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Abstract

In this work, we address the lack of 3D understanding

of generative neural networks by introducing a persistent

3D feature embedding for view synthesis. To this end, we

propose DeepVoxels, a learned representation that encodes

the view-dependent appearance of a 3D scene without hav-

ing to explicitly model its geometry. At its core, our ap-

proach is based on a Cartesian 3D grid of persistent em-

bedded features that learn to make use of the underlying 3D

scene structure. Our approach combines insights from 3D

geometric computer vision with recent advances in learning

image-to-image mappings based on adversarial loss func-

tions. DeepVoxels is supervised, without requiring a 3D re-

construction of the scene, using a 2D re-rendering loss and

enforces perspective and multi-view geometry in a princi-

pled manner. We apply our persistent 3D scene represen-

tation to the problem of novel view synthesis demonstrating

high-quality results for a variety of challenging scenes.

1. Introduction

Recent years have seen significant progress in apply-

ing generative machine learning methods to the creation

of synthetic imagery. Many deep neural networks, for ex-

ample based on (variational) autoencoders, are able to in-

paint, refine, or even generate complete images from scratch

[19, 30]. A very prominent direction is generative adver-

sarial networks [13] which achieve impressive results for

image generation, even at high resolutions [26] or condi-

tional generative tasks [20]. These developments allow us

to perform highly-realistic image synthesis in a variety of

settings; e.g., purely generative, conditional, etc.

However, while each generated image is of high qual-

ity, a major challenge is to generate a series of coherent

views of the same scene. Such consistent view generation

would require the network to have a latent space represen-

tation that fundamentally understands the 3D layout of the

scene; e.g., how would the same chair look from a differ-

ent viewpoint? Unfortunately, this is challenging to learn
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Figure 1: During training, we learn a persistent DeepVoxels rep-

resentation that encodes the view-dependent appearance of a 3D

scene from a dataset of posed multi-view images (top). At test

time, DeepVoxels enable novel view synthesis (bottom).

for existing generative neural network architectures that are

based on a series of 2D convolution kernels. Here, spatial

layout and transformations of a real, 3D environment would

require a tedious learning process which maps 3D opera-

tions into 2D convolution kernels [22]. In addition, the gen-

erator network in these approaches is commonly based on

a U-Net architecture with skip connections [47]. Although

skip connections enable efficient propagation of low-level

features, the learned 2D-to-2D mappings typically struggle

to generalize to large 3D transformations, due to the fact

that the skip connections bypass higher-level reasoning.

To tackle similar challenges in the context of learning-

based 3D reconstruction and semantic scene understand-

ing, the field of 3D deep learning has seen large and rapid

progress over the last few years. Existing approaches are

able to predict surface geometry with high accuracy. Many

of these techniques are based on explicit 3D representa-

tions in the form of occupancy grids [35, 43], signed dis-

tance fields [46], point clouds [42, 32], or meshes [21].

While these approaches handle the geometric reconstruc-

tion task well, they are not directly applicable to the syn-

thesis of realistic imagery, since it is unclear how to rep-
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resent color information at a sufficiently high resolution.

There also exists a large body of work on learning low-

dimensional embeddings of images that can be decoded to

novel views [54, 61, 7, 9, 60, 45]. Some of these techniques

make use of the object’s 3D rotation by explicitly rotating

the latent space feature vector [60, 45]. While such 3D tech-

niques are promising, they have thus far not been successful

in achieving sufficiently high fidelity for the task of photo-

realistic image synthesis.

In our work, we aim at overcoming the fundamental

limitations of existing 2D generative models by introduc-

ing native 3D operations in the neural network architecture.

