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Abstract

Semantic segmentation has achieved huge progress via

adopting deep Fully Convolutional Networks (FCN). How-

ever, the performance of FCN based models severely rely

on the amounts of pixel-level annotations which are expen-

sive and time-consuming. To address this problem, it is a

good choice to learn to segment with weak supervision from

bounding boxes. How to make full use of the class-level and

region-level supervisions from bounding boxes is the criti-

cal challenge for the weakly supervised learning task. In

this paper, we first introduce a box-driven class-wise mask-

ing model (BCM) to remove irrelevant regions of each class.

Moreover, based on the pixel-level segment proposal gener-

ated from the bounding box supervision, we could calculate

the mean filling rates of each class to serve as an importan-

t prior cue, then we propose a filling rate guided adaptive

loss (FR-Loss) to help the model ignore the wrongly labeled

pixels in proposals. Unlike previous methods directly train-

ing models with the fixed individual segment proposals, our

method can adjust the model learning with global statistical

information. Thus it can help reduce the negative impacts

from wrongly labeled proposals. We evaluate the proposed

method on the challenging PASCAL VOC 2012 benchmark

and compare with other methods. Extensive experimen-

tal results show that the proposed method is effective and

achieves the state-of-the-art results.

1. Introduction

Semantic image segmentation refers to classifying each

pixel in an image. Recently, semantic segmentation has
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Figure 1. Weakly supervised segmentation with the box-level an-

notations. (a) The box-driven class-wise masking (BCM) model

can learn specific masks for each class in region-level, and help

remove the irrelevant regions of each class softly. (b) Based on the

pixel-level segment proposals and the bounding boxes, we could

calculate the mean pixel filling rates of each class, e.g., the sheep

fills roughly 60% pixels of the box. (c) Via ranking the values of

the score map, we can select the most confident locations for back

propagation and ignore the weak ones. As shown in the picture,

filling rate guided top scores selection is better than the global one.

achieved a series of progress [27, 38, 43, 8, 25, 30, 48, 17],

among which [27] is the first to introduce Fully Convolu-

tional Networks (FCN) structure into segmentation field.

Following this work, there are some improvements through

redesigning or adjusting the FCN structures [44, 18, 5, 31,

47, 7]. However, these works are designed for fully super-

3136



vised mode, which has to be trained with large amounts of

fully labeled data. Unlike other classic visual tasks such as

classification and object detection, labeling semantic seg-

mentation is rather expensive. For example, the cost of

labeling a pixel-level segmentation annotation is about 15

times larger than labeling a bounding box, and 60 times than

labeling an image class [26]. Considering bounding boxes

also contain abundant semantic and objective information,

a straightforward idea is to learn segmentation weakly with

the bounding box supervision.

Recently, several weakly supervised segmentation meth-

ods [9, 29, 21, 2, 33] have been proposed to learn seman-

tic masks with bounding box supervision. These methods

mainly focus on generating high-quality pixel-level propos-

als. For example, in [29], the unsupervised dense CRF [22]

was applied to eliminate the background within the bound-

ing box. SDI [21] tried to produce segment proposals via

combining MCG [32] and GarbCut [34] methods. BoxSup

[9] updated the candidate masks generated by MCG in an it-

erative way. Then taking these enhanced segmentation pro-

posals as pixel-level supervision, the deep FCN model can

be trained for weakly supervised segmentation. Therefore,

it is a core problem how to guide the FCN model to focus on

the correct object regions and ignore the wrongly labeled re-

gions from the segment proposals. Most previous approach-

es train the models with fixed proposals or simple iterative

training. In this case, the gap between the ground-truth an-

notations and generated proposals limits their performance.

We address this problem from two aspects.

First, considering that bounding boxes contain strong se-

mantic and objective information, they should help us to

remove the irrelevant regions and focus on the foreground

regions. A straightforward idea is to learn a global mask to

help remove the backgrounds in the images. However, the

global mask can not learn multiple accurate shape templates

for each class at the same time. To this end, we explore to

adopt a box-driven class-wise masking (BCM) model to fil-

ter the feature maps of each class with boxes supervision,

as shown in Figure 1 (a). The learned class-wise masks can

provide obvious shape and location hints for each object,

which is useful for the following segmentation learning.

