a visual quality comparison of image CS

recovery in the case of sampling ratio of 0.2. We have mag-

nified a subregion of each image to compare the reconstruc-

tion details of each image. Obviously, SCSNet achieves bet-

ter visual quality than the traditional methods. Although the
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Figure 4. Visual quality comparisons of CS recovery on PPT3 from Set14 [38] in the case of sampling ratio = 0.2.

Figure 5. Visual quality comparisons of CS recovery on Parrots from Set11 [20] in the case of sampling ratio = 0.1.

visual differences between the reconstruction results of SC-

SNet and CSNet are small, SCSNet gets higher PSNR and

SSIM values. All the experimental results demonstrate SC-

SNet not only has property of scalability but also has state-

of-the-art performance.

4.2.2 Comparison with deep learning based methods

The compared deep learning based methods include: SDA

[26], ReconNet [20], ISTA-Net [39], ISTA-Net+ [39] and

CSNet [32]. LAPRAN [36] gets high PSNR with a flexible

resolution. However, the reconstruction results of LAPRAN

have significant blocking artifact, and the pretrained models

of LAPRAN have not been released. Therefore, we do not

make comparison with LAPRAN in this paper. We follow

[39] to use Set11 [20] and BSD68 [25] as the test images.

Table 2 shows the average PSNR of different deep learning

based methods on five sampling ratios. The results of SDA,

ReconNet, ISTA-Net, and ISTA-Net+ are taken from [39].

As shown, SCSNet obtains significantly higher average P-

SNR than the compared deep learning based methods at the

five sampling ratios on Set11 and BSD68. Figure 5 shows a

visual comparison between various image CS methods. As

shown, both ReconNet and ISTA-Net+ have blocking arti-

fact. In contrast, SCSNet does not have blocking artifact

and obtains better visual effect. SCSNet is the scalable ex-

Table 2. Average PSNR comparison of different deep learning

based image CS methods on Set11 [20] and BSD68 [25].

Data Alg.
Sampling Ratio

0.5 0.4 0.3 0.1 0.01

Set11

SDA [26] 28.95 27.79 26.63 22.65 17.29

ReconNet [20] 31.50 30.58 28.74 24.28 17.27

ISTA-Net [39] 37.43 35.36 32.91 25.80 17.30

ISTA-Net+ [39] 38.07 36.06 33.82 26.64 17.34

CSNet [32] 37.51 36.10 33.86 28.10 20.94

SCSNet 39.01 36.92 34.62 28.48 21.04

BSD68

SDA [26] 28.35 27.41 26.38 23.12 -

ReconNet [20] 29.86 29.08 27.53 24.15 -

ISTA-Net [39] 33.60 31.85 29.93 25.02 -

ISTA-Net+ [39] 34.01 32.21 30.34 25.33 -

CSNet [32] 34.89 32.53 31.45 27.10 22.34

SCSNet 35.77 33.86 31.87 27.28 22.37

tension of CSNet. SCSNet outperforms CSNet because it

uses a better reconstruction network.

4.2.3 Running time comparison

Table 3 shows the average running time comparisons be-

tween various algorithms for reconstructing a 256×256 im-

age at sampling ratio of 0.01 and 0.1. The running times of

SAD and ReconNet are taken from [20]. The running times

of ISTA-Net and ISTA-Net+ are the average running time

of seven sampling ratio taken from [39]. The running times
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Table 1. Average PSNR and SSIM comparisons of different image CS algorithms on Set5 [3], Set14 [38] and BSD100 [25]

DWT [27] TV [22] MH [6] GSR [40] CSNet [32] SCSNet

Data Ratio PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5

0.01 9.27 0.1402 15.53 0.4554 18.08 0.4472 18.87 0.4909 24.02 0.6378 24.21 0.6468

0.05 14.27 0.3559 23.16 0.6678 23.67 0.6566 24.95 0.7270 29.32 0.8354 29.74 0.8472

0.1 24.74 0.7680 27.07 0.7865 28.57 0.8211 29.99 0.8654 32.30 0.9015 32.77 0.9083

0.2 30.83 0.8749 30.45 0.8709 32.08 0.8881 34.17 0.9257 35.63 0.9451 36.15 0.9487

