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Abstract

This paper introduces a novel deep learning framework

for image animation. Given an input image with a target

object and a driving video sequence depicting a moving

object, our framework generates a video in which the tar-

get object is animated according to the driving sequence.

This is achieved through a deep architecture that decou-

ples appearance and motion information. Our framework

consists of three main modules: (i) a Keypoint Detector un-

supervisely trained to extract object keypoints, (ii) a Dense

Motion prediction network for generating dense heatmaps

from sparse keypoints, in order to better encode motion

information and (iii) a Motion Transfer Network, which

uses the motion heatmaps and appearance information ex-

tracted from the input image to synthesize the output frames.

We demonstrate the effectiveness of our method on several

benchmark datasets, spanning a wide variety of object ap-

pearances, and show that our approach outperforms state-

of-the-art image animation and video generation methods.

Our source code is publicly available 1.

1. Introduction

This paper introduces a framework for motion-driven

image animation to automatically generate videos by com-

bining the appearance information derived from a source

image (e.g. depicting the face or the body silhouette of a

certain person) with motion patterns extracted from a driv-

ing video (e.g. encoding the facial expressions or the body

movements of another person). Several examples are given

in Fig. 1. Generating high-quality videos from static images

is challenging, as it requires learning an appropriate repre-

sentation of an object, such as a 3D model of a face or a hu-

man body. This task also requires accurately extracting the

motion patterns from the driving video and mapping them

on the object representation. Most approaches are object-

specific, using techniques from computer graphics [7, 38].

These methods also use an explicit object representation,

1 https://github.com/AliaksandrSiarohin/monkey-net

Figure 1: Our deep motion transfer approach can animate

arbitrary objects following the motion of the driving video.

such as a 3D morphable model [5], to facilitate animation,

and therefore only consider faces.

Over the past few years, researchers have developed ap-

proaches for automatic synthesis and enhancement of visual

data. Several methods derived from Generative Adversarial

Networks (GAN) [16] and Variational Autoencoders (VAE)

[24] have been proposed to generate images and videos

[19, 32, 30, 39, 29, 37, 36, 33]. These approaches use addi-

tional information such as conditioning labels (e.g. indicat-

ing a facial expression, a body pose) [45, 31, 15, 35]. More

specifically, they are purely data-driven, leveraging a large

collection of training data to learn a latent representation

of the visual inputs for synthesis. Noting the significant

progress of these techniques, recent research studies have

started exploring the use of deep generative models for im-

age animation and video retargeting [46, 9, 4, 43, 3]. These

works demonstrate that deep models can effectively trans-

fer motion patterns between human subjects in videos [4],

or transfer a facial expression from one person to another

[46]. However, these approaches have limitations: for ex-

ample, they rely on pre-trained models for extracting object

representations that require costly ground-truth data anno-

tations [9, 43, 3]. Furthermore, these works do not address

the problem of animating arbitrary objects: instead, consid-
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ering a single object category [46] or learning to translate

videos from one specific domain to another [4, 22].

This paper addresses some of these limitations by intro-

ducing a novel deep learning framework for animating a

static image using a driving video. Inspired by [46], we

propose learning a latent representation of an object cate-

gory in a self-supervised way, leveraging a large collection

of video sequences. There are two key distinctions between

our work and [46]. Firstly, our approach is not designed

for specific object category, but rather is effective in ani-

mating arbitrary objects. Secondly, we introduce a novel

strategy to model and transfer motion information, using a

set of sparse motion-specific keypoints that were learned in

an unsupervised way to describe relative pixel movements.

Our intuition is that only relevant motion patterns (derived

from the driving video) must be transferred for object an-

imation, while other information should not be used. We

call the proposed deep framework Monkey-Net, as it en-

ables motion transfer by considering MOviNg KEYpoints.

We demonstrate the effectiveness of our framework by

conducting an extensive experimental evaluation on three

publicly available datasets, previously used for video gener-

ation: the Tai-Chi [39], the BAIR robot pushing [11] and the

UvA-NEMO Smile [10] datasets. As shown in our exper-

iments, our image animation method produces high qual-

ity videos for a wide range of objects. Furthermore, our

quantitative results clearly show that our approach outper-

forms state-of-the-art methods for image-to-video transla-

tion tasks.

2. Related work

Deep Video Generation. Early deep learning-based ap-

proaches for video generation proposed synthesizing videos

by using spatio-temporal networks. Vondrick et al. [42] in-

troduced VGAN, a 3D convolutional GAN which simulta-

neously generates all the frames of the target video. Sim-

ilarly, Saito et al. [30] proposed TGAN, a GAN-based

model which is able to generate multiple frames at the same

time. However, the visual quality of these methods outputs

is typically poor.