Second, filling rate is a useful guidance for obtaining

pseudo labels. It is well known that the score map in well

trained model has different response values, indicating the

confidence of prediction. A natural idea is to select the lo-

cations with the most active scores for backward learning,

whereas ignore the less confident ones, as shown in Fig-

ure 1 (c). However, it is difficult to determine the thresh-

old in a weakly supervised task, especially that different

classes may need different thresholds. As shown in Fig-

ure 1 (b), different classes usually has different shapes, e.g.,

bus has 80% foreground pixels within its box while bicy-

cle only fills 20% pixels of the box. This phenomenon in-

spires us to compute the mean filling rates of each class.

Taking the pixel-level segment proposals generated through

unsupervised methods as pseudo labels, we could calculate

the mean pixel filling rates of each class. We find that the

percentage of foreground pixels within the bounding box

should be similar for the same class. Whereas the pixel fill-

ing ratios of two classes are usually different. Since the seg-

ment proposal for single sample is usually not accurate, the

mean filling rate for samples of the same class can provide

a more stable guidance. Rethinking the discussion above

for the mean pixel filling rates, it will be a good choice to

guide the top score selection with the filling rate. Based on

this motivation, we propose a filling rate guided adaptive

loss (FR-loss) to adjust the pseudo labels. Considering the

situation that two objects from the same class may have d-

ifferent filling rates due to the shape and pose varieties, we

try to refine the filling rates via clustering each class into

several sub-classes.

Based on the analysis above, we propose the box-driven

class-wise region masking (BCM) model and filling rate

guided loss (FR-loss) for weakly supervised semantic seg-

mentation. Firstly, we implement the BCM via segmenta-

tion guided learning with a box-like supervision. The pro-

posed BCM can help remove the irrelevant regions of each

class softly. It also provides an obvious hint of the fore-

ground region, which could greatly contribute to the seg-

mentation learning. Secondly, we calculate the mean filling

rates of each class with the given bounding boxes and the

generated pixel-level pseudo proposals. Thus we propose a

filling rate loss to help select the most confident locations in

the score map for back propagation and ignore the wrongly

labeled pixels in proposals. With BCM and FR-loss work-

ing together, we could achieve the best performance with

weak box supervision. We evaluate the proposed method on

the challenging PASCAL VOC2012 dataset [12] and com-

pare with previous methods. Extensive experimental results

demonstrate that the our method is effective and achieves

the state-of-the-art results. The performance of proposed

method is even comparable with the fully supervised mod-

el. We summarize our contributions as follows:

• We introduce the box-driven class-wise masking

(BCM) model to help remove the irrelevant regions of

each class. It also provides an obvious hint of the fore-

ground region, which could directly contribute to the

segmentation learning.

• Filling rate guided adaptive loss (FR-Loss) is proposed

to help select the most confident locations in the score

map for back propagation and ignore the wrongly la-

beled pixels in the proposals.

• Extensive experiments on PASCAL VOC 2012 bench-

mark demonstrate that the proposed method is effec-

tive and achieves the state-of-the-art results.

3137



(a) Images and box supervisions

dog sofa
dog

cat

sofa

cat

. 
. 

.

(e) Box-driven class-wise masking

1
α

score maps

F
1

1
Φ

(c) Filling rates of each class

(d) FCN based SegNet

FR-cat: 62.3%FR-dog: 50.6%

(b) Generated box-like and CRF proposals

i
α

F
i

i
Φ

(f) Filling rate guided loss

Spatial masking

box-1

box-i

Spatial masking

'

1
Φ

'

i
Φ

. 
. 

.