Rather than learning intuitive concepts from 3D vision, such

as perspective, we explicitly encode these operations in the

network architecture and perform reasoning directly in 3D

space. The goal of the DeepVoxels approach is to condense

posed input images of a scene into a persistent latent rep-

resentation without explicitly having to model its geometry

(see Fig. 1). This representation can then be applied to the

task of novel view synthesis to generate unseen perspec-

tives of a 3D scene without requiring access to the initial

set of input images. Our approach is a hybrid 2D/3D one

in that it learns to represent a scene in a Cartesian 3D grid

of persistent feature embeddings that is projected to the tar-

get view’s canonical view volume and processed by a 2D

rendering network. This persistent feature volume, which

exists in 3D world-space, in combination with a structured,

differentiable image formation model, enforces perspective

and multi-view geometry in a principled and interpretable

manner during training. The proposed approach learns to

exploit the underlying 3D scene structure, without requiring

supervision in the 3D domain. We demonstrate novel view

synthesis with high quality for a variety of scenes based on

this new representation. In summary, our approach makes

the following technical contributions:

• A novel persistent 3D feature representation for image

synthesis that makes use of the underlying 3D scene

information.

• Explicit occlusion reasoning based on learned soft vis-

ibility that leads to higher-quality results and better

generalization to novel viewpoints.

• Differentiable image formation to enforce perspective

and multi-view geometry in a principled and inter-

pretable manner during training.

• Training without requiring 3D supervision.

Scope In this paper, we present first steps towards 3D-

structured neural scene representations. To this end, we

limit the scope of our investigation to allow an in-depth

discussion of the challenges fundamental to this approach.

We assume Lambertian scenes, without specular highlights

or other view-dependent effects. While the proposed ap-

proach can deal with light specularities, these are not mod-

eled explicitly. Classical approaches will achieve impres-

sive results on the presented scenes. However, these ap-

proaches rely on the explicit reconstruction of geometry.

Neural scene representations will be essential to develop

generative models that can generalize across scenes to solve

reconstruction problems where only few observations are

available. We thus compare to such baselines exclusively.

2. Related Work

Our approach lies at the intersection of multiple active

research areas, namely generative neural networks, 3D deep

learning, deep learning-based view synthesis, and model- as

well as image-based rendering.

Neural Image Synthesis Deep models for 2D image and

video synthesis have recently shown very promising results.

Some of these approaches are based on (variational) auto-

encoders (VAEs) [19, 30] or autoregressive models (AMs),

such as PixelCNN [38]. The most promising results so far

are based on conditional generative adversarial networks

(cGANs) [13, 44, 36, 20]. In most cases, the generator net-

work has an encoder-decoder architecture [19], often with

skip connections (U-Net) [47], which enable efficient prop-

agation of low-level features from the encoder to the de-

coder. Approaches that convert synthetic images into photo-

realistic imagery have been proposed for the special case of

human bodies [64, 2] and faces [28]. In theory, similar ar-

chitectures could be used to regress the real-world image

corresponding to a given viewpoint, i.e., image-based ren-

dering could be learned from scratch. Unfortunately, these

2D-to-2D translation approaches struggle to generalize to

transformations in 3D space, such as rotation and perspec-

tive projection, since the underlying 3D scene structure can-

not be exploited. We compare to this baseline in Sec. 4 and

show that DeepVoxels drastically outperforms it.

3D Deep Learning Recently, deep learning has been suc-

cessfully applied to many 3D geometric reasoning tasks.

Current approaches are able to predict an accurate 3D rep-

resentation of an object from just a single or multiple views.

Many of these techniques make use of classical 3D repre-

sentations, e.g., occupancy grids [35, 43], signed distance

fields [46], 3D point clouds [42, 32], or meshes [21]. While

these approaches handle the geometric reconstruction task

well, they are not directly applicable to view synthesis,

since it is unclear how to represent color information at a

sufficiently high resolution. View consistency can be ex-

plicitly handled using differentiable ray casting [57]. Ren-

derNet [37] learns to render in different styles from 3D

voxel grid input. Kulkarni et al. [31] learn a disentangled
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representation of images with respect to various scene prop-

erties, such as rotation and illumination. Spatial Trans-

former Networks [22] can learn spatial transformations of

feature maps in the network. Even weakly-supervised [62]

and unsupervised [23] learning of 3D transformations has

been proposed. Our work is also related to CNNs for 3D

reconstruction [25, 5] and monocular depth estimation [8].