More recent video generation approaches used recur-

rent neural networks within an adversarial training frame-

work. For instance, Wang et al. [45] introduced a Condi-

tional MultiMode Network (CMM-Net), a deep architec-

ture which adopts a conditional Long-Short Term Mem-

ory (LSTM) network and a VAE to generate face videos.

Tulyakov et al. [39] proposed MoCoGAN, a deep architec-

ture based on a recurrent neural network trained with an ad-

versarial learning scheme. These approaches can take con-

ditional information as input that comprises categorical la-

bels or static images and, as a result, produces high quality

video frames of desired actions.

Video generation is closely related to the future frame

prediction problem addressed in [34, 26, 13, 40, 48]. Given

a video sequence, these methods aim to synthesize a se-

quence of images which represents a coherent continuation

of the given video. Earlier methods [34, 26, 23] attempted to

directly predict the raw pixel values in future frames. Other

approaches [13, 40, 2] proposed learning the transforma-

tions which map the pixels in the given frames to the future

frames. Recently, Villegas et al. [41] introduced a hierarchi-

cal video prediction model consisting of two stages: it first

predicts the motion of a set of landmarks using an LSTM,

then generates images from the landmarks.

Our approach is closely related to these previous works

since we also aim to generate video sequences by using

a deep learning architecture. However, we tackle a more

challenging task: image animation requires decoupling and

modeling motion and content information, as well as a re-

combining them.

Object Animation. Over the years, the problems of im-

age animation and video re-targeting have attracted atten-

tion from many researchers in the fields of computer vision,

computer graphics and multimedia. Traditional approaches

[7, 38] are designed for specific domains, as they operate

only on faces, human silhouettes, etc. In this case, an ex-

plicit representation of the object of interest is required to

generate an animated face corresponding to a certain per-

son’s appearance, but with the facial expressions of another.

For instance, 3D morphable models [5] have been tradi-

tionally used for face animation [49]. While especially ac-

curate, these methods are highly domain-specific and their

performance drastically degrades in challenging situations,

such as in the presence of occlusions.

Image animation from a driving video can be interpreted

as the problem of transferring motion information from one

domain to another. Bansal et al. [4] proposed Recycle-

GAN, an approach which extends conditional GAN by

incorporating spatio-temporal cues in order to generate a

video in one domain given a video in another domain. How-

ever, their approach only learns the association between two

specific domains, while we want to animate an image de-

picting one object without knowing at training time which

object will be used in the driving video. Similarly, Chan

et al. [9] addressed the problem of motion transfer, cast-

ing it within a per-frame image-to-image translation frame-

work. They also proposed incorporating spatio-temporal

constraints. The importance of considering temporal dy-

namics for video synthesis was also demonstrated in [43].

Wiles et al. [46] introduced X2Face, a deep architecture

which, given an input image of a face, modifies it according

to the motion patterns derived from another face or another

modality, such as audio. They demonstrated that a purely

data-driven deep learning-based approach is effective in an-
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imating still images of faces without demanding explicit 3D

representation. In this work, we design a self-supervised

deep network for animating static images, which is effec-

tive for generating arbitrary objects.

3. Monkey-Net

The architecture of the Monkey-Net is given in Fig. 2.

We now describe it in detail.

3.1. Overview and Motivation

The objective of this work is to animate an object based

on the motion of a similar object in a driving video. Our

framework is articulated into three main modules (Fig. 2).

The first network, named Keypoint Detector, takes as input

the source image and a frame from the driving video and

automatically extracts sparse keypoints. The output of this

module is then fed to a Dense Motion prediction network,

which translates the sparse keypoints into motion heatmaps.

The third module, the Motion Transfer network, receives as

input the source image and the dense motion heatmap and

recombines them producing a target frame.

The output video is generated frame-by-frame as illus-

trated in Fig. 2.a. At time t, the Monkey-Net uses the source

image and the tth frame from the driving video. In order to

train a Monkey-Net one just needs a dataset consisting of

videos of objects of interest. No specific labels, such as

keypoint annotations, are required. The learning process

is fully self-supervised. Therefore, at test time, in order

to generate a video sequence, the generator requires only a

static input image and a motion descriptor from the driving

sequence. Inspired by recent studies on unsupervised land-

mark discovery for learning image representations [20, 47],

we formulate the problem of learning a motion representa-

tion as an unsupervised motion-specific keypoint detection

task. Indeed, the keypoints locations differences between

two frames can be seen as a compact motion representation.

In this way, our model generates a video by modifying the

input image according to the landmarks extracted from the

driving frames. Using a Monkey-Net at inference time is

detailed in Sec. 3.6.