FR1

FR
i

segment

proposals

FR-Loss

Figure 2. Pipeline of the proposed method. For a given image and its corresponding bounding boxes (a), we first generate the rectangle

annotations (Box-like) and apply the unsupervised CRF [22] to generate segment proposals (b). We then calculate the mean filling rates

of each class (c) with the CRF proposals and their corresponding boxes. With the images and segment proposals, we train the FCN based

model (d), e.g., the DeepLab-LargeFOV network [5]. We add a box-driven class-wise masking (BCM) model (e) to generate class-aware

masks via segmentation learning with box-like labels. The learned masks can implement spatial masking on the features of each class,

separately. For each forward step, we rank the scores of each class in the prediction layer and adopt the filling rate guided loss (FR-loss)

(f) to select the most confident locations for back propagation and ignore the weak ones. FR-loss could reduce the negative effects caused

by the wrongly labeled pixels in the proposals.

2. Related Work

In this section, we briefly introduce the fully and weakly

supervised semantic segmentation methods which are relat-

ed to our work.

2.1. Fully Supervised Semantic Segmentation

Fully supervised semantic segmentation has achieved a

series of progress [27, 38, 43, 8, 25, 30, 48, 17], among

which [27] is the first to introduce the Fully Convolu-

tional Neural Networks (FCN) structure into segmentation

field. Following this work, a large number of improvements

[44, 18, 5, 31, 47, 7, 14, 11, 37, 3, 10, 45] through redesign-

ing or adjusting the network structures have been proposed.

Chen et al. [5] introduce the atrous convolution for dense

prediction and enlarge the receptive field of view. Zhen et

al. [5] propose to adopt the dense CRF [22] with Gaussian

pairwise potentials as a Recurrent Neural Network (RNN)

to refine coarse outputs from a traditional CNN. Recent-

ly, an encoder-decoder based atrous separable convolution

model [7] has achieved the state-of-the-art performance for

fully supervised semantic image segregation.

2.2. Weakly Supervised Semantic Segmentation

Recently, a large number of weakly supervised method-

s explore to learn semantic segmentation with supervision

of image labels [41, 19, 42, 1, 13], points [2], scribbles

[39, 24, 28], and bounding boxes [9, 29, 21, 23]. The bound-

ing boxes based methods are the most related works to this

paper. BoxSup [9] introduces the recursive training proce-

dure with the supervision of segment proposals. WSSL [29]

proposes an expectation-maximization algorithm with seg-

ment proposals generated by the dense CRF [22]. Whereas

SDI [21] tries to produce segment proposals via combining

MCG [32] and GarbCut [34] methods. Li et al. [23] ex-

plore to segment the instance with both the bounding box

supervision and the image tags. Different from these meth-

ods, we propose a box-driven class-wise masking (BCM)

model to help remove the backgrounds before predicting the

final segmentation. Unlike the global spatial attention mod-

el adopted in previous works [4, 6, 46, 15], the proposed

BCM can learn specific attention maps for each class. To

our knowledge, we are the first one to introduce the mean

filling rate (FR) as a stable guidance through selecting the

most confident locations in the score map for back propa-

gation. The proposed FR-loss can adaptively select the re-
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liable pixels and ignore the wrongly labeled pixels in the

pseudo proposals.

3. Our Method

3.1. Overview

We present the proposed weakly supervised semantic

segmentation framework with only bounding box super-

vision in this section. This framework can learn seman-

tic masks from weakly box-level annotations via the box-

driven class-wise masking (BCM) model and the filling rate

guided loss (FR-Loss). In the following paragraph, we first

describe the general pipeline, then introduce the details of

each components.

There are mainly two steps for the proposed method, as

shown in Figure 2. First, we generate the pixel-level pro-

posals with the bounding box annotations and calculate the

mean filling rates of each class. Then, we train the Fully

Convolutional Network (FCN) based model with the pro-

posed box-driven class-wise masking (BCM) model and

filling rate guided loss (FR-loss).

Proposals Generating and Filling Rates Computing.

The first step for weakly supervised semantic segmentation

is to generate proper supervision labels from given bound-

ing boxes, as shown in Figure 2 (b). The simplest yet widely

used method is to convert the bounding boxes into rectan-

gle segments directly, named as box-like proposals. Con-

sidering that the rectangle segments contain lots of wrongly

labeled background regions within the bounding box, it is

necessary to be further refined. There are several popular

methods to generate high-quality segment proposals with

bounding box labels, among which dense CRF [29], MCG

[32] and GrabCut [34] are the mostly used approaches. For

fair comparison with the baseline model [29], we choose

the same unsupervised dense CRF as the default option to

generate proposals. With the CRF proposals and their cor-

responding boxes, we can calculate the mean filling rates of

each class, as shown in Figure 2 (c).