A “multi-view stereo machine” [25] can learn 3D recon-

struction based on 3D or 2.5D supervision. MapNet [18]

performs SLAM based on a scene-specific 2D feature grid

representation. In contrast to these approaches, which are

focused on geometric reasoning, our goal is to learn an

embedding for novel view synthesis. To synthesize multi-

view consistent images, we optimize for a persistent, scene-

specific 3D embedding over all available 2D observations

and enable the network to perform explicit occlusion rea-

soning. We do not require any 3D ground truth but mini-

mize a 2D photometric reprojection loss exclusively.

Deep Learning for View Synthesis Recently, a class

of deep neural networks has been proposed that directly

aim to solve the problem of novel view synthesis. Some

techniques predict lookup tables into a set of reference

views [39, 63] or predict weights to blend multi-view im-

ages into novel views [11]. A layered scene representa-

tion [56] can be learned based on a re-rendering loss. A

large corpus of work focuses on embedding 2D views of

scenes into a learned low-dimensional latent space that is

then decoded into a novel view [54, 61, 7, 9, 60, 45, 6].

Some of these approaches rely on embedding views into

a latent space that does not enforce any geometrical con-

straints [54, 7, 9], others enforce geometric constraints in

varying degrees [60, 45, 6, 10], such as learning rotation-

equivariant features by explicitly rotating the latent space

feature vectors. We focus on optimizing a scene-specific

embedding over a training corpus of 2D observations and

explicitly account for concepts from 3D vision such as per-

spective projection and occlusion to constrain the latent

space. We demonstrate advantages over weakly structured

embeddings in generating high-quality novel views.

Model-Based Rendering Classic reconstruction ap-

proaches such as structure-from-motion exploit multi-view

geometry [15, 53] to build a dense 3D point cloud of the

imaged scene [49, 50, 52, 1, 12]. A triangular surface

representation can be obtained using for example the

Poisson Surface [27] reconstruction technique. However,

the reconstructed geometry is often imperfect, coarse,

contains holes, and the resulting renderings thus suffer

from visible artifacts and are not fully realistic. In contrast,

our goal is to learn a representation that efficiently encodes

the view-dependent appearance of a 3D scene without

having to explicitly reconstruct a geometric model.

Image-Based Rendering Traditional image-based ren-

dering techniques blend warped versions of the input im-

ages to generate new views [51]. This idea was first pro-

posed as a computationally efficient alternative to classical

rendering [33, 14, 3]. Multiple-view geometry can be used

to obtain the geometry for warping [17]. In other cases, no

3D reconstruction is necessary [11, 41]. Some approaches

rely on light fields [24]. Recently, deep-learning has been

used to aid image-based rendering via learning a small sub-

task, i.e., the computation of the blending weights [16, 11].

While this can achieve photorealism, it depends on a dense

set of high-resolution photographs to be available at render-

ing time and requires an error prone reconstruction step to

obtain the geometric proxy. Our approach has orthogonal

goals: (1) we want to learn an embedding for view syn-

thesis and (2) we want to tackle the problem in a holistic

fashion by learning raw pixel output. Thus, our approach

is more related to embedding techniques that try to learn a

latent space that can be decoded into novel views.

3. Method

The core of our approach is a novel 3D-structured

scene representation called DeepVoxels. DeepVoxels is a

viewpoint-invariant, persistent and uniform 3D voxel grid

of features. The underlying 3D grid enforces spatial struc-

ture on the learned per-voxel code vectors. The final output

image is formed based on a 2D network that receives the

perspective re-sampled version of this 3D volume, i.e., the

canonical view volume of the target view, as input. The

3D part of our approach takes care of spatial reasoning,

while the 2D part enables fine-scale feature synthesis. In

the following, we first introduce the training corpus and

then present our end-to-end approach for finding the scene-

specific DeepVoxels representation from a set of multi-view

images without explicit 3D supervision.

