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Abstract

We aim to learn a domain generalizable person re-

identification (ReID) model. When such a model is trained

on a set of source domains (ReID datasets collected from

different camera networks), it can be directly applied to any

new unseen dataset for effective ReID without any model

updating. Despite its practical value in real-world deploy-

ments, generalizable ReID has seldom been studied. In this

work, a novel deep ReID model termed Domain-Invariant

Mapping Network (DIMN) is proposed. DIMN is designed

to learn a mapping between a person image and its iden-

tity classifier, i.e., it produces a classifier using a single

shot. To make the model domain-invariant, we follow a

meta-learning pipeline and sample a subset of source do-

main training tasks during each training episode. How-

ever, the model is significantly different from conventional

meta-learning methods in that: (1) no model updating is

required for the target domain, (2) different training tasks

share a memory bank for maintaining both scalability and

discrimination ability, and (3) it can be used to match an

arbitrary number of identities in a target domain. Exten-

sive experiments on a newly proposed large-scale ReID do-

main generalization benchmark show that our DIMN sig-

nificantly outperforms alternative domain generalization or

meta-learning methods.

1. Introduction

The problem of person re-identification (ReID) has been

studied intensively. A ReID model is used to match people

across non-overlapping camera views. Given image pairs

of the same person across views, most recent ReID models

apply deep convolutional neural networks (CNNs) to learn

a feature embedding space where people can be matched

based on feature distances [4, 6, 17, 19, 29, 42, 46, 51,

54, 59]. These models are trained and tested on the same

dataset. In practice, however, if we consider each dataset

as a domain, there are often domaiDIMNn gaps, because

different datasets are often collected in very different vi-

sual scenes (e.g., indoors/outdoors, shopping malls, traffic

junctions and airports). Deep ReID models that are directly

applied to new dataset/domain without model updating are

known to suffer from considerable performance degrada-

tion [9, 30, 50, 52, 61], thus suggesting model overfitting

and poor domain generalization.

In this paper, we aim to learn domain generalizable

ReID models. Such a model is trained on a set of source

domains/datasets, and should generalize to any new un-

seen dataset for effective ReID without any model updat-

ing. Such a model thus needs to solve a domain gener-

alization problem with different class (person identity) la-

bel spaces for different datasets/domains. A domain gen-

eralizable ReID model has great value for real-world large-

scale deployment. Specifically, when a customer purchases

a ReID system for a specific camera network, the system

is expected to work out-of-the-box, without the need to go

through the tedious process of data collection, annotation

and model updating/fine-tuning.

Surprisingly, there is very little prior study of this topic.

Existing ReID works occasionally evaluate their models’

cross-dataset generalization, but no specific design is made

to make the models more generalizable. Recently, unsu-

pervised domain adaptation (UDA) methods for ReID [9,

30, 50, 52, 61] have been studied to adapt a ReID model

from source to target domain. However, UDA models up-

date using unlabeled target domain data, so data collection

and model update are still required. Beyond ReID, the prob-

lem of domain generalization (DG) has been investigated

in deep learning, with some recent few-shot meta-learning

approaches also adapted for DG. However, existing DG

methods [20, 34, 23, 39] assume that the source and tar-

get domain have the same label space; whilst existing meta-

learning models [49, 49, 10, 35, 40] assume a fixed number

of classes for target domains and are trained specifically for

that number using source data. They thus have limited ef-

ficacy for ReID, where target domains have a different and

variable number of identities.

Our solution to generalizable ReID is based on a novel

Domain-Invariant Mapping Network(DIMN). DIMN is de-
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signed to learn a mapping between a person image and its

identity classifier weight vector, i.e., it produces a classi-

fier using a single shot. Once learned, for a target domain,

each gallery image will be fed into the network to generate

the weight vector of a specific linear classifier for the cor-

responding identity. A probe image will then be matched

using the classifier by computing a simple dot product be-

tween the weight vector and a deep feature vector extracted

from the probe. To make the model domain-invariant, we

follow a meta-learning pipeline and sample a subset of

source domain training tasks (identities) during each train-

ing episode. However, the model is significantly different

from conventional meta-learning methods in that: (1) No

model updating is required for the target domain. (2) Dif-

ferent training tasks share a memory bank which is updated

with a running average strategy. This memory bank en-

sures that the model training is scalable to a large number of

identities in the source domain, and importantly the learned

DIMN becomes more discriminative. (3) Once trained, the

model can be used to match an arbitrary number of identi-

ties in a target domain.