Model Training with BCM and FR-loss. As shown in

Figure 2 (d), the backbone model in this paper is DeepLab-

LargeFOV model [5]. Similar with the original FCN [27]

training procedure, we also initialize this model with a

VGG-16 model [36] pre-trained on ImageNet [35]. This

backbone model is comparable with the ones used in the

compared methods [9, 29, 21]. The FCN model takes the

images as its inputs and the segment proposals as the su-

pervision. To this end, the FCN model can be trained in

an end-to-end manner. Note that in our case the quality

of the supervision information in weakly supervised task is

not guaranteed, so we add a box-driven class-wise masking

(BCM) model to generate class-aware masks via segmen-

tation learning with the box-like labels. The learned masks

can implement spatial masking on the features of each class,

separately. For each forward step, we rank the scores of

each class in the prediction layer and adopt the filling rate

guided loss (FR-loss) to select the most confident location-

s for back propagation and ignore the weak ones. FR-loss

could reduce the negative effects caused by the wrongly la-

beled pixels in proposals. Details of them will be described

in the next two sub-sections.

3.2. Box­driven Class­wise Masking

To remove the irrelevant regions in the feature maps, we

need to learn specific masking maps for each class. Thus

we design a box-driven class-wise masking (BCM) model

to guide the learning of the segmentation model. We ap-

ply the masking on the FC-7 layer (note: implemented by

convolution) of VGG-16 model [36] to mask the irrelevant

regions. As shown in Figure 2 (e), the output features of

FCN based SegNet are evenly sliced into N branches, cor-

responding to the N classes. For each branch, we add an

binary attention model to produce a weights map for mask-

ing. To give a clear hint, we introduce the box-like mask to

guide the attention map via adding a Mean Squared Error

(MSE) loss on pixels of the attention map αc and its corre-

sponding mask Mc of class-c

Lbcm(c) =

H
∑

h=1

W
∑

w=1

∥

∥Mc(h,w) − αc(h,w)

∥

∥

2

2
(1)

where αc has a size of (H,W ). In the similar way, the N bi-

nary segmentation models can be trained separately. Then

the N attention maps could carry out spatial-wise mask-

ing across their corresponding feature branches. We denote

αc and Fc as the learnt attention map and feature branch

of class-c, respectively. Therefore, the weighted feature of

class-c can be denoted as

Φc = Fc ⊗ αc (2)

where ⊗ means the spatial-wise masking operation. Then

we combine the output features of N branches to produce

the score map for final segmentation.

Unlike the global spatial attention model adopted in pre-

vious works [4, 6], the proposed class-wise masking mod-

el can learn specific attention maps for each class. It con-

tributes to the segmentation models in three respects: 1) It

can remove the irrelevant regions in the feature maps, such

as the backgrounds. 2) It can learn N specific masking maps

to fit each class, which may differ greatly from each other in

shapes and sizes. 3) As the mask is learnt under the super-

vision of bounding box, thus it could provide a clear object

hint for the segmentation learning.

3.3. Filling Rate Guided Adaptive Loss

Above box-driven class-wise masking model can guide

the FCN to learn foreground features softly, we further ex-

3139



Sub-class 1 Sub-class 2 Sub-class 3

Figure 3. Examples of three sub-classes from airplane class. It is

obvious that the middle sub-class has a larger filling rate than the

right and left sub-classes. The mean filling rates of each sub-class

could better represent different kinds of sample in one class.