The Monkey-Net architecture is illustrated in Fig. 2.b.

Let x and x′ ∈ X be two frames of size H ×W extracted

from the same video. The H × W lattice is denoted by

U . Inspired by [20], we jointly learn a keypoint detector ∆
together with a generator network G according to the fol-

lowing objective: G should be able to reconstruct x′ from

the keypoint locations ∆(x) ∈ U , ∆(x′) ∈ U , and x. In

this formulation, the motion between x and x′ is implicitly

modeled. To deal with large motions, we aim to learn key-

points that describe motion as well as the object geometry.

To this end, we add a third network M that estimates the

optical flow F ∈ R
H×W×2 between x′ and x from ∆(x),

∆(x′) and x. The motivation for this is twofold. First,

this forces the keypoint detector ∆ to predict keypoint lo-

cations that capture not only the object structure but also its

motion. To do so, the learned keypoints must be located es-

pecially on the object parts with high probability of motion.

For instance, considering the human body, it is important

to obtain keypoints on the extremities (as in feet or hands)

in order to describe the body movements correctly, since

these body-parts tend to move the most. Second, following

common practises in conditional image generation, the gen-

erator G is implemented as an encoder-decoder composed

of convolutional blocks [19]. However, standard convolu-

tional encoder-decoders are not designed to handle large

pixel-to-pixel misalignment between the input and output

images [31, 3, 14]. To this aim, we introduce a deformation

module within the generator G that employs the estimated

optical flow F in order to align the encoder features with x′.

3.2. Unsupervised Keypoint Detection

In this section, we detail the structure employed for un-

supervised keypoint detection. First, we employ a standard

U-Net architecture that, from the input image, estimates K

heatmaps Hk ∈ [0, 1]H×W , one for each keypoint. We em-

ploy softmax activations for the last layer of the decoder in

order to obtain heatmaps that can be interpreted as detection

confidence map for each keypoint. An encoder-decoder ar-

chitecture is used here since it has shown good performance

for keypoints localization [6, 27].

To model the keypoint location confidence, we fit a

Gaussian on each detection confidence map. Modeling the

landmark location by a Gaussian instead of using directly

the complete heatmap Hk acts as a bottle-neck layer, and

therefore allows the model to learn landmarks in an indirect

way. The expected keypoint coordinates hk ∈ R and its

covariance Σk are estimated according to:

hk =
∑

p∈U

Hk[p]p; Σk =
∑

p∈U

Hk[p](p−hk)(p−hk)
⊤ (1)

The intuition behind the use of keypoint covariances is that

they can capture not only the location of a keypoint but also

its orientation. Again considering the example of the hu-

man body: in the case of the legs, the covariance may cap-

ture their orientation. Finally, we encode the keypoint dis-

tributions as heatmaps Hi
k ∈ [0, 1]H×W , such that they can

be used as inputs to the generator and to the motion net-

works. Indeed, the advantage of using a heatmap represen-

tation, rather than considering directly the 2D coordinates

hk, is that heatmaps are compatible with the use of convolu-

tional neural networks. Formally, we employ the following

Gaussian-like function:

∀p ∈ U , Hk(p) =
1

α
exp

(

−(p− hk)Σ
−1
k (p− hk)

)

(2)
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Figure 2: A schematic representation of the proposed motion transfer framework for image animation. At testing time (Fig.

(a)), the model generates a video with the object appearance of the source image but with the motion from the driving video.

Monkey-Net (Fig. (b)) is composed of three networks: a motion-specific keypoint detector ∆, a motion prediction network

M and an image generator G. G reconstructs the image x′ from the keypoint positions ∆(x) and ∆(x′). The optical flow

computed by M is used by G to handle misalignments between x and x′. The model is learned with a self-supervised

learning scheme.

where α is normalization constant. This process is applied

independently on x and x′ leading to two sets of K key-

points heatmaps H = {Hk}k=1..K and H ′ = {H ′
k}k=1..K .

3.3. Generator Network with Deformation Module

In this section, we detail how we reconstruct the tar-

get frame x′ from x, ∆(x) = H and ∆(x′) = H ′.