3.1. Training Corpus

Our scene-specific training corpus C = {Si, T
0

i
, T 1

i
}M
i=1

of M samples is based on a source view Si (image and cam-

era pose) and two target views T 0

i
, T 1

i
, which are randomly

selected from a set of N registered multi-view images; see

Fig. 1 for an example. We assume that the intrinsic and ex-

trinsic camera parameters are available. These can for ex-

ample be obtained using sparse bundle adjustment [55]. For

each pair of target views T 0

i
, T 1

i
we then randomly select

a single source view Si from the top-5 nearest neighbors

in terms of view direction angle to target view T 0

i
. This

sampling heuristic makes it highly likely that points in the

source view are visible in the target view T 0

i
. While not

essential to training, this ensures meaningful gradient flow

for every optimization step, while encouraging multi-view

consistency to the random target view T 1

i
. We sample the

training corpus C dynamically during training.
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Figure 2: Overview of all model components. At the heart of our encoder-decoder based architecture is a novel viewpoint-invariant and

persistent 3D volumetric scene representation called DeepVoxels that enforces spatial structure on the learned per-voxel code vectors.

3.2. Architecture Overview

Our network architecture is summarized in Fig. 2. On

a high level, it can be seen as an encoder-decoder based

architecture with the persistent 3D DeepVoxels representa-

tion as its latent space. During training, we feed a source

view Si to the encoder and try to predict the target view Ti.
We first extract a set of 2D feature maps from the source

view using a 2D feature extraction network. To learn a

view-independent 3D feature representation, we explicitly

lift image features to 3D based on a differentiable lifting

layer. The lifted 3D feature volume is fused with our per-

sistent DeepVoxels scene representation using a gated re-

current network architecture. Specifically, the persistent 3D

feature volume is the hidden state of a gated recurrent unit

(GRU) [4]. After feature fusion, the volume is processed

by a 3D fully convolutional network. The volume is then

mapped to the camera coordinate systems of the two target

views via a differentiable reprojection layer, resulting in the

canonical view volume. A dedicated, structured occlusion

network operates on the canonical view volume to reason

about voxel visibility and flattens the view volume to a 2D

view feature map (see Fig. 3). Finally, a learned 2D render-

ing network forms the two final output images. Our network

is trained end-to-end, without the need of supervision in the

3D domain, by a 2D re-rendering loss that enforces that the

predictions match the target views. In the following, we

provide more details.

Camera Model We follow a perspective pinhole camera

model that is fully specified by its extrinsic E =
[

R|t
]

∈
R

3×4 and intrinsic K ∈ R
3×3 camera matrices [15]. Here,

R ∈ R
3×3 is the global camera rotation and t ∈ R

3 its

translation. Assume we are given a position x ∈ R
3 in

3D coordinates, then the mapping from world space to the

canonical camera volume is given as:

u =





u

v

d



 = K(Rx+ t) . (1)

Here, u and v specify the position of the voxel center on

the screen and d is its depth from the camera. Given a pixel

and its depth, we can invert this mapping to compute the

corresponding 3D point x = R
T (K−1

u− t).

Feature Extraction We extract 2D feature maps from the

source view based on a fully convolutional feature extrac-

tion network. The image is first downsampled by a series of

stride-2 convolutions until a resolution of 64×64 is reached.

A 2D U-Net architecture [48] then extracts a 64×64 feature

map that is the input to the subsequent volume lifting.

Lifting 2D Features to 3D Observations The lifting

layer lifts 2D features into a temporary 3D volume, rep-

resenting a single 3D observation, which is then integrated

into the persistent DeepVoxels representation. We position

the 3D feature volume in world space such that its center

roughly aligns with the scene’s center of gravity, which can

be obtained cheaply from the keypoint point cloud obtained

from sparse bundle adjustment. The spatial extent is set

such that the complete scene is inside the volume. We try

to bound the scene as tightly as possible to not lose spatial

resolution. Lifting is implemented by a gathering operation.