plore to improve the segmentation learning in this subsec-

tion. Note that the wrongly labeled regions of the pixel-level

proposals have negative effects on model training, recogniz-

ing the negative regions will be helpful. A possible solution

is to ignore the pixels with small confident values in the

score map, which may be the wrongly labeled pixels. In

the weakly supervised mode, there are no guaranteed pixel-

level annotations like the fully supervised mode, thus it is

hard to determine how much percentage of pixels to be ig-

nored. To address this problem, we introduce the filling rate

guided adaptive loss (FR-loss). We intuitively find that the

percentage of foreground pixels within the bounding box

should be similar for the same class. Whereas the pixel fill-

ing ratios of two classes are usually different. Therefore, we

first calculate the mean pixel filling rates of each class with

pixel-level proposals and their corresponding boxes. For a

given class-c, we denote the number of foreground pixels

in the i-th proposal and box as Pproposal(i) and Pbox(i),
respectively. Then the mean filling rate of class-c can be

defined as

FRc =
1

Nc

∑Nc

i=1

Pproposal(i)

Pbox(i)
(3)

where Nc means the number of bounding boxes in class-c.

Therefore, the mean filling rate of each class can be used to

determine how much percent of the most confident pixels

can be left for training or being ignored. In this way, the

segmentation loss could be adjusted by the filling rates of

each class. The FR-loss for one sample can be denoted as

Lfr =
∑N

c=1

∑top(FRc)

i=1
Lc(i) (4)

where Lc(i) means the loss of the i-th pixel with class-c,

and the super-parameter top is determined by the mean fill-

ing rate of each class. This loss guides the score map to

learn the most confident regions adaptively.

Refine the Filling Rates with Sub-class Clustering.

Considering the situation that two objects from the same

class may have different filling rates due to the shape and

pose varieties, we try to refine the filling rates via k-meas

clustering method [40] to classify each class into several

Methods Units mIoU

Baseline [29] - 60.6

Ours

CM 63.4

BGM 64.9

BCM 65.6

Global-loss 64.1

FR-loss 65.8

FR-loss(Refine) 66.3

BCM + FR-loss(Refine) 66.8

Table 1. Evaluate the effectivenesses of BCM and FR-loss on

VOC2012 validation set. All models are based on the same

Deeplab VGG16-LargeFOV backbones. The performance is eval-

uated in terms of mean IoU (%). CM: class-wise masking without

box supervision, BGM: box-driven global masking, Global-loss:

all boxes adopt the same global filling rate of 0.6.

sub-classes. As shown in Figure 3, we show the examples

of three clustered sub-classes of airplane. Visually, three

sub-classes are reasonable which can better represent three

groups of boxes. Thus we take the mean filling rates of each

sub-class to refine the FR-loss. In this situation, the FR-loss

for one sample can be denoted as

Lfr =
∑N

c=1

∑3

sc

∑top(FR(c,sc))

i=1
L(c,sc)(i) (5)

where L(c,sc)(i) means the loss of the i-th pixel with class-

c and sub-class-sc. Note that L(c,sc)(i) is 0 when this pixel

does not belong to this sub-class.

In retrospect, the class-wise masking model introduced

in last subsection and the FR-loss can work together to

guide the segmentation learning in a ‘soft’ manner, achiev-

ing comparable performance with the full-supervised mod-

el. The overall loss for one sample can be denoted as

Lall = Lfr + λ ·

∑N

c=1
Lbcm(c) (6)

where λ is the hypermeter which is set to 0.01 in our ex-

periments, N is the number of classes. We will evaluate the

proposed methods in experiments.

4. Experiments

In the experiments, we first evaluate the effectiveness of

our method on the Pascal VOC 2012 semantic segmenta-

tion dataset [12], then compare the proposed method with

three state-of-the-art methods under weakly supervision and

semi-supervision conditions separately.

4.1. Experimental Setup

Dataset. We evaluate the proposed framework on the

widely used Pascal VOC2012 segmentation benchmark

[12]. It contains 21 classes with pixel-level annotations.

There are 1,464 images in the training set and 1,449 in

the validation set, and the left 1,456 images are for test-

ing. Following the same setting in the compared methods
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Figure 4. Visualization of the BCM learnt masking maps. It shows

that most of the backgrounds are removed.

[9, 29, 21], we augment the training set with the data from

SBD [16]. Consequently, there are 10,582 images in the

training set and 1,449 images in the validation set. We train

our model with the augmented training set and test it on the

validation set to compare with other methods.

