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Abstract

We present a novel deep learning architecture in which

the convolution operation leverages heterogeneous kernels.

The proposed HetConv (Heterogeneous Kernel-Based Con-

volution) reduces the computation (FLOPs) and the num-

ber of parameters as compared to standard convolution op-

eration while still maintaining representational efficiency.

To show the effectiveness of our proposed convolution,

we present extensive experimental results on the standard

convolutional neural network (CNN) architectures such as

VGG [31] and ResNet [8]. We find that after replacing

the standard convolutional filters in these architectures with

our proposed HetConv filters, we achieve 3X to 8X FLOPs

based improvement in speed while still maintaining (and

sometimes improving) the accuracy. We also compare our

proposed convolutions with group/depth wise convolutions

and show that it achieves more FLOPs reduction with sig-

nificantly higher accuracy.

1. Introduction

Convolutional neural networks [8, 19, 31] have shown

remarkable performance in domains like Vision and NLP.

The general trend to improve performance further has made

models more complex and deeper. Increasing the accuracy

by increasing model complexity with a deeper network is

not for free; it comes with the cost of a tremendous in-

crease in computation (FLOPs). Therefore, various types of

convolution operations/convolutional filters have been pro-

posed to reduce FLOPs to the model more efficient.

Existing convolutional filters can be roughly divided

into three categories: 1- Depthwise Convolutional Filter

to perform depthwise convolution (DWC) [39], 2- Point-

wise Convolutional Filter to perform pointwise convolution

(PWC) [37] and 3- Groupwise Convolutional Filter to per-

form groupwise convolution (GWC) [19]. Most of the re-

cent architectures [12, 36, 2, 15, 38, 43] use a combination

of these convolutional filters to make the model efficient.

Using these convolutions (e.g., DWC, PWC, and GWC),

many of the popular models [15, 12, 2] have explored new

architectures to reduce FLOPs. However, designing a new

architecture requires a lot of work to find out the best com-

bination of filters that result in minimal FLOPs.

Another popular approach to increase the efficiency of a

model is to use model compression [28, 1, 24, 11, 21, 10,

42]. Model compression can be broadly categorized into

three categories: connection pruning [6], filter pruning [24,

11, 21, 10, 33, 32, 34] and quantization [6, 28].

In filter pruning, the idea is to prune a filter that has a

minimal contribution in the model, and after removing this

filter/connection, the model is usually fine-tuned to main-

tain its performance. While pruning the model, we require a

pre-trained model (possibly requiring a computationally ex-

pensive training as a preprocessing step), and then later we

discard the filter that has a minimal contribution. Hence it

is a very costly and tricky process. Therefore, using an effi-

cient convolutional filter or convolution operation to design

an efficient architecture is a more popular approach than

pruning. This does not require expensive training and then

pruning since training is done from scratch efficiently.

Using efficient convolutional filters, there are two differ-

ent objectives. One kind of work focuses on designing ar-

chitectures that have minimal FLOPs while compromising

on accuracy. These works focus on developing the model

for the IoT/low-end device [12, 43]. These models suffer

from the low accuracy hence they have to search the best

possible model to create a balance between accuracy and

FLOPs. So there is a tradeoff between FLOPs and model

accuracy.

Another set of work focuses on increasing accuracy

while keeping the model FLOPs the same as the original

architecture. The recent architectures, such as Inception

[36], RexNetXt [41] and Xception [2] are examples of this

kind of work. Their objective is to design a more complex

model using efficient convolutional filters while keeping the

FLOPs the same as the base model. It is usually expected

that a more complex model would learn better features, re-

sulting in better accuracies. However, these methods are

not focused on designing a new architecture, but primarily

on using existing efficient filters in standard base architec-

tures. Therefore these works keep the number of layers and
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the architecture the same as the base model and increase

the filters on each layer such that it does not increase the

FLOPs.

In contrast to these two approaches, the primary fo-

cus of our work is to reduce the FLOPs of the given

model/architecture by designing new kernels, without com-

promising on the loss of accuracy. Experimentally we find

that the proposed approach has much lower FLOPs than

the state-of-art pruning approaches while maintaining the

accuracy of the base model/architecture. The pruning ap-

proaches are very costly and show a significant drop in ac-

curacy to achieve FLOPs compression.