First we employ a standard convolutional encoder com-

posed of a sequence of convolutions and average pooling

layers in order to encode the object appearance in x. Let

ξr ∈ R
Hr×Wr×Cr denote the output of the rth block of the

encoder network (1 ≤ r ≤ R). The architecture of this

generator network is also based on the U-Net architecture

[28] in order to obtain better details in the generated im-

age. Motivated by [31], where it was shown that a standard

U-net cannot handle large pixel-to-pixel misalignment be-

tween the input and the output images, we propose using

a deformation module to align the features of the encoder

with the output images. Contrary to [31] that defines an

affine transformation for each human body part in order to

compute the feature deformation, we propose a deformation

module that can be used on any object. In particular, we

propose employing the optical flow F to align the features

ξr with x′. The deformation employs a warping function

fw(·, ·) that warps the feature maps according to F :

ξ′r = fw(ξr,F) (3)

This warping operation is implemented using a bilinear

sampler, resulting in a fully differentiable model. Note that

F is down-sampled to Hr×Wr via nearest neighbour inter-

polation when computing Eq. (3). Nevertheless, because of

the small receptive field of the bilinear sampling layer, en-

coding the motion only via the deformation module leads to

Figure 3: A schematic representation of the adopted part-

based model for optical flow estimation from sparse repre-

sentation. From the appearance of the first frame and the

keypoints motion, the network M predicts a mask for each

keypoint and the residual motion (see text for details).

optimization problems. In order to facilitate network train-

ing, we propose inputing the decoder the difference of the

keypoint locations encoded as heatmaps Ḣ = H ′ −H . In-

deed, by providing Ḣ to the decoder, the reconstruction loss

applied on the G outputs (see Sec. 3.5) is directly prop-

agated to the keypoint detector ∆ without going through

M . In addition, the advantage of the heatmap difference

representation is that it encodes both the locations and the

motions of the keypoints. Similarly to F , we compute R

tensors Ḣr by down-sampling Ḣ to Hr ×Wr. The two ten-

sors Ḣr and ξ′r are concatenated along the channel axis and

are then treated as skip-connection tensors by the decoder.

3.4. From Sparse Keypoints to Dense Optical Flow

In this section, we detail how we estimate the optical

flow F . The task of predicting a dense optical flow only

from the displacement of a few keypoints and the appear-

ance of the first frame is challenging. In order to facilitate
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the task of the network, we adopt a part base formulation.

We make the assumption that each keypoint is located on an

object part that is locally rigid. Thus, the task of computing

the optical flow becomes simpler since, now, the problem

consists in estimating masks Mk ∈ RH×W that segment

the object in rigid parts corresponding to each keypoint. A

first coarse estimation of the optical flow can be given by:

Fcoarse =

K+1
∑

k=1

Mk ⊗ ρ(hk) (4)

where ⊗ denotes the element-wise product and ρ(·) ∈
RH×W×2 is the operator that returns a tensor by repeat-

ing the input vector H × W times. Additionally, we em-

ploy one specific mask MK+1 without deformation (which

corresponds to ρ([0, 0])) to capture the static background.

In addition to the masks Mk, the motion network M also

predicts the residual motion Fresidual. The purpose of this

residual motion field is to refine the coarse estimation by

predicting non-rigid motion that cannot be modeled by the

part-based approach. The final estimated optical flow is:

F = Fcoarse + Fresidual.

Concerning the inputs of the motion network, M takes

two tensors, Ḣ and x corresponding respectively to the

sparse motion and the appearance. However, we can ob-

serve that, similarly to the generator network, M may suffer

from the misalignment between the input x and the output

F . Indeed, F is aligned with x′. To handle this problem, we

use the warping operator fw according to the motion field

of each keypoint ρ(hk), e.g. xk = fw(x, ρ(hk)). This so-

lution provides images xk that are locally aligned with F in

the neighborhood of h′
k. Finally, we concatenate H ′ − H ,

{xk}k=1..K and x along the channel axis and feed them

into a standard U-Net network. Similarly to the keypoint

and the generator network, the use of U-Net architecture is

motivated by the need of fine-grained details.

3.5. Network Training

We propose training the whole network in an end-to-end

fashion. As formulated in Sec. 3.1, our loss ensures that

x′ is correctly reconstructed from ∆(x) ∈ U , ∆(x′) ∈ U
and x. Following the recent advances in image generation,

we combine an adversarial and the feature matching loss

proposed in [44] in order to learn to reconstruct x′. More

precisely, we use a discriminator network D that takes as

input H ′ concatenated with either the real image x′ or the

generated image x̂
′
. We employ the least-square GAN for-

mulation [25] leading to the two following losses used to

train the discriminator and the generator:

LD
gan(D) =Ex

′∈X [(D(x′ ⊕H ′)− 1)2]

+ E(x,x′)∈X 2 [D(x̂′ ⊕H ′))2]

LG
gan(G) =E(x,x′)∈X 2 [(D(x̂′ ⊕H ′)− 1)2] (5)

where ⊕ denotes the concatenation along the channel axis.