Implementation Details. We adopt the publicly re-

leased and widely used DeepLab-LargeFOV [5] model as

the backbone network. It is based on a VGG-16 [36] net-

work which has been pre-trained on ImageNet [35]. We

train the proposed model under several different supervision

settings. We first train the Deeplab-largeFOV model with

the rectangle-box supervision. Further, we change the seg-

ments supervision into CRF-Box segments for finetuning,

and regard it as the baseline model. Based on above model,

we train the models with the proposed Box-driven Class-

wise Masking (BCM) model and the Filling Rate guided

Loss (FR-loss). We train the baseline model with roughly

20k iterations, and further fine-tune them with/without the

BCM and FR-loss for 5k more iterations. In addition, we

also evaluate the performance in the semi-supervised con-

dition through adding 1,449 samples with ground-truth la-

bels. The initial learning rates of the above models are 0.001

and decreased by 10 times after every 3k iterations, with a

mini-batch size of 16/20 for the model with/without BCM.

We take SGD as the default optimizer. For all the train-

ing phases, only flipping and cropping are adopted for data

augmentation. With the well-trained FCN models, we can

predict the semantic masks for the given images. Note the

forward-passes of masking layers in BCM are parallel, the

forward-passing time are very close to the baseline mod-

el, i.e., 42.7ms vs. 39.3ms per image. We also implement

the dense-CRF [22] for post-processing on the masks. We

adopt the same parameters of the dense-CRF with the com-

pared work [29]. All experiments are implemented on a N-

vidia TitanX GPU platform with the Caffe [20] framework.

Evaluation Metrics and Compared Methods. We

adopt the “comp6” protocol to evaluate the perfor-

mance. The accuracy is reported in terms of mean pix-

el Intersection-over-Union (mean IoU). We compare with

three start-of-the-art methods (i.e., BoxSup [9], WSSL [29]

Modes # GT # Box Methods mIoU

Weak - 10,582

BoxSupBox [9] 52.3

WSSLBox [29] 52.5

SDIBox [21] 61.2

OursBox 54.9

BoxSupMCG [9] 62.0

WSSLCRF [29] 60.6

SDIM+G [21] 65.7

OursCRF 66.8

Semi 1,464 9,118

WSSLBox [29] 62.1

BoxSupMCG [9] 63.5

WSSLCRF 65.1

SDIM+G [21] 65.8

OursCRF 67.5

Full 10,582 - DeepLab-LargeFOV [5] 69.8

Table 2. Weakly and Semi-supervised results on VOC2012 valida-

tion set. With only 1/10 labeled segments, our method can achieve

comparable performance with the fully supervised model. Box:

directly using rectangle proposals, M+G: using the combined la-

bels with both MCG and GrabCut.

Modes # GT # Box Methods mIoU

Weak - 10,582
SDI [21] 69.4

Ours 70.2

Semi 1,464 9,118 Ours 71.6

Full 10,582 - DeepLab-ResNet-101 [5] 74.5

Table 3. Results of ResNet-101 backbone on VOC2012 valida-

tion set. Our method outperforms the compared SDI [21] method,

achieving comparable performance with the fully supervised one.

and SDI [21]) on VOC 2012 dataset under both weakly su-

pervised and semi-supervised conditions with bounding box

annotations.

4.2. Effectiveness of BCM and FR­Loss

We first evaluate the proposed framework with BCM and

FR-loss, the results are shown in Table 1. Based on the

Deeplab-LargeFOV model and CRF-box proposals, fine-

tuning with the BCM model or the FR-loss can achieve

65.6% or 65.8% mean IoU accuracy, respectively. Both of

them outperform the baseline model with obvious margin-

s. When the BCM and FR-loss work together, we achieve

66.8% accuracy. The results show that the proposed BCM

and FR-loss are effective and jointly combing the two mod-

ules can further enhance the performance. We also evaluate

several variants of the proposed BCM and FR-loss. Experi-

mental results show that the box-driven class-wise masking

model performs better than the global one (BGM). We show

the BCM learnt masks in Figure 4. Without the influence of

the cluttered backgrounds, the segmentation learning could

be more stable. It demonstrates that the class-wise atten-

tion model can guide the FCN model to learn more effec-

tive features, and the filling rate guided adaptive loss can

help reduce the negative effects from the wrongly labeled

proposals.
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Image Ground-Truth Rectangle-Box CRF Proposal Ours (box) Ours (CRF) Ours (Semi)