For each voxel, the world space position of its center is pro-

jected to the source view’s image space following Eq. 1. We

extract a feature vector from the feature map using bilinear

sampling and store the result in the code vector associated
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Figure 3: Illustration of the occlusion-aware projection operation. The feature volume (represented by feature grid) is first resampled

into the canonical view volume via a projection transformation and trilinear interpolation. The occlusion network then predicts per-pixel

softmax weights along each depth ray. The canonical view volume is then collapsed along the depth dimension via a softmax-weighted

sum of voxels to yield the final, occlusion-aware feature map. The per-voxel visibility weights can be used to compute a depth map.

with the voxel. Note, our approach is based only on a set

of registered multi-view images and we do not have access

to the scene geometry or depth maps, rather our approach

learns automatically to resolve the depth ambiguity based

on a gated recurrent network in 3D.

Integrating Lifted Features into DeepVoxels Lifted ob-

servations are integrated into the DeepVoxels representation

via an integration network that is based on gated recurrent

units (GRUs) [4]. In contrast to the standard application of

GRUs, the integration network operates on the same vol-

ume across the full training procedure, i.e., the hidden state

is persistent across all training steps and never reset, lead-

ing to a geometrically consistent representation of the whole

training corpus. We use a uniform volumetric grid of size

w×h× d voxels, where each voxel has f feature channels,

i.e., the stored code vector has size f . We employ one gated

recurrent unit for each voxel, such that at each time step, all

the features in a voxel have to be updated jointly. The goal

of the gated recurrent units is to incrementally fuse the lifted

features and the hidden state during training, such that the

best persistent 3D volumetric feature representation is dis-

covered. The gated recurrent units implement the mapping

Zt = σ(WzXt +UzHt−1 +Bz) , (2)

Rt = σ(WrXt +UrHt−1 +Br) , (3)

St = ReLU(WsXt +Us(Rt ◦Ht−1) +Bs) , (4)

Ht = (1− Zt) ◦Ht−1 + Zt ◦ St . (5)

Here, Xt is the lifted 3D feature volume of the current

timestep t, the W• and U• are trainable 3D convolution

weights, and the B• are trainable tensors of biases. We fol-

low Cho et al. [4] and employ a sigmoid activation σ to

compute the response of the tensor of update gates Zt and

reset gates Rt. Based on the previous hidden state Ht−1,

the per-voxel reset values Rt, and the lifted 3D feature vol-

ume Xt, the tensor of new feature proposals St for the cur-

rent time step t is computed. Us and Ws are single 3D

convolutional layers. The new hidden state Ht, the Deep-

Voxels representation for the current time step, is computed

as a per-voxel linear combination of the old state Ht−1 and

the new DeepVoxel proposal St. The GRU performs one

update step per lifted observation. Afterwards, we apply a

3D inpainting U-Net that learns to fill holes in this feature

representation. At test time, only the optimally learned per-

sistent 3D volumetric features, the DeepVoxels, are used to

form the image corresponding to a novel target view. The

2D feature extraction, lifting layer and GRU gates are dis-

carded and are not required for inference, see Fig. 2.

Projection Layer The projection layer implements the

inverse of the lifting layer, i.e., it maps the 3D code vec-

tors to the canonical coordinate system of the target view,

see Fig. 3 (left). Projection is also implemented based on a

gathering operation. For each voxel of the canonical view

volume, its corresponding position in the persistent world

space voxel grid is computed. An interpolated code vector

is then extracted via a trilinear interpolation and stored in

the feature channels of the canonical view volume.

Occlusion Module Occlusion reasoning is essential for

correct image formation and generalization to novel view-

points. To this end, we propose a dedicated occlusion net-

work that computes soft visibility for each voxel. Each pixel

in the target view is represented by one column of voxels

in the canonical view volume, see Fig. 3 (left). First, this

column is concatenated with a feature column encoding the

distance of each voxel to the camera, similar as in [34].

This allows the occlusion network to reason about voxel or-

der. The feature vector of each voxel in this canonical view

volume is then compressed to a low-dimensional feature

vector of dimension 4 by a single 3D convolutional layer.

This compressed volume is input to a 3D U-Net for occlu-

sion reasoning. For each ray, represented by a single-pixel

column, this network predicts a scalar per-voxel visibility

weight based on a softmax activation, see Fig. 3 (middle).