Our contributions are as follows: (i) For the first time, the

domain generalization problem in person ReID is explic-

itly highlighted and also tackled by designing a ReID model

that is tailor-made for coping with unknown target domains.

(ii) A novel Domain-Invariant Mapping Network(DIMN) is

proposed whose generalizability comes from its ability to

map an image directly into an identity classifier. An effec-

tive meta-learning based training strategy is also formulated

with a new memory bank module introduced for scalability

and discriminativity. (iii) A large-scale ReID domain gen-

eralization benchmark is defined, using five existing ReID

datasets as source domains and four others as target do-

mains. Extensive experiments validate the generalizability

of our DIMN and suggest that it is superior to the state-

of-the-art domain generalization and meta-learning alterna-

tives.

2. Related Work

Person Re-Identification Recent person ReID models

are dominated by deep feature learning approaches [4, 6, 17,

19, 29, 42, 46, 51, 54, 59]. Since different datasets contain

different person identities captured by cameras of different

viewing conditions, it has been noted that these state-of-

the-art ReID models often overfit to training datasets and

generalize poorly when applied directly to a new dataset

with fine-tuning [9, 30, 50, 52, 61]. This had led to a new

research direction on unsupervised ReID based on unsuper-

vised domain adaptation (UDA). A UDA model assumes

that there exists an unlabelled training set from the target

domain. Recent UDA based ReID models mainly exploited

GAN [11] based image-synthesis [9, 61] or domain align-

ment [50, 30]. However, GAN based model training is un-

stable; domain alignment methods often rely on attribute

annotation thus having limited applicability. In contrast,

our DIMN is a domain generalization model that does not

require any data from the target domain for updating. It is

thus much more generally applicable.

Domain Generalization Our model tackles the Domain

generalization (DG) [20, 34] problem. DICA [34] proposed

to learn the domain-invariant features via a kernel-based op-

timization. Recently, Motiian et al. extended a supervised

domain adaptation network to DG by explicitly imposing a

semantic alignment loss on every unpaired data [33]. The

idea of adversarial training for unseen domain data syn-

thesis is exploited in CrossGrad [39], where pseudo train-

ing instances are generated by perturbations in the direc-

tion of the gradient of the domain classifier and category

classifier respectively. As an early attempt to apply meta-

learning techniques to DG, MLDG [23] proposed to align

meta-train and meta-test gradients, using the same training

schedule, i.e., task (re)sampling, as the meta-learning model

MAML [10]. Though both are derived from MAML, Rep-

tile [35] does not consider the expensive second-order gra-

dients in episodic training. Note that our DG ReID prob-

lem is more challenging than the category-level recognition

problems considered in existing DG studies. This is because

the target classes/identities are different to the source ones,

which means we have to deal with domain gap and dis-

joint label space simultaneously. We show that our DIMN is

much more effective than a number of state-of-the-art DG

baselines including [39, 23, 35] (see Sec. 4.2), due to its

unique end-to-end image-to-classifier learning.

Meta-learning Learning to learn or meta-learning [45] is

topical in the machine learning community, and one of its

well-received applications is few-shot learning (FSL). FSL

aims to recognize novel visual categories from limited la-

belled examples, where conventional fine-tuning is unlikely

to work due to over-fitting. Matching network [49] used an

attention mechanism to learn a more generalizable embed-

ding space from labelled images, and can be viewed as a

weighted nearest neighbour classifier while predicting un-

seen classes’ images. Prototypical networks [41] proposed

to learn a prototype for each class, where the classification

is based on computing the distances to those prototypes.

Instead of using the prototype to generate the linear clas-

sifier, PPA [40] learns to derive the classifier parameters

from the averaged supporting activations. Apart from met-

ric learning solutions [41, 49], another promising approach

is learning to optimize. E.g., [37] reformulated stochas-

tic gradient descent (SGD) optimizer in an LSTM-based

meta-learner, by replacing the fixed updating rule (SGD)

with the data-driven one (trainable LSTM). Model-agnostic

meta-learning (MAML) [10] aims to learn a good initializa-

tion, where the model can be adapted to a new task quickly,

e.g., through one or few SGD updating steps. Many meta-
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Figure 1. The proposed Domain-Invariant Mapping Network.

learning methods fix the number of classes during training

and testing (typically 5-20), so they will have difficulties

in scaling to ReID datasets with variable and much larger

class numbers. Our DIMN is most closely related to the

PPA model [40] in that both aim to predict classifier from

a single image. However, our model learns an image-to-

classifier mapping whilst PPA focuses on the much sim-

pler task of feature-to-classifier mapping. Our experiments

show that DIMN beats PPA by a large margin when applied

to ReID (see Sec. 4.2).