In the proposed approach, we are choosing a different

strategy to increase the efficiency of the existing model

without sacrificing accuracy. An architecture search re-

quires years of research to get an optimized architecture.

Therefore, instead of designing a new efficient architecture,

we design an efficient convolution operation (convolutional

filter) that can be directly plugged into any existing standard

architecture to reduce FLOPs. To achieve this, we propose

a new type of convolution - heterogeneous convolution.

The convolution operation can be divided into two cate-

gories based on the types of the kernel:

• Homogeneous convolution using a traditional convolu-

tional filter (for example standard convolution, group-

wise convolution, depthwise convolution, pointwise

convolution). Homogeneous convolution can be per-

formed using a homogeneous filter. A filter is said to

be homogeneous if it contains all kernels of the same

size (for example, in a 3× 3× 256 CONV2D filter, all

256 kernels will be of size 3× 3).

• Heterogeneous convolution uses a heterogeneous con-

volutional filter (HetConv). A filter is said to be het-

erogeneous if it contains different sizes of kernels (for

example, in a HetConv filter, out of 256 kernels some

kernels are of size 3 × 3 and remaining kernels are of

size 1× 1).

Using a heterogeneous filter in deep CNN overcomes the

limitation of the existing approaches that are based on effi-

cient architecture search and model compression. One of

the latest efficient architecture MobileNet [12] uses depth-

wise and pointwise convolution. The standard convolu-

tional layer is replaced by two convolutional layers; hence it

has more latency (latency one). Please refer to Section-3.3

and Figure-4 for more details about latency. But our pro-

posed HetConv has same latency as the original architecture

(latency zero) unlike [12, 36, 37, 2] that have latency greater

than zero.

Compared to model compression that suffers from high

accuracy drop, our approach is very competitive to the state-

of-art result of the standard model like ResNet [8] and VG-

GNet [31]. Using HetConv filters, we can train our model

from scratch, unlike pruning approaches that need a pre-

trained model, without sacrificing accuracy. The pruning

approaches also suffer from sharp accuracy drop if we in-

crease the degree of FLOP pruning. Using proposed Het-

Conv filters, we have state-of-art result regarding FLOPs

compare to the FLOP pruning methods. Also, the pruning

process is inefficient as it takes a lot of time in training and

fine tuning after pruning. Our approach is highly efficient

and gives a similar result compared to the original model

while training from scratch.

To the best of our knowledge, this is the first convolu-

tion/filter that is heterogeneous. This heterogeneous design

helps to increase efficiency (FLOPs reduction) of the exist-

ing architecture without sacrificing accuracy. We did exten-

sive experiment on different architectures like ResNet [8],

VGG-16 [31] etc just by replacing their original filters to

our proposed filters. We found that without sacrificing the

accuracy of these models, we have a high degree of FLOPs

reduction (3X to 8X). These FLOPs reductions are even sig-

nificantly better as compared to existing pruning approach.

Our main contributions are as follows:

• We design an efficient heterogeneous convolutional fil-

ter, that can be plugged into any existing architecture

to increase the efficiency (FLOPs reduction of order

3X to 8X) of the architecture without sacrificing the

accuracy.

• The proposed HetConv filters are designed in such a

way that it has zero latency. Therefore, there is a neg-

ligible delay from input to output.

2. Related Work

The recent success of deep neural network [19, 29, 8,

14, 4, 5, 26, 40, 35, 27] depends on the model design. To

achieve a minimal error rate, the model becomes more and

more complex. The complex and deeper architecture con-

tain millions of parameters and requires billions of FLOPs

(computations) [8, 31, 14]. These models require machines

with high-end specifications, and these type of architecture

are very inefficient on low computing resources. This raises

interest in designing efficient models [7]. The work to in-

crease the efficiency of the model can be divided into two

parts.