The canonical view volume is then flattened along the depth

dimension with a weighted average, using the predicted vis-

ibility values. The softmax weights can further be used to
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compute a depth map, which provides insight into the oc-

clusion reasoning of the network, see Fig. 3 (right).

Rendering and Loss The rendering network is a mirrored

version of the feature extraction network with higher capac-

ity. A 2D U-Net architecture takes as input the flattened

canonical view volume from the occlusion network and pro-

vides reasoning across the full image, before a number of

transposed convolutions directly regress the pixel values of

the novel view. We train our persistent DeepVoxels repre-

sentation based on a combined ℓ1-loss and adversarial cross

entropy loss [13]. We found that an adversarial loss accel-

erates the generation of high-frequency detail earlier on in

training. Our adversarial discriminator is a fully convolu-

tional patch-based discriminator [58]. We solve the result-

ing minimax optimization problem using ADAM [29].

4. Analysis

In this section, we demonstrate that DeepVoxels is a rich

and semantically meaningful 3D scene representation that

allows high-quality re-rendering from novel views. First,

we present qualitative and quantitative results on synthetic

renderings of high-quality 3D scans of real-world objects,

and compare the performance to strong machine-learning

baselines with increasing reliance on geometrically struc-

tured latent spaces. Next, we demonstrate that DeepVoxels

can also be used to generate novel views on a variety of real

captures, even if these scenes may violate the Lambertian

assumption. Finally, we demonstrate quantitative and qual-

itative benefits of explicitly reasoning about voxel visibility

via the occlusion module, as well as improved model inter-

pretability. Please see the supplement for further studies on

the sensitivity to the number of training images, the size of

the voxel volume, as well as noisy camera poses.

Dataset and Metrics We evaluate model performance

on synthetic data obtained from rendering 4 high-quality

3D scans (see Fig. 4). We center each scan at the origin

and scale it to lie within the unit cube. For the training

set, we render the object from 479 poses uniformly dis-

tributed on the northern hemisphere. For the test set, we

render 1000 views on an Archimedean spiral on the north-

ern hemisphere. All images are rendered in a resolution

of 1024 × 1024 and then resized using area averaging to

512×512 to minimize aliasing. We evaluate reconstruction

error in terms of PSNR and SSIM [59].

Implementation All models are implemented in PyTorch

[40]. Unless specified otherwise, we use a cube volume

with 323 voxels. We average the ℓ1 loss over all pixels in

the image. The ℓ1 and adversarial loss are weighted 200 : 1.

Models are trained until convergence using ADAM with a

learning rate of 4 · 10−4. One model is trained per scene.

The proposed architecture has 170 million parameters. At

test time, rendering a single frame takes 71ms.

Baselines We compare to three strong baselines with in-

creasing reliance on geometry-aware latent spaces. The first

baseline is a Pix2Pix architecture [20] that receives as in-

put the per-pixel view direction, i.e., the normalized, world-

space vector from camera origin to each pixel, and is trained

to translate these images into the corresponding color im-

age. This baseline is representative of recent achievements

in 2D image-to-image translation. The second baseline is

a deep autoencoder that receives as input one of the top-5
nearest neighbors of the target view, and the pose of both the

target and the input view are concatenated in the deep latent

space, as proposed by Tatarchenko et al. [54]. The inputs of

this model at training time are thus identical to those of our

model. The third baseline learns an interpretable, rotation-

equivariant latent space via the method proposed in [60, 6]

and used previously in [45], by being fed one of the top-5
nearest neighbor views and then rotating the latent embed-

ding with the rotation matrix that transforms the input to

the output pose. At test time, the previous two baselines re-

ceive the top-1 nearest neighbor to supply the model with

the most relevant information. We approximately match the

number of parameters of each network, with all baselines

having equally or slightly more parameters than our model.

We train all baselines to convergence with the same loss

function. For the exact baseline architectures and number

of parameters, please see the supplement.