3. Methodology

Overview We study a generalized person re-

identification problem, where in the training stage, we

have the access to M datasets (domains), D1, D2, ... and

DM , and each domain has its own label space (person

identities). The trained model will be deployed directly to

a new domain/dataset, and is expected to work without any

further model update. To this end, we propose a Domain-

Invariant Mapping Network(DIMN), illustrated in Fig. 1.

The training images are organized into gallery and probe

sets to simulate the testing scenario where a probe image is

compared against a gallery set for matching. The proposed

network consists of three modules: (1) Two weight-tied

base networks, the encoding subnets, which serve as feature

extractors for gallery and probe images respectively. (2) A

hyper-network [15], namely mapping subnet, which takes

the gallery image embedding as input and tunes it into the

classifier’s weight vector that represents the identity of the

gallery image identity. (3) A memory bank that stores all

classifiers in training domains. We will detail the design of

each module in the following sections.

Encoding Subnet For the encoding subnet, we use Mo-

bilenetV2 [38] – a lightweight CNN with competitive per-

formance compared to heavier alternatives such as ResNet

[16] and InceptionV3 [44]. We found it to be both more

efficient and more effective for our large-scale DG ReID

benchmark.

As shown in Fig. 1, the two Siamese encoding subnets in

DIMN are used in the gallery and probe branches respec-

tively. To generate the inputs for both branches, we follow

a specific mini-batch sampling procedure. Assuming we

have C unique identities in total in the aggregated M train-

ing domains, we sample Cb (Cb ≪ C) identities randomly

for each mini-batch. For each identity li, we further sample

two images, of which we assign one as gallery x̃i and the

other as probe xi. Therefore, we have 2Cb image/label pairs

in a mini-batch, as illustrated in Fig. 2.

Assuming the encoding subnet produces a D-

dimensional feature vector, the first training objective

for DIMN is an identification loss for the total C identities,

but over one mini-batch of Cb identities, denoted as Lid,

Lid =

Cb
∑

i=1

Cross Entropy(li, Softmax(fθ(gφ(xi)))) (1)

where xi is the input image and li is the one-hot encod-
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ing of its label (a C-dimensional unit vector). gφ(·) is the

encoding subnet parameterized by φ. fθ(·) is the classifier

parameterized by θ where θ ∈ R
D×C .

Mapping Subnet The deep feature vector, extracted

from each gallery image using the encoding subnet, is then

fed into a mapping subnet to compute a classifier weight

vector for the corresponding identity. Formally, given an

instance of the jth class from the gallery branch, denoted as

x̃j . Instead of learning the jth classifier weight vector θ·,j
as part of the model parameters, as in a conventional classi-

fication CNN, we generate it as a layer of the network using

x̃j as input. We thus have:

θ̂·,j = hω(gφ(x̃j)), (2)

where the mapping subnet hω(·) can be understood as a

hyper-network [15] since it generates the parameters for an-

other neural network (the probe branch). Here we simply

apply a multi-layer perceptron (MLP) as the basic architec-

ture of our mapping subnet. Note that we omit the bias term

in the weight generation for simplicity.

Given a gallery image x̃j , and a probe image xi, the

mapping subnet generates an identity classifier weight vec-

tor θ̂·,j based on the gallery image, x̃j . We then take the

dot product of the generated classifier weight vector θ̂·,j
and the probe image feature gφ(xi), to produce a logit

vector p whose elements corresponding the identity of x̃j :

pj = hω(gφ(x̃j)) · gφ(xi). Passing the vector p into a soft-

max layer then gives us the predicted probability of how

likely the input identity xi in the probe branch is matched

with the identity x̃j in the gallery branch. The ground truth

label y for the matching network will be 1 if xj matches

with x̃j , and 0 otherwise. y can then be used for computing

a classification loss.

Note that the logit vector p is a C-dimensional vector

which can be of very high-dimensionality with a large num-

ber of identities in the source domains. If we follow the

standard meta-learning practice and reduce the dimension-

ality to the much smaller number Cb, the model training

becomes tractable. However, we then lose the discrimina-

tive power: the mapping network is trained to perform a

much easier task of classifying Cb people rather than C. To

have the better of both worlds, we introduce memory bank

to keep both scalability and discriminativity.