2.1. Efficient Convolutional Filter

To design the efficient architecture recently few novel

convolutional filters have been proposed. Among them

Groupwise Convolution (GWC) [19], Depthwise convolu-

tion (DWC) [39] and Pointwise Convolution (PWC) [8] are

the popular convolutional filters. These are widely used to

design efficient architecture. GoogleNet [37] use the incep-

tion module and irregular stacking architecture. Inception
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module uses GWC and PWC to reduce FLOPs. ResNet

[8, 9] uses a bottleneck structure to design an efficient ar-

chitecture with residual connection. They use PWC and the

standard convolution that help to go deeper without increas-

ing the model parameter and reduces the FLOPs explosion.

Therefore they can design a much deeper architecture com-

pare to VGG [31]. ResNetxt [41] use the ResNet archi-

tecture and they divide each layer with GWC and PWC.

Therefore without increasing FLOPs, they can increase the

cardinality 1. They show that increasing cardinality is much

more effective than a deeper or wider network. SENet [13]

design a new connection that gives the weight to each out-

put feature map with a minor increase in FLOPs but shows

a boost in the performance.

MobileNet [12] is another popular architecture specially

designed for the IoT devices contains DWC and PWC. This

architecture is very light and highly efficient in term of

FLOPs. This reduction in FLOPs are not for free and come

with the cost of a drop in the accuracy compared to the

state-of-art models. [17, 16] use different types of convo-

lutional filers at the same layers, but each filter performs a

homogeneous convolution due to the presence of same types

of kernels in each filter. Using different types of convolu-

tional filers at the same layers also helps in reducing param-

eters/FLOPs. In our proposed convolution, the convolution

operation is heterogeneous due to the presence of different

types of kernels in each filter.

2.2. Model Compression

Another popular approach to increase the efficiency of

CNN is model compression. These can be categorised as: 1-

Connection Pruning [6, 44], 2- Filter Pruning [23, 3, 33, 32,

34] and 3- Bit Compression [28]. Filter pruning approaches

are more effective as compared to other approaches and

give a high compression rate in terms of FLOPs. Also,

the filter pruning approaches do not need any special hard-

ware/software support (sparse library).

Most of the works in filter pruning calculates the impor-

tance of the filter and prunes them based on some criteria

followed by re-training to recover the accuracy drop. [20]

used l1 norm as a metric for ranking filters. But the prun-

ing is done on the pre-trained model and involves iterative

training and the pruning which is costly. Also, filter prun-

ing shows a sharp accuracy drop in accuracy, if the degree

of flop pruning increases [3, 42, 24].

3. Proposed Method

In this work, we propose a novel filter/convolution (Het-

Conv) that contains a heterogeneous kernel (e.g., few ker-

nels are of size 3 × 3, and others may be 1 × 1) to reduce

the FLOPs of existing models with the same accuracy as the

1The size of the set of transformations

Figure 1. Difference between standard convolutional filter (homo-

geneous) and heterogeneous convolutional filter (HetConv). Here

M is the input depth (number of input channels), and P is the part.

Out of M kernels, M/P kernels will be of size 3× 3 and remaining

will be 1× 1 kernels.

original model. This is very different from the standard con-

volutional filter that is made of homogeneous kernels (say

all 3× 3 or all 5× 5). The heterogeneous filter is very effi-

cient in terms of FLOPs. It can be approximated as a com-

bined filter of a groupwise convolutional filter (GWC) and

pointwise convolutional filter (PWC). To reduce the FLOPs

of a convolutional layer, we generally replace it by two or

more layers (GWC/DWC and PWC), but it increases the la-

tency because next layer’s input is the previous layer’s out-

put. Hence all computations have to be done sequentially to

get the correct output. In contrast, our proposed HetConv

has the same latency. Difference between the standard filter

and HetConv filter is shown in the Figure- 1 and Figure- 2.