Object-specific Novel View Synthesis We train our net-

work and all baselines on synthetic renders of four high-

quality 3D scans. Table 1 compares PSNR and SSIM

of the proposed architecture and the baselines. The best-

performing baseline is Pix2Pix [20]. This is surprising,

since no geometrical constraints are enforced, as opposed

to the approach by Worrall et al. [60]. The proposed archi-

tecture with strongly structured latent space outperforms all

baselines by a wide margin of an average 7dB. Fig. 4 shows

a qualitative comparison as well as further novel views sam-

pled from the proposed model. The proposed model dis-

plays robust 3D reasoning that does not break down even in

challenging cases. Notably, other models have a tendency

to “snap” onto views seen in the training set, while the pro-

posed model smoothly follows the test trajectory. Please

see the supplemental video for a demonstration of this be-

havior. We hypothesize that this improved generalization to

unseen views is due to the explicit multi-view constraints

enforced by the proposed latent space. The baseline models

are not explicitly enforcing projective and epipolar geom-

etry, which may allow them to parameterize latent spaces

that are not properly representing the low-dimensional man-
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Ground Truth Worrall et al. Ours Ours - Test ViewsPix2Pix

Figure 4: Left: Comparison of the best three performing models to ground truth. From Left to right: Ground truth, Worrall et al. [60], Isola

et al. [20] (Pix2Pix), and ours. Our outputs are closest to the ground truth, performing well even in challenging cases such as the strongly

foreshortened letters on the cube or the high-frequency detail of the vase. Right: Other samples of novel views generated by our model.

Vase Pedestal Chair Cube Mean

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Nearest Neighbor 23.26 / 0.92 21.49 / 0.87 20.69 / 0.94 18.32 / 0.83 20.94 / 0.89
Tatarchenko et al. [54] 22.28 / 0.91 23.25 / 0.89 20.22 / 0.95 19.12 / 0.84 21.22 / 0.90
Worrall et al. [60] 23.41 / 0.92 22.70 / 0.89 19.52 / 0.94 19.23 / 0.85 21.22 / 0.90
Pix2Pix (Isola et al.) [20] 26.36 / 0.95 25.41 / 0.91 23.04 / 0.96 19.69 / 0.86 23.63 / 0.92
Ours 27.99 / 0.96 32.35 / 0.97 33.45 / 0.99 28.42 / 0.97 30.55 / 0.97

Table 1: Quantitative comparison to four baselines. Our approach obtains the best results in terms of PSNR and SSIM on all objects.

ifold of rotations. Although the resolution of the proposed

voxel grid is 16 times smaller than the image resolution, our

model succeeds in capturing fine detail much smaller than

the size of a single voxel, such as the letters on the sides

of the cube or the detail on the vase. This may be due to

the use of trilinear interpolation in the lifting and projec-

tion steps, which allow for a fine-grained representation to

be learned. Please see the video for full sequences, and the

supplemental material for two additional synthetic scenes.

Voxel Embedding vs. Rotation-Equivariant Embedding

As reflected in Tab. 1, we outperform [60] by a wide margin

both qualitatively and quantitatively. The proposed model

is constrained through multi-view geometry, while [60] has

more degrees of freedom. Lacking occlusion reasoning,

depth maps are not made explicit. The model may thus

parameterize latent spaces that do not respect multi-view

geometry. This increases the risk of overfitting, which we

observe empirically, as the baseline snaps to nearest neigh-

bors seen during training. While the proposed voxel embed-

ding is memory hungry, it is very parameter efficient. The

use of 3D convolutions means that the parameter count is

independent of the voxel grid size. Giving up spatial struc-

ture means Worrell et al. [60] abandon convolutions and use

fully connected layers. However, to achieve the same latent

space size of 323×64 features would necessitate more than

4.4 · 1012 parameters between just the fully connected lay-

ers before and after the feature transformation layer, which

is infeasible. In contrast, the proposed 3D inpainting net-

work only has 1.7 ·107 parameters, five orders of magnitude

less. To address memory inefficiency, the dense grid may be

replaced by a sparse alternative in the future.