Note that in Eq (5), the dependence on the trained param-

eters of G, M , and ∆ appears implicitly via x̂
′
. Note that

we provide the keypoint locations H ′ to the discriminator to

help it to focus on moving parts and not on the background.

However, when updating the generator, we do not propa-

gate the discriminator loss gradient through H ′ to avoid that

the generator tends to fool the discriminator by generating

meaningless keypoints.

The GAN loss is combined with a feature matching loss

that encourages the output image x̂
′

and x′ to have simi-

lar feature representations. The feature representations em-

ployed to compute this loss are the intermediate layers of

the discriminator D. The feature matching loss is given by:

Lrec = E(x,x′)

[

‖Di(x̂
′ ⊕H ′)−Di(x

′ ⊕H ′))‖1
]

(6)

where Di denotes the ith-layer feature extractor of the dis-

criminator D. D0 denotes the discriminator input. The

main advantage of the feature matching loss is that, dif-

ferently from other perceptual losses, [31, 21], it does not

require the use of an external pre-trained network. Finally

the overall loss is obtained by combining Eqs. (6) and (5),

Ltot = λrecLrec + LG
gan. In all our experiments, we chose

λrec = 10 following [44]. Additional details of our imple-

mentation are shown in the Supplementary Material A.

3.6. Generation Procedure

At test time, our network receives a driving video and a

source image. In order to generate the tth frame, ∆ esti-

mates the keypoint locations hs
k in the source image. Sim-

ilarly, we estimate the keypoint locations h1
k and ht

k from

first and the tth frames of the driving video. Rather than

generating a video from the absolute positions of the key-

points, the source image keypoints are transferred according

to the relative difference between keypoints in the video.

The keypoints in the generated frame are given by:

hs
k
′ = hs

k + (ht
k − h1

k) (7)

The keypoints hs
k
′ and hs

k are then encoded as heatmaps

using the covariance matrices estimated from the driving

video, as described in Sec. 3.2. Finally, the heatmaps are

given to the dense motion and the generator networks to-

gether with the source image (see Secs. 3.3 and 3.4). Im-

portantly, one limitation of transferring relative motion is

that it cannot be applied to arbitrary source images. Indeed,

if the driving video object is not roughly aligned with the

source image object, Eq. (7) may lead to absolute keypoint

positions that are physically impossible for the considered

object as illustrated in Supplementary Material C.1.
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Tai-Chi Nemo Bair

L1 (AKD, MKR) AED L1 AKD AED L1

X2Face 0.068 (4.50, 35.7%) 0.27 0.022 0.47 0.140 0.069

Ours 0.050 (2.53, 17.4%) 0.21 0.017 0.37 0.072 0.025

Table 1: Video reconstruction comparisons

4. Experiments

In this section, we present a in-depth evaluation on three

problems, tested on three very different datasets and em-

ploying a large variety of metrics.

Datasets. The UvA-Nemo dataset [10] is a facial dynam-

ics analysis dataset composed of 1240 videos We follow

the same pre-processing as in [45]. Specifically, faces are

aligned using the OpenFace library [1] before re-sizing each

frame to 64×64 pixels. Each video starts from a neutral ex-

pression and lasts 32 frames. As in [45], we use 1110 videos

for training and 124 for evaluation.

The Tai-Chi dataset [39] is composed of 4500 tai-chi

video clips downloaded from YouTube. We use the data

as pre-processed in [39]. In particular, the frames are re-

sized to 64 × 64 pixels. The videos are split into 3288 and

822 videos for training and testing respectively. The video

length varies from 32 to 100 frames.

The BAIR robot pushing dataset [11] contains videos col-

lected by a Sawyer robotic arm pushing a variety of objects

over a table. It contains 40960 training and 256 test videos.

Each video is 64× 64 pixels and has 30 frames.

Evaluation Protocol. Evaluating the results of image an-

imation methods is a difficult task, since ground truth an-

imations are not available. In addition, to the best of our

knowledge, X2Face [46] is the only previous approach for

data-driven model-free image animation. For these two rea-

sons, we evaluate our method also on two closely related

tasks. As proposed in [46], we first evaluate Monkey-Net

on the task of video reconstruction. This consists in recon-

structing the input video from a representation in which mo-

tion and content are decoupled. This task is a “proxy” task

to image animation and it is only introduced for the purpose

of quantitative comparison. In our case, we combine the ex-

tracted keypoints ∆(x) of each frame and the first frame of

the video to re-generate the input video. Second, we evalu-

ate our approach on the problem of Image-to-Video transla-

tion. Introduced in [42], this problem consists of generating

a video from its first frame. Since our model is not directly

designed for this task, we train a small recurrent neural net-

work that predicts, from the keypoint coordinates in the first

frame, the sequence of keypoint coordinates for the other 32

frames. Additional details can be found in the Supplemen-

tary Material A. Finally, we evaluate our model on image

animation. In all experiments we use K=10.