In the standard convolutional layer, let us assume input

(input feature map) of size Di × Di × M . Here Di is the

input square feature map spatial width and height and M is

the input depth (number of input channels). Also consider

Do × Do × N is the output feature map. Here Do is the

output square feature map spatial width and height and N
is the output depth (number of output channels). An output

feature map is obtained by applying the N filters of size

K ×K ×M . Here K is the kernel size. Therefore the total

computational cost at this layer L can be given as:

FLS = Do ×Do ×M ×N ×K ×K (1)

4837



Figure 2. Comparison between the proposed Convolutional filters (HetConv) with other efficient convolutional filters. Our heterogeneous

filters have zero latency while other (GWC+PWC or DWC+PWC) have a latency of one unit.

It is clear from the Equation-1 the computational cost de-

pends on the kernel size (K), feature map size, input chan-

nels M and output channels N . This computational cost is

very high which can be further reduced by carefully design-

ing the new convolution operation. To reduce the high com-

putation, various convolutions like DWC, PWC and GWC

are proposed which is used in the many recent architecture

[12, 43, 36] to reduce the FLOPs but all of them increase

the latency.

The standard convolution operation and some recent

convolution operations [12, 43, 36] use a homogeneous ker-

nel (i.e., each kernel is of the same size for the whole filter).

Here to increase the efficiency we are using the heteroge-

neous kernels. This contains different size kernels for the

same filter. Please refer to Figure-3 to visualize all filters

at a particular layer L. Let us define part P which controls

the number of different types of kernels in a convolutional

filter. For part P , a fraction 1/P out of total kernels will be

for K × K kernels and remaining fraction (1 − 1/P ) will

be for 1× 1 kernels. For better understanding, Let’s take an

example, in a 3 × 3 × 256 standard CONV2D filter if you

replace (1−1/P )∗256, 3×3 kernels with 1×1 (along with

the central axis), you will get a HetConv filter with part P .

Please refer to Figure-1 and 2.

The computational cost for K × K size kernels in the

HetConv filters with part P on the layer L is given as:

FLK = (Do ×Do ×M ×N ×K ×K)/P (2)

It reduces the cost P times since instead of M kernels of

size K×K, now we have only M/P kernels of size K×K.

The remaining (M − M/P ) kernels are of size 1 × 1.

The computational cost of the remaining 1 × 1 kernels can

be given as:

FL1 = (Do ×Do ×N)×

(

M −

M

P

)

(3)

Figure 3. Convolutional filters at a layer L: Proposed Convolu-

tional Filter (HetConv) using Heterogeneous Kernel. In this Fig-

ure, each channel is made of using the heterogeneous kernel of

size 3× 3 and 1× 1. Replacing 3× 3 kernels with 1× 1 kernels

in standard convolutional filter reduces the FLOPs dramatically

while maintaining the accuracy. Filters of a particular layer are ar-

ranged in a shifted manner (i.e., if the first filter starts 3× 3 kernel

from the first position then the second filter starts the 3× 3 kernel

from the second position and so on).

Therefore the total computational cost at layer L is given as:

FLHC = FLK + FL1 (4)

The total reduction (R) in the computation as compared

to standard convolution can be given as:

RHetConv =
FLK + FL1

FLS

=
1

P
+

(1− 1/P )

K2

(5)

In the Equation-5 if we put P = 1 then it becomes standard

convolutional filter.

By reducing the size of the filter on some channels from

says 3 × 3 to 1 × 1, we are reducing the spatial extent of a
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filter. However, by retaining the size to be 3 × 3 on some

channel, we ensure that the filter does cover the spatial cor-

relation on some channels and need not to have the same

spatial correlation on all channels. We observe in the ex-

perimental section that by doing so, one can obtain similar

accuracies as a homogeneous filter. On the other hand, if

we avoid and retain a 1 × 1 filter size on all channels, then

we would not have the necessary spatial correlation infor-

mation covered, and the accuracy would suffer.

3.1. Comparision with DepthWise followed by
PointWise Convolution

In the extreme case when P = M in HetConv, HetConv

can be compared with DWC+PWC (DepthWise followed

by PointWise Convolution). MobileNet [12] use this type

of convolution. While MobileNet takes more FLOPs than

our extreme case with more delay since MobileNet [12] has

latency one.