Occlusion Reasoning and Interpretability An essential

part of the rendering pipeline is the depth test. Similarly,

the rendering network ought to be able to reason about oc-

clusions when regressing the output view. A naive approach

might flatten the depth dimension of the canonical camera

volume and subsequently reduce the number of features us-

ing a series of 2D convolutions. This leads to a drastic in-
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Ground Truth With Occlusion Net. No Occlusion Net.

Figure 5: The occlusion module is critical to model performance.

It boosts performance from 23.26dB to 28.42dB (cube), and from

30.02dB to 32.35dB (pedestal). Left: ground truth view and depth

map. Center: view generated with the occlusion module and

learned depth map (64 × 64 pixels). Note that the object back-

ground is unconstrained in the depth map and may differ from

ground truth. Right: without the occlusion module, the occluded,

blue side of the cube (see Fig. 4) “shines through”, and severe arti-

facts appear (see inset). In addition to decreasing parameter count

and boosting performance, the occlusion module generates depth

maps fully unsupervised, demonstrating 3D reasoning.

crease in the number of network parameters. At training

time, this further allows the network to combine features

from several depths equally to regress on pixel colors in

the target view. At inference time, this results in severe ar-

tifacts and occluded parts of the object “shining through”

(see Fig. 5). Our occlusion network forces learning to use

a softmax-weighted sum of voxels along each ray, which

penalizes combining voxels from several depths. As a re-

sult, novel views generated by the network with the occlu-

sion module perform much more favorably at test time, as

demonstrated in Fig. 5, than networks without the occlusion

module. The depth map generated by the occlusion model

further demonstrates that the proposed model indeed learns

the 3D structure of the scene. We note that the depth map is

learned in a fully unsupervised manner and arises out of the

pure necessity of picking the most relevant voxel. Please see

the supplement for more examples of learned depth maps.

Novel View Synthesis for Real Captures We train our

network on real captures obtained with a DSLR camera.

Camera poses, intrinsic camera parameters and keypoint

point clouds are obtained via sparse bundle adjustment. The

voxel grid origin is set to the respective point cloud’s center

of gravity. Voxel grid resolution is set to 64. Each voxel

stores 8 feature channels. Test trajectories are obtained by

linearly interpolating two randomly chosen training poses.

Scenes depict a drinking fountain, two busts, a globe, and a

bag of coffee. See Fig. 6 for example model outputs. The

drinking fountain and the globe have noticeable speculari-

ties, which are handled gracefully. While the coffee bag is

Figure 6: Novel views of real captures. Please refer to the video

for full sequences with nearest neighbor comparisons.

generally represented faithfully, inconsistencies appear on

its highly specular surface. Generally, results are of high

quality, and only details that are significantly smaller than

a single voxel, such as the tiles in the sink of the fountain,

show artifacts. Please refer to the supplemental video for

detailed results as well as a nearest-neighbor baseline.

5. Limitations

Although we have demonstrated high-quality view syn-

thesis results for a variety of challenging scenes, the pro-

posed approach still has limitations that can be tackled in

the future. By construction, the employed 3D volume is

memory inefficient, thus we have to trade local resolution

for spatial extent. The proposed model can be trained with

a voxel resolution of 643 with 8 feature channels, filling

a GPU with 12GB of memory. Future work on sparse

neural networks may replace the dense representation at

the core. Please note, compelling results can already be

achieved with quite small volume resolutions. Synthesiz-

ing images from viewpoints that are significantly different

from the training set, i.e., generalization, is challenging for

all learning-based approaches. While this is also true for

DeepVoxels and detail is lost when viewing scenes from

poses far away from training poses, DeepVoxels generally

deteriorates gracefully and the 3D structure of the scene is

preserved. Please refer to the supplemental material for fail-

ure cases as well as examples of pose extrapolation.

6. Conclusion

We have proposed a novel 3D-structured scene represen-

tation, called DeepVoxels, that encodes the view-dependent

appearance of a 3D scene using only 2D supervision. Our

approach is a first step towards 3D-structured neural scene

representations and the goal of overcoming the fundamental

limitations of existing 2D generative models by introducing

native 3D operations into the network.
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