Metrics. In our experiments, we adopt several metrics in

order to provide an in-depth comparison with other meth-

ods. We employ the following metrics.

• L1. In the case of the video reconstruction task where the

ground truth video is available, we compare the average L1

distance between pixel values of the ground truth and the

generated video frames.

• AKD. For the Tai-Chi and Nemo datasets, we employ ex-

ternal keypoint detectors in order to evaluate whether the

motion of the generated video matches the ground truth

video motion. For the Tai-Chi dataset, we employ the

human-pose estimator in [8]. For the Nemo dataset we use

the facial landmark detector of [6]. We compute these key-

points for each frame of the ground truth and the generated

videos. From these externally computed keypoints, we de-

duce the Average Keypoint Distance (AKD), i.e. the average

distance between the detected keypoints of the ground truth

and the generated video.

• MKR. In the case of the Tai-Chi dataset, the human-pose

estimator returns also a binary label for each keypoint in-

dicating whether the keypoints were successfully detected.

Therefore, we also report the Missing Keypoint Rate (MKR)

that is the percentage of keypoints that are detected in the

ground truth frame but not in the generated one. This metric

evaluates the appearance quality of each video frame.

• AED. We compute the feature-based metric employed in

[12] that consists in computing the Average Euclidean Dis-

tance (AED) between a feature representation of the ground

truth and the generated video frames. The feature embed-

ding is chosen such that the metric evaluates how well the

identity is preserved. More precisely, we use a network

trained for facial identification [1] for Nemo and a network

trained for person re-id [17] for Tai-Chi.

• FID. When dealing with Image-to-video translation, we

complete our evaluation with the Frechet Inception Dis-

tance [18] (FID) in order to evaluate the quality of indi-

vidual frames.

Furthermore, we conduct a user study for both the Image-

to-Video translation and the image animation tasks (see

Sec. 4.3).

4.1. Ablation Study

In this section, we present an ablation study to empiri-

cally measure the impact of each part of our proposal on the

performance. First, we describe the methods obtained by

“amputating” key parts of the model described in Sec. 3.1:

(i) No F - the dense optical flow network M is not used; (ii)

No Fcoarse - in the optical flow network M , we do not use

the part based-approach; (iii) No Fresidual - in the Optical

Flow network M , we do not use Fresidual; (iv) No Σk - we

do not estimate the covariance matrices ΣK in the keypoint

detector ∆ and the variance is set to Σk = 0.01 as in [20];

(v) the source image is not given to the motion network M ,
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Tai-Chi

L1 (AKD, MKR) AED

No F 0.057 (3.11, 23.8%) 0.24

No Fresidual 0.051 (2.81, 18.0%) 0.22

No Fcoarse 0.052 (2.75, 19.7%) 0.22

No Σk 0.054 (2.86, 20.6%) 0.23

No x 0.051 (2.71, 19.3%) 0.21

Full 0.050 (2.53, 17.4%) 0.21

Table 2: Video reconstruction ablation study TaiChi.

Real x′

No F

No

Fcoarse

Full

Figure 4: Qualitative ablation evaluation of video recon-

struction on Tai-Chi.

M estimates the dense optical flow only from the keypoint

location differences; (vi) Full denotes the full model as de-

scribed in Sec. 3.

In Tab. 2, we report the quantitative evaluation. We

first observe that our full model outperforms the baseline

method without deformation. This trend is observed ac-

cording to all the metrics. This illustrates the benefit of

deforming the features maps according to the estimated mo-

tion. Moreover, we note that No Fcoarse and No Fresidual

both perform worse than when using the full optical flow

network. This illustrates that Fcoarse and Fresidual alone

are not able to estimate dense motion accurately. A possible

explanation is that Fcoarse cannot estimate non rigid mo-

tions and that Fresidual, on the other hand, fails in predicting

the optical flow in the presence of large motion. The quali-

tative results shown in Fig. 4 confirm this analysis. Further-

more, we observe a drop in performance when covariance

matrices are replaced with static diagonal matrices. This

shows the benefit of encoding more information when deal-

ing with videos with complex and large motion, as in the

case of the TaiChi dataset. Finally, we observe that if the

appearance is not provided to the deformation network M ,

the video reconstruction performance is slightly lower.