The total FLOPs for DWC+PWC (MobileNet) for layer

L can be computed as:

FLMobNet = Do×Do×M×K×K+M×N×Do×Do

(6)

Therefore the total reduction in computation as compared

to the standard convolution:

RMobNet =
FLMobNet

FLS

=
1

N
+

1

K2

(7)

It is clear from the Equation-5 that we can change the

part P value to trade off between the accuracy and FLOPs.

If we decrease the P value, the resulting convolution will

be closer to the standard convolution. To show the effec-

tiveness of the proposed HetConv filter, we have shown re-

sults in the experimental section where HetConv achieves

significantly better accuracy with similar FLOPs.

In the extreme case when P = M , from Eq.-5 and 7 (for

MobileNet N = M ),we can conclude:

1

M
+

(1− 1/M)

K2
<

1

M
+

1

K2
(8)

Reduction = Total reduction in the computation as com-

pared to standard convolution

Speedup =
1

Reduction
(9)

Therefore from Eq.-8, it is clear that MobileNet takes

more computation than our approach. In our HetConv, we

have latency zero while MobileNet has latency one. In this

extreme case, we have significantly better accuracy than

MobileNet (refer to the experiment section).

Figure 4. The figure shows the comparison with the different types

of convolution in terms of latency.

3.2. Comparision with GroupWise followed by
PointWise Convolution

In the case of groupwise convolution followed by point-

wise convolution (GWC+PWC) with the group size G, the

total FLOPs for GWC+PWC for layer L can be computed

as:

FLG = (Do×Do×M×N×K×K)/G+M×N×Do×Do

(10)

Therefore the total reduction in the computation as compare

to the standard convolution:

RGroup =
FLG

FLS

=
1

G
+

1

K2

(11)

Similarly when P = G, from Eq.-5 and 11 we have:

1

P
+

(1− 1/P )

K2
<

1

P
+

1

K2
(12)

Therefore from Eq.-12, it is clear that GWC+PWC takes

more computation than our approach. In our HetConv, we

have latency zero while GWC+PWC has latency one.

3.3. Running Latency

Most of the previous approaches [36, 37, 43, 12] de-

signed efficient convolution to reduce the FLOPs, but they

increase the latency2 in the architecture. The latency in the

different types of convolutions is shown in the Figure-4. In

the Inception module [37, 36], one layer is broken down

into two or more sequential layers. Therefore, the latency

in architecture is greater than zero. In the Xception [2] first

GWC is applied, and on the output of GWC, PWC is ap-

plied. PWC waits for the completion of the GWC. Hence

this approach reduces the FLOPs but increases latency in

the system. Similarly in the MobileNet [12] first DWC and

then PWC is applied therefore it has latency one. This la-

tency includes a delay in parallel devices like GPU. In our

2One parallel step is converted to multiple sequential step hence reduc-

tion in parallelizability. Later stage of layers waits for the execution to be

finished on the previous stage because all computations have to be done

sequentially across layers
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Figure 5. Speedup over standard convolution for different values

of P for a HetConv Filter with 3× 3 and 1× 1 kernels.

proposed approach any layers are not replaced by sequen-

tial layers hence has the latency zero. We directly design

the filter such that without increasing any latency we can

reduce the FLOPs. Our proposed approach is very compet-

itive in terms of FLOPs as compared to previous efficient

convolutions while maintaining the latency zero.

3.4. Speedup over standard convolution for differ­
ent values of P

As shown in Figure-5, Speedup increases with the P
value. We can use P value to trade off between the accu-

racy and FLOPs. If we decrease the P value, the resulting

convolution will be closer to the standard convolution. To

show the effectiveness of the proposed HetConv filter, we

have shown results in the experimental section where Het-

Conv achieved significantly better accuracy with respect to

the other types of convolution with similar FLOPs.

4. Experiments and Results

To show the effectiveness of the proposed HetConv filter

we perform extensive experiments with the current state-of-

art architectures. We replaced their standard convolutional

filters from these architecture with the proposed one. We

performed three large scale experiment on the ImageNet

[30] with the ResNet-34, ResNet-50 [8] and VGG-16 [31]

architectures. We have shown three small scale experiment

on the CIFAR-10 [18] for the VGG-16, ResNet-56, and Mo-

bileNet [12] architectures. We set the value of the reduction

ratio to 8 for Squeeze-and-Excitation (SE) [13] in all our

experiments.