Figure 5. Examples of the segmentation results with proposed method. Original images are in the first column. The second column is the

ground-truth segmentations. The 3-rd and 4-th columns are rectangle-box and CRF proposals. The following two columns show the results

trained with rectangle-box and CRF proposals, respectively. The last column shows the results of semi-supervised model.

Methods bkg aero bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mean

Weak(box) 78.3 37.4 20.6 46.6 44.9 64.5 80.7 68.1 59.8 32.5 65.7 58.4 61.6 51.2 53.2 60.5 47.5 60.0 49.3 64.2 49.4 54.9

Weak(CRF) 89.8 68.3 27.1 73.7 56.4 72.6 84.2 75.6 79.9 35.2 78.3 53.2 77.6 66.4 68.1 73.1 56.8 80.1 45.1 74.7 54.6 66.8

Semi 90.4 72.3 27.5 76.1 57.8 72.4 85.6 76.6 81.3 35.9 80.2 53.0 78.4 68.2 69.7 73.9 58.1 82.1 45.3 76.5 57.0 67.5

Table 4. Per class results of our method on VOC2012 validation set. The performance is evaluated in terms of mean IoU (%).
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Figure 6. Filling rates of each class on VOC2012 and COCO. The

filling rates are calculated with the generated pixel-level proposals.

It is obvious that the filling rate can serve as an important cue for

adjusting the pseudo labels.

4.3. Comparison with the State­of­the­art Methods

We compare with three state-of-the-art methods, i.e.,

BoxSup [9], WSSL [29] and SDI [21].

Results of Weakly-supervised Conditions. We first

compare the results under the weakly supervised condi-

tion, as shown in Table 2. In this case, the only supervi-

sion label is the bounding box. We compare with BoxSup

[9], WSSL [29] and SDI [21] from two aspects of view.

Firstly, we compare the models trained with raw rectangle-

box segments. The proposed method outperforms the Box-

Sup and WSSL, whereas SDI performs better which adopts

an iterative training to update the segments from time to

time. Secondly, we compare the models trained with the

pre-processed segments. Our method outperforms all com-

pared results and achieves an amazing performance with

66.8% mean IoU accuracy, which is very close to the full-

supervised model. Note that our method adopts the same

CRF-Box segments and the same base model with WSS-

L [29], whereas the performance of our method exceeds

WSSL by roughly 6%. In addition, we compare the models

trained with ResNet-101 backbone, as shown in Table 3. We

achieve 70.2% mean IoU accuracy. The results demonstrate

that the proposed method is effective for learning robust and

accurate representations from bounding box annotations.

Results of Semi-supervised Conditions. We further

compare with other methods in the semi-supervised task.

In this task, 1,464 ground-truth labels are added for train-

ing. Although the amount of labeled samples is small which

is only 1/10 of the training sets, they help improve the

performance greatly. As shown in Table 2, the proposed

method achieves 67.5% mean IoU accuracy, outperforming

all the compared methods. With the extra 1/10 labeled seg-

ments, our model gets 0.7% improvement than its weakly
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Image Ground-TruthOurs (box) Ours (CRF) Ours (Semi)

Figure 7. Failure examples of proposed method. Though our mod-

el achieves satisfying performances under both weakly and semi-

supervised conditions, there are some frustrated results. For ex-

ample, a dog wearing a cloth in the first image makes the model

confused.

version. The results prove that our semi-supervised model

can achieve comparable performance with the fully super-

vised model, showing the proposed BCM and FR-loss are

still effective in semi-supervised mode.