4.2. Comparison with Previous Works

Video Reconstruction. First, we compare our results

with the X2Face model [46] that is closely related to our

Tai-Chi

FID AED MKR

MoCoGAN [39] 54.83 0.27 46.2%

Ours 19.75 0.17 30.3%

Nemo

FID AED

MoCoGAN [39] 51.50 0.33

CMM-Net [45] 27.27 0.13

Ours 11.97 0.12

Bair

FID

MoCoGAN [39] 244.00

SV2P [2] 57.90

Ours 23.20

Table 3: Image-to-video translation comparisons.

proposal. Note that this comparison can be done since we

employ image and motion representation of similar dimen-

sion. In our case, each video frame is reconstructed from

the source image and 10 landmarks, each one represented

by 5 numbers (two for the location and three for the sym-

metric covariance matrix), leading to a motion representa-

tion of dimension 50. For X2face, motion is encoded into

a driving vector of dimension 128. The quantitative com-

parison is reported in Tab. 1. Our approach outperforms

X2face, according the all the metrics and on all the eval-

uated datasets. This confirms that encoding motion via

motion-specific keypoints leads to a compact but rich rep-

resentation.

Image-to-Video Translation: In Tab. 3 we compare

with the state of the art Image-to-Video translation methods:

two unsupervised methods MoCoGAN [39] and SV2P [2],

and CMM-Net which is based on keypoints [45]. CMM-

Net is evaluated only on Nemo since it requires facial land-

marks. We report results SV2P on the Bair dataset as in

[2]. We can observe that our method clearly outperforms

the three methods for all the metrics. This quantitative eval-

uation is confirmed by the qualitative evaluation presented

in the Supplementary material C.3. In the case of MoCo-

GAN, we observe that the AED score is much higher than

the two other methods. Since AED measures how well the

identity is preserved, these results confirm that, despite the

realism of the video generated by MoCoGAN, the identity

and the person-specific details are not well preserved. A

possible explanation is that MoCoGAN is based on a fea-

ture embedding in a vector, which does not capture spatial

information as well as the keypoints. The method in [45]

initially produces a realistic video and preserves the iden-

tity, but the lower performance can be explained by the ap-

parition of visual artifacts in the presence of large motion

(see the Supplementary material C.3 for visual examples).

Conversely, our method both preserves the person identity

and performs well even under large spatial deformations.

Image Animation. In Fig. 5, we compare our method with

X2Face [46] on the Nemo dataset. We note that our method
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Figure 5: Qualitative results for image animation on the Nemo dataset: X2face (2-nd row) against our method (3-rd row).
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Driving

video

image

Source
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video

image

Source

Driving

video

Figure 6: Qualitative results for image animation on the Tai-Chi dataset: X2face (2-nd row) against our method (3-rd row)

Tai-Chi Nemo Bair

85.0% 79.2% 90.8%

Table 4: User study results on image animation. Proportion

of times our approach is preferred over X2face [46].

generates more realistic smiles on the three randomly se-

lected samples despite the fact that the XFace model is

specifically designed for faces. Moreover, the benefit of

transferring the relative motion over absolute locations can

be clearly observed in Fig. 5 (column 2). When abso-

lute locations are transferred, the source image inherits the

face proportion from the driving video, resulting in a face

with larger cheeks. In Fig. 6, we compare our method

with X2Face on the Tai-Chi dataset. X2Face [46] fails to

consider each body-part independently and, consequently,

warps the body in such a way that its center of mass matches

the center of mass in the driving video. Conversely, our

method successfully generates plausible motion sequences

that match the driving videos. Concerning the Bair dataset,

exemplar videos are shown in the Supplementary material

C.3. The results are well in line with those obtained on the

two other datasets.

4.3. User Evaluation

In order to further consolidate the quantitative and qual-

itative evaluations, we performed user studies for both the

Image-to-Video translation (see the Supplementary Mate-

rial C.3) and the image animation problems using Amazon

Mechanical Turk.

For the image animation problem, our model is again

compared with X2face [46] according to the following pro-

tocol: we randomly select 50 pairs of videos where ob-

jects in the first frame have a similar pose. Three videos

are shown to the user: one is the driving video (reference)

and 2 videos from our method and X2Face. The users are

given the following instructions: Select the video that bet-

ter corresponds to the animation in the reference video. We

collected annotations for each video from 10 different users

The results are presented in Tab. 4. Our generated videos

are preferred over X2Face videos in almost more than 80%

of the times for all the datasets. Again, we observe that

the preference toward our approach is higher on the two

datasets which correspond to large motion patterns.

5. Conclusion

We introduced a novel deep learning approach for image

animation. Via the use of motion-specific keypoints, pre-

viously learned following a self-supervised approach, our

model can animate images of arbitrary objects according

to the motion given by a driving video. Our experiments,

considering both automatically computed metrics and hu-

man judgments, demonstrate that the proposed method out-

performs previous work on unsupervised image animation.