4.1. Notations

XXX Pα: XXX is the architecture, and part value is

P = α; XXX Pα SE: SE for Squeeze-and-Excitation with

reduction-ratio = 8; XXX GWCβ PWC: GWCβ PWC is

the groupwise convolution with group size β followed by

pointwise convolution; XXX DWC PWC: DWC PWC is

depthwise convolution followed by pointwise convolution;

XXX PC: PC is part value P = number of input channels

(input depth).

4.2. VGG­16 on CIFAR­10

In this experiment, we use the VGG-16 architecture [31].

In the CIFAR-10 dataset, each image size is of 32× 32 size

on the RGB scale. In VGG-16 architecture, there are 13

convolutional layers which use standard CONV2D convo-

lution, and after each layer, we add batch normalization. We

are using the same setting as described in [20]. The values

of hyper-parameters are: weight decay = 5e-4, batch size =

128, initial learning rate = 0.1 which is decade by 0.1 after

every 50 epochs.

Except for the initial convolution layer (i.e., CONV 1),

All remaining 12 standard convolutional layers are replaced

by our HetConv layers (same P value for all 12 layers)

while keeping the number of filers same as earlier. As

shown in Table-1, the value of P increase, the values

of FLOPs (computation) decreases without any significant

drop in accuracy. We also experimented for HetConv with

SE technique and found that SE increases the accuracy ini-

tially, but later due to over-fitting, it starts degrading the

model performance (accuracy) as shown in Table-1.

4.2.1 Comparison with groupwise followed by point-

wise convolution

We experimented with groupwise followed by pointwise

convolution, where all standard convolutional layers (except

the initial convolution layer, i.e., CONV 1) are replaced by

two layers (groupwise convolutional layer with group size

4 and pointwise convolutional layer). Now the model has

latency one. As shown in Table-1, VGG-16 GWC4 PWC

has 92.76% accuracy whereas our model VGG-16 P4 has

significantly higher 93.93% accuracy with lesser FLOPs.

4.2.2 Comparison with depthwise followed by point-

wise convolution

We experimented with depthwise followed by pointwise

convolution, where all standard convolutional layers (except

the initial convolution layer, i.e., CONV 1) are replaced

by two layers (depthwise convolutional layer and pointwise

convolutional layer). Now the model has latency one. As

shown in Table-1, VGG-16 DWC PWC has only 91.27%

accuracy on CIFAR-10 whereas our model VGG-16 P64

has significantly higher 93.42% accuracy with comparable

FLOPs.

We also experimented with different P values for dif-

ferent layers. Except for the initial convolution layer

(i.e., CONV 1), all remaining 12 standard convolutional

layers are replaced by our HetConv layers with P =
number of input channels. As shown in Table-1, our model
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Model Acc% FLOPs FLOPs Reduced (%) Parameters Parameters Reduced (%)

VGG-16 P1 94.06 313.74M – 15.00M –

VGG-16 P1 SE 94.13 314.19M – 15.22M –

VGG-16 P2 93.89 175.23M 44.15 8.45M 43.68

VGG-16 P2 SE 94.11 175.67M 44.00 8.68M 42.99

VGG-16 P4 93.93 105.98M 66.22 5.17M 65.45

VGG-16 P4 SE 94.29 106.42M 66.08 5.41M 64.48

VGG-16 GWC4 PWC 92.76 107.67M 65.68 5.42M –

VGG-16 P8 93.92 71.35M 77.26 3.54M 76.40

VGG-16 P8 SE 93.97 71.79M 77.12 3.77M 75.22

VGG-16 P16 93.96 54.04M 82.78 2.72M 81.86

VGG-16 P16 SE 93.63 54.48M 82.64 2.95M 80.59

VGG-16 P32 93.73 45.38M 85.54 2.31M 84.58

VGG-16 P32 SE 93.41 45.82M 85.39 2.54M 83.28

VGG-16 P64 93.42 41.05M 86.92 2.11M 85.95

VGG-16 P64 SE 93.33 41.49M 86.77 2.34M 84.63

VGG-16 DWC PWC 91.27 38.53M 87.72 1.97M –

VGG-16 PC 92.53 38.18M 87.83 1.93M –

VGG-16 PC SE 93.08 38.62M 87.69 2.15M –

Table 1. The table shows the detail results for VGG-16 on CIFAR-10 in different setups.