4.4. Discussions

Above results have shown that the proposed method can

learn better segmentations than the compared methods. To

provide a comprehensive analysis, we report the per class

results of proposed models, as shown in Table 4. We also

calculate the per class FR of VOC2012 and COCO [26],

as shown in Figure 6. It shows that the filling rates of

VOC2012 and COCO are basically consistent, besides sev-

eral classes, e.g., train and tv. It is obvious that among 21

classes, airplane and sheep are easy to segment, whereas

person and chair are difficult. This result is consistent with

the qualitative results shown in Figure 5 and 7. The generat-

ed CRF proposals can help the model learn pixel-level rep-

resentations, achieving satisfied results. In addition, with

the help of proposed BCM and FR-Loss, the model can

reach a comparable performance with the fully supervised

model. There are also some hard examples which bring

great challenges to weakly supervised methods. As shown

in Figure 7, it is very difficult for the model trained with

limited and weakly labeled data to distinguish the classes in

chaotic and complex scenes. This problem is worth to be

deeply studied in the future work. Here, we will discuss the

proposed methods separately.

Box-driven Class-wise Masking. With the class-level

supervision, soft attention model based methods are widely

adopted to guide the CNN model to learn better represen-

tations. Generally, the learned attention map usually con-

tains object shape information. However, the global atten-

tion map can not learn multiple accurate shape templates for

each class at the same time. In our method, the class-wise

masking model can solve this problem. As shown in Figure

4, the learnt masks can remove the irrelevant regions and

cluttered backgrounds to effectively contribute to the seg-

mentation learning. In brief, BCM is helpful for box-driven

weakly supervised segmentation through effective masking.

Filling Rate Guided Adaptive Loss. The FR-loss can

guide the segmentation model to learn object masks in a soft

manner, reducing the negative impacts from the wrongly la-

beled proposals. In this paper, we first directly set the mean

filling rates of each class as the default value for determin-

ing the most confident locations. FR can be regarded as a

kind of prior knowledge which could supervise the weakly

learning procedure. Note that the filling rate of a class is in-

dependent of the others. The FR-loss is still effective when

several classes have similar FR values and will not affec-

t the performance. Considering that some samples may be

greatly different from other samples though with the same

class, the strategy of choosing top scores could be further

improved. Thus we refine the filling rate via clustering each

class into several sub-classes. It will be interesting to ex-

plore a better way to classify the sub-classes. We leave this

problem as our future work.

5. Conclusion

In this paper, we have introduced a Box-driven Class-

wise Masking (BCM) model to learn attention maps of

each class. It can produce class-aware attentive maps for

segmentation task learning, and provide an obvious hint

whether this box or region contains a specific class. More-

over, based on the region-level segment proposals generat-

ed from the bounding boxes, we have proposed a Filling

Rate guided adaptive loss (FR-loss) to help the model ig-

nore the wrongly labeled pixels in proposals. FR-loss can

adjust the model learning with global statistical informa-

tion. The proposed BCM and FR-loss can work together

to help reduce the negative impacts from wrongly labeled

proposals. We evaluate the proposed method on the chal-

lenging PASCAL VOC 2012 benchmark and compare with

other methods. Extensive experimental results show that the

proposed method is effective and achieves the state-of-the-

art results. In future, we will explore the jointly learning

of the object detection and segmentation tasks to find more

positive interactions between them.
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Learning to exploit the prior network knowledge for weakly-

supervised semantic segmentation. arXiv preprint arX-

iv:1804.04882, 2018. 2

3144



[34] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.

Grabcut: Interactive foreground extraction using iterated

graph cuts. ACM Transactions on Graphics, 2004. 2, 3,

4

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large s-

cale visual recognition challenge. IJCV, 2015. 4, 6

[36] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 4, 6

[37] Chunfeng Song, Yan Huang, Wanli Ouyang, and Liang

Wang. Mask-guided contrastive attention model for person

re-identification. In CVPR, 2018. 3

[38] Chunfeng Song, Yongzhen Huang, Zhenyu Wang, and Liang

Wang. 1000fps human segmentation with deep convolutional

neural networks. In ACPR, 2015. 1, 3

[39] Paul Vernaza and Manmohan Chandraker. Learning random-

walk label propagation for weakly-supervised semantic seg-

mentation. In CVPR, 2017. 3

[40] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan
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