0.3 33.61 0.9050 32.75 0.9107 34.06 0.9158 36.83 0.9492 37.90 0.9630 38.45 0.9655

0.4 35.32 0.9249 34.89 0.9363 35.65 0.9337 38.81 0.9626 39.89 0.9736 40.44 0.9755

0.5 36.87 0.9409 36.75 0.9540 37.21 0.9482 40.65 0.9724 40.96 0.9784 42.22 0.9820

Set14

0.01 8.97 0.0989 15.26 0.3890 17.23 0.3970 17.87 0.4337 22.73 0.5556 22.87 0.5631

0.05 14.52 0.2933 22.24 0.5815 21.64 0.5567 22.54 0.6140 26.65 0.7238 26.92 0.7322

0.1 24.16 0.6798 25.24 0.6887 26.38 0.7282 27.50 0.7705 28.91 0.8119 29.22 0.8181

0.2 28.13 0.7882 28.07 0.7844 29.47 0.8237 31.22 0.8642 31.86 0.8908 32.19 0.8945

0.3 30.38 0.8389 30.12 0.8424 31.37 0.8694 33.74 0.9071 34.00 0.9276 34.51 0.9311

0.4 31.99 0.8753 32.03 0.8837 33.03 0.9009 35.78 0.9336 35.95 0.9495 36.54 0.9525

0.5 33.54 0.9044 33.84 0.9148 34.52 0.9239 37.66 0.9522 37.05 0.9607 38.41 0.9659

BSD100

0.01 9.63 0.1067 15.98 0.3995 18.21 0.4076 18.90 0.4431 23.69 0.5441 23.78 0.5483

0.05 14.81 0.2935 23.05 0.5690 21.36 0.5169 22.16 0.5682 26.61 0.6908 26.77 0.6972

0.1 23.46 0.6343 25.46 0.6612 25.16 0.6673 25.91 0.7071 28.40 0.7787 28.57 0.7844

0.2 27.26 0.7516 27.58 0.7557 28.09 0.7746 29.18 0.8156 30.88 0.8681 31.10 0.8731

0.3 29.23 0.8108 29.27 0.8191 29.85 0.8307 31.33 0.8723 32.89 0.9146 33.24 0.9190

0.4 30.72 0.8524 30.86 0.8660 31.35 0.8695 33.20 0.9096 34.13 0.9250 35.21 0.9470

0.5 32.17 0.8862 32.46 0.9019 32.86 0.9012 34.94 0.9359 36.09 0.9587 37.14 0.9649

Avg. 24.95 0.6535 27.24 0.7447 28.09 0.7513 29.82 0.7914 31.90 0.8445 32.40 0.8507

Figure 6. Average PSNR comparisons on Set5 [3] and Set14 [38] when preserving different number of measurement base of BL by the

proposed method and the random method.

for DWT, TV, MH, GSR, and CSNet are the implementa-

tion times on the platform of an Intel Core i7-3770 CPU

plus a NVIDIA GTX960 GPU with the codes download

from the author’s websites. SCSNet runs on the platform

of an Intel Core i7-7700 CPU plus a NVIDIA GTX1080

GPU. As shown in Table 3, the four compared tradition-

al methods take roughly several seconds to several min-

utes to reconstruct an image. This may be because they

need repeated iterative operations. All the compared deep

learning based methods run faster than those compared tra-

ditional methods. Although SCSNet runs slower than the

compared deep learning based methods on GPU, SCSNet

can run faster than ReconNet, ISTA-Net, and ISTA-Net+ on

CPU. In our experiment, SCSNet is implemented using the

DagNN wrapper of MatConvNet package [34]. In practical

application, we can reimplement SCSNet using the other

deep learning framework for faster running speed.

Table 3. Average running time (in seconds) of various algorithms

for reconstructing a 256× 256 image.