Method Error% FLOPs Reduced(%)

Li-pruned [21] 6.60 34.20

SBP [25] 7.50 56.52

SBPa [25] 9.00 68.35

AFP-E [3] 7.06 79.69

AFP-F [3] 7.13 81.39

VGG-16 P32 (Ours) 6.27 85.54

VGG-16 P64 (Ours) 6.58 86.92

Table 2. The table shows the comparison of our models with state-

of-art model compression methods for VGG-16 architecture on the

CIFAR-10 dataset.

VGG-16 PC and VGG-16 PC SE still performing better

than VGG-16 DWC PWC which shows the superior per-

formance of our HetConv over DWC+PWC.

4.2.3 Comparison with FLOPs compression methods

As shown in Table-2, our models VGG-16 P32, and VGG-

16 P64 have significantly better accuracy as compare to

state-of-art model compression methods. We reduced ∼

85% FLOPs with no loss in accuracy whereas FLOPs com-

pression methods suffer a significant loss in accuracy (more

than 1%) as shown in Table-2.

4.3. ResNet­56 on CIFAR­10

We experimented with ResNet-56 architecture [8] on the

CIFAR-10 dataset. ResNet-56 consists of three stages of

the convolutional layer of size 16-32-64 where each convo-

lution layer in each stage contains the same 2.36M FLOPs,

and the total FLOP is 126.01M. We trained the model using

the same parameters proposed by [8]. Except for the initial

convolution layer, all remaining standard convolutional lay-

Method Error% FLOPs Reduced (%)

Li-B [21] 6.94 27.6

NISP [42] 6.99 43.6

CP [11] 8.20 50.0

SFP [10] 6.65 52.6

AFP-G [3] 7.06 60.9

ResNet-56 P1 6.41 –

ResNet-56 P2 6.40 44.30

ResNet-56 P4 6.71 66.45

ResNet-56 P1 SE 7.16 –

ResNet-56 P2 SE 6.75 44.27

ResNet-56 P4 SE 7.79 66.42

Table 3. The table shows the detail results and comparison with

state-of-art model compression methods for ResNet-56 on CIFAR-

10 in different setups.

ers are replaced by our HetConv layers while keeping the

number of filers the same as earlier.

As shown in Table-3, our models ResNet-56 P2, and

ResNet-56 P4 have significantly better accuracy as com-

pare to state-of-art model compression methods with higher

FLOPs reduction. We also experimented for HetConv with

SE technique and found that SE performance is not as ex-

pected due to over-fitting.

4.4. MobileNet on CIFAR­10

We experimented with MobileNet architecture on the

CIFAR-10 dataset. Except for the initial convolution layer,

all remaining convolutional layers are replaced by our Het-

Conv layers while keeping the number of filers the same as

earlier. In our model, two convolutional layers (depthwise

convolutional layer and pointwise convolutional layer) is re-

placed by one HetConv convolutional layer which reduces
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Method Accuracy (%) FLOPs

MobileNet [12] 91.17 46.36M

MobileNet P32 92.06 55.94M

MobileNet P32 SE 92.17 56.91M
Table 4. The table shows the results for MobileNet [12] on CIFAR-

10 in different setups.

Method Acc%(Top-1) Acc%(Top-5) FLOPs Reduced %

RNP (3X)[22] – 87.57 66.67

ThiNet-70 [24] 69.8 89.53 69.04

CP 2X [11] – 89.90 50.00

VGG-16 P1 71.3 90.2 –

VGG-16 P4 71.2 90.2 65.8

Table 5. Table shows the results for the VGG-16 on ImageNet

[30]. Our model has no loss in accuracy as compare to state-of-

art [11, 24] pruning approaches while significantly higher FLOPs

reduction.