Moreover, we show that with little adaptation our method

can perform Image-to-Video translation. In future work, we

plan to extend our framework to handle multiple objects and

investigate other strategies for motion embedding.

Acknowledgments

This work was carried out under the “Vision and Learning

joint Laboratory” between FBK and UNITN.

43282384



References

[1] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satya-

narayanan. Openface: A general-purpose face recognition.

2016.

[2] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan,

Roy H Campbell, and Sergey Levine. Stochastic variational

video prediction. In ICLR, 2017.

[3] Guha Balakrishnan, Amy Zhao, Adrian V Dalca, Fredo Du-

rand, and John Guttag. Synthesizing images of humans in

unseen poses. In CVPR, 2018.

[4] Aayush Bansal, Shugao Ma, Deva Ramanan, and Yaser

Sheikh. Recycle-gan: Unsupervised video retargeting. In

ECCV, 2018.

[5] Volker Blanz and Thomas Vetter. A morphable model for the

synthesis of 3d faces. In SIGGRAPH, 1999.

[6] Adrian Bulat and Georgios Tzimiropoulos. How far are we

from solving the 2d & 3d face alignment problem? (and a

dataset of 230,000 3d facial landmarks). In ICCV, 2017.

[7] Chen Cao, Qiming Hou, and Kun Zhou. Displaced dynamic

expression regression for real-time facial tracking and ani-

mation. TOG, 2014.

[8] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.

Realtime multi-person 2d pose estimation using part affinity

fields. In CVPR, 2017.

[9] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A

Efros. Everybody dance now. In ECCV, 2018.
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and Nicu Sebe. Deformable gans for pose-based human im-

age generation. In CVPR, 2018.

[32] Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe.

Whitening and coloring transform for GANs. In ICLR, 2019.

[33] Aliaksandr Siarohin, Gloria Zen, Nicu Sebe, and Elisa Ricci.

Enhancing perceptual attributes with bayesian style genera-

tion. In ACCV, 2018.

[34] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudi-

nov. Unsupervised learning of video representations using

lstms. In ICML, 2015.

[35] Hao Tang, Wei Wang, Dan Xu, Yan Yan, and Nicu Sebe.

Gesturegan for hand gesture-to-gesture translation in the

wild. In ACM MM, 2018.

[36] Hao Tang, Dan Xu, Nicu Sebe, Yanzhi Wang, Jason J. Corso,

and Yan Yan. Multi-channel attention selection gan with cas-

caded semantic guidance for cross-view image translation. In

CVPR, 2019.

[37] Hao Tang, Dan Xu, Wei Wang, Yan Yan, and Nicu Sebe.

Dual generator generative adversarial networks for multi-

domain image-to-image translation. In ACCV, 2019.

[38] Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-

tian Theobalt, and Matthias Nießner. Face2face: Real-time

face capture and reenactment of rgb videos. In CVPR, 2016.

[39] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan

Kautz. Mocogan: Decomposing motion and content for

video generation. In CVPR, 2018.

43292385



[40] Joost Van Amersfoort, Anitha Kannan, Marc’Aurelio Ran-

zato, Arthur Szlam, Du Tran, and Soumith Chintala.

Transformation-based models of video sequences. arXiv

preprint arXiv:1701.08435, 2017.

[41] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn,

Xunyu Lin, and Honglak Lee. Learning to generate long-

term future via hierarchical prediction. In ICML, 2017.

[42] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba.

Generating videos with scene dynamics. In NIPS, 2016.

[43] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,

Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-

video synthesis. In NIPS, 2018.

[44] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-

thesis and semantic manipulation with conditional gans. In

CVPR, 2017.

[45] Wei Wang, Xavier Alameda-Pineda, Dan Xu, Pascal Fua,

Elisa Ricci, and Nicu Sebe. Every smile is unique:

Landmark-guided diverse smile generation. In CVPR, 2018.

[46] Olivia Wiles, A Sophia Koepke, and Andrew Zisserman.

X2face: A network for controlling face generation using im-

ages, audio, and pose codes. In ECCV, 2018.

[47] Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He,

and Honglak Lee. Unsupervised discovery of object land-

marks as structural representations. In CVPR, 2018.

[48] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dim-

itris Metaxas. Learning to forecast and refine residual motion

for image-to-video generation. In ECCV.
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Matthias Nießner, and Christian Theobalt. State of the art

on monocular 3d face reconstruction, tracking, and applica-

tions. In Computer Graphics Forum.

43302386