Algorithm
Ratio = 0.01 Ratio = 0.1

CPU GPU CPU GPU

DWT [27] 10.3176 - 10.5539 -

TV [22] 2.3349 - 2.5871 -

MH [6] 23.1006 - 19.0405 -

GSR [40] 235.6297 - 230.4755 -

SDA [26] - 0.0045 - 0.0029

ReconNet [20] 0.5193 0.0244 0.5258 0.0195

ISTA-Net [39] 0.9230 0.0390 0.9230 0.0390

ISTA-Net+ [39] 1.3750 0.0470 1.3750 0.0470

CSNet [32] 0.2950 0.0157 0.2941 0.0155

SCSNet 0.5103 0.1050 0.5146 0.1332

4.3. Study of fine granular scalability

SCSNet provides measurement base level of fine granu-

lar scalability. The greedy method for measurement base se-

lection introduced in Subsection 3.3 is a data driven method.
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Figure 7. Average PSNR comparisons between different deep learning based image CS methods on Set11 [20] and BSD68 [25] in the case

of sampling ratio = 0.04.

In our experiment, we use the 50 images from the validation

set of the BSDS500 database [2] to determine the impor-

tance of each measurement base. For comparison, we also

randomly determine the importance of each measurement

base. The random seed is 10.

We implement progressive sampling and progressive re-

construction based on the importance of each measurement

base. That is, the encoder acquires measurements with the

most important measurement base in first, and gives to the

decoder. The decoder gradually improves the reconstructed

image quality as more measurements it receives. Figure 6

shows the results of progressive sampling and progressive

reconstruction using the BL of SCSNet. As shown, the pro-

posed greedy method is an effective way for measurement

base selection because it provides significant higher average

PSNR than the random selection method.

In addition, we also verify sampling and reconstruction

at different sampling ratios by using one model. Table 4

shows the average PSNR at nine sampling ratios, which are

obtained by using one well-trained model. The results of

sampling ratio of 0.01, 0.05 and 0.1 correspond to the BL,

the first and the second EL, respectively, while the other re-

sults are obtained by removing some measurement bases.

As shown, SCSNet can provide good reconstruction for s-

calable sampling and scalable reconstruction with only one

model. In Figure 7, the results of the compared deep learn-

ing based image CS methods are obtained by the models

that are specially trained for sampling ratio of 0.04, while

the results of SCSNet are obtained by removing some mea-

surement bases of the well-trained model. As shown, SC-

SNet does not need to train the special model for sampling

ratio of 0.04, but it still significantly outperforms the com-

pared methods in this sampling ratio.

5. Conclusion

While observing the limitation of the existing deep learn-

ing based image CS methods, we have proposed a scalable

convolutional neural network (dubbed SCSNet) for image

Table 4. The average PSNR of SCSNet at nine different sampling

ratios using only one well-trained model.

Data
Sampling ratio

0.01 0.02 0.03 0.04 0.05 0.07 0.08 0.09 0.1

Set5 24.21 24.57 26.10 27.83 29.74 29.93 30.78 31.76 32.77

Set11 21.04 21.55 22.84 24.29 25.85 26.22 27.00 27.82 28.52

Set14 22.87 23.20 24.42 25.65 26.92 27.20 27.89 28.58 29.22

BSD68 22.37 22.86 23.73 24.62 25.43 25.90 26.38 26.86 27.28

BSD100 23.78 24.14 24.98 25.88 26.77 27.07 27.57 28.09 28.57

compressed sensing. SCSNet is the first to implement s-

calable sampling and scalable reconstruction using CNN,

which provides both coarse granular scalability and fine

granular scalability. For coarse granular scalability, SC-

SNet is designed as a single sampling matrix plus a hier-

archical reconstruction network that has a BL and multiple

ELs. BL provides the basic reconstruction quality, while

ELs improve the reconstructed image quality by generating

the reconstruction residual and referencing the lower layers.

An effective greedy method for measurement base selection

has also been introduced. By removing some unimportant

measurement bases and their corresponding connection to

the reconstruction network, SCSNet achieves fine granular

scalable sampling and reconstruction. Compared with the

existing deep learning based methods, SCSNet provides s-

calable sampling and scalable reconstruction that provides

the chance to implement sampling and reconstruction at any

sampling ratio with only one model. Experimental result-

s show that SCSNet has the state-of-the-art reconstruction

quality while maintaining a comparable running speed with

the existing deep learning based image CS methods.
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