Method Error (top-1)% FLOPs FLOPs Reduced(%)

Li-B [21] 27.83 2.7G 24.2

NISP [42] 27.69 – 43.76

ResNet-34 P1 26.80 3.6G –

ResNet-34 P4 27.00 1.3G 64.48

ResNet-34 P4 SE 26.50 1.3G 64.48

Table 6. Table shows the results for ResNet-34 on ImageNet [30].

Our model has no loss in accuracy as compare to state-of-art

[21, 42] pruning approaches while significantly higher FLOPs re-

duction in different setups.

the latency from one to zero.

As shown in Table-4, our models MobileNet P32, and

MobileNet P32 SE have the significantly better accuracy

(close to 1%) as compare to MobileNet model with al-

most similar FLOPs on MobileNet architecture which again

shows the superior performance of our proposed HetConv

convolution over depthwise+pointwise convolution.

4.5. VGG­16 on ImageNet

We experimented with VGG-16 [31] architecture on the

large-scale ImageNet [30] dataset. Except for the initial

convolution layer, all remaining convolutional layers are re-

placed by our HetConv layers while keeping the number of

filers the same as earlier. Our model VGG-16 P4 shows the

state-of-art result over the recent approach proposed for flop

compression. Channel-Pruning (CP) [11] has the 50.0%
FLOP compression while we have 65.8% FLOP compres-

sion with no loss in accuracy. Please refer to Table-5 for the

more detail results.

4.6. ResNet­34 on ImageNet

We experimented with ResNet-34 [8] architecture on the

large-scale ImageNet [30] dataset. Except for the initial

convolution layer, all remaining convolutional layers are re-

placed by our HetConv layers. Our model ResNet-34 P4

shows the state-of-art result over the previously proposed

methods. NISP [42] has the 43.76% FLOP compression

Method Error (top-1)% FLOPs FLOPs Reduced(%)

ThiNet-70 [24] 27.90 – 36.8

NISP [42] 27.33 – 27.31

ResNet-50 P1 23.86 4.09G –

ResNet-50 P4 23.84 2.85G 30.32

Table 7. Table shows the results for ResNet-50 on ImageNet [30].

Our model has no loss in accuracy as compare to state-of-art [24,

42] flop pruning approaches.

while we have 64.48% FLOP compression with signifi-

cantly better accuracy. For more details, please refer to

Table-6.

4.7. ResNet­50 on ImageNet

ResNet-50 [8] is a deep convolutional neural network

having 50 layers with the skip/residual connection. In

this architecture, we replace standard convolutions with

our proposed HetConv convolution. The values of hyper-

parameters are: weight decay = 1e-4, batch size = 256, ini-

tial learning rate = 0.1 which is decade by 0.1 after every 30

epochs and model is trained in 90 epochs.

It is clear from Table-7 that our model ResNet-50 P4 has

no loss in accuracy while flop pruning approaches [24, 42]

suffers from the heavy accuracy drop in top-1 accuracy.

Our model is trained from scratch, but pruning approaches

[24, 42] requires a pre-trained model and involve iterative

pruning and fine-tuning which is a very time-consuming

process.

5. Conclusion

In this work, we proposed a new type of convolution

using heterogeneous kernels. We have compared our pro-

posed convolution with the popular convolutions (depth-

wise convolution, groupwise convolution, pointwise con-

volution, and standard convolution) on various existing ar-

chitectures (VGG-16, ResNet and MobileNet). Experimen-

tal results show that our HetConv convolution is more ef-

ficient (lesser FLOPs with better accuracy) as compared to

existing convolutions. Since our proposed convolution does

not increase the layer (replacing a layer with a number of

layers, for example, MobileNet) to get FLOPs reduction,

hence has latency zero. We also compared HetConv convo-

lution based model with the FLOPs compression methods

and shown that it produces far better results as compared

to compression methods. In the future, using this type of

convolution, we can design more efficient architectures.
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