Memory Bank The memory bank is realized by a weight

matrix W ∈ R
D×C . In one mini-batch, we feed Cb

samples (one sample in each of Cb classes), denoted as

[x̃1, x̃2, . . . , x̃Cb
], to the gallery branch, after the encoding

subnet gφ and the mapping subnet hω , we have Cb pre-

dicted weight vectors, {θ̂·,j , j = [1, 2, . . . , Cb]}, stacked as

a D × Cb matrix θ̂.

Since we know the identity of each of those Cb sam-

ples, we can locate its corresponding position in W and re-

place that column with the predicted weight vector. First,

we make a full copy of W as Ŵ ← W , and then carry out

the replacement by,

Ŵ·,L(j) ← θ̂·,j ∀j ∈ [1, 2, . . . , Cb], (3)

where L(j) is the function that retrieves the index of the jth

sample’s class label in the full label space. After the replac-

ing operations, we define a new classification loss involving

Ŵ for the matching network,

Lmat =

Cb
∑

i=1

Cross Entropy(yi, Softmax(ŴT gφ(xi)))

(4)

where [x1, x2, . . . , xCb
] are probe branch inputs. Since a

part of Ŵ (i.e., those Cb columns that have been replaced) is

parameterized by φ and ω, minimizing Eq. 4 have an impact

on these trainable variables.

We call the replacements Ŵ as online memory, and the

original memory bank W as target memory. In each itera-

tion, we update the target memory by running average [14],

W ← (1− α)W + αŴ (5)
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It can be seen that, only for those identities/classes that ap-

pear in the mini-batch, their memory will be updated.

We find that two design choices further help stabilize the

training: (i) We do column-wise ℓ2 normalization on W ,

i.e., the generated classifiers are projected onto a unit hyper-

sphere. (ii) We use W as a prior for the predicted classifiers,

i.e., the predicted classifier from an instance should not be

far away from its cached version in the memory bank, as the

latter should be more reliable. To realize (ii), we simply add

a regularization term,

Lreg =

Cb
∑

j=1

‖W·,L(j) − θ̂·,j‖
2
2 (6)

The regularization term, Lreg, can also help the subnet

generate a more stable prediction for each class. In addi-

tion, Lreg implicitly lets both the online memory and target

memory converge to the same vectors.

Training Objective We further introduce a specific

triplet loss built on our matching network, named as logit-

triplet loss. As a by-product of building the mapping subset,

for every instance in the probe branch, xi, we can find its

only positive pair x̃i in the gallery and compute the logit:

p = hω(gφ(x̃i)) · gφ(xi), meanwhile, we can also find neg-

ative pairs by computing: n = hω(gφ(x̃j)) · gφ(xi)|j 6=i

among all the gallery identities. To further increase the

negative pairs, we also include the cached ‘identities’ in

the memory bank, thus negative pairs can be rewritten as

n = Ŵ·,j′ · gφ(xi)|j′ 6=i, j′ = [1, 2, ..., C]. Both p and n

will be further normalized to produce valid probabilities as

the result of applying softmax function in Eq. 4. Denote

the normalized p and n as S(xi, x̃i) and S(xi, x̃j′)|j′ 6=i, re-

spectively, which also means the similarity score or match-

ing probability between the probe and gallery pairs. We can

then adopt the following logit-triplet loss with the hard min-

ing [17],

Ltri =

Cb
∑

i=1

max

(

0,∆+max
j′ 6=i

S(xi, x̃j′)− S(xi, x̃i)

)

(7)

The model is trained in an end-to-end fashion and the full

training objective Lfull is a weighted sum of Eq. 1, Eq. 4,

Eq. 6, and Eq. 7.

Lfull = Lid + λ1Lmat + λ2Lreg + λ3Ltri (8)

The training pipeline is summarized in Alg. 1.

Model Testing Trained in a meta-learning pipeline by

sampling domains in each episode, both the encoding sub-

net (gφ(·)) and mapping subnet (hω(·)) in our DIMN are

supposed to be domain invariant. During the testing stage,

given a query image xi, and a gallery image x̃j , we di-

rectly take the logits (or probability after the softmax layer)

Algorithm 1 Training Domain-Invariant Mapping Network

Input: D1, D2, ... and DM ;

1: for t = 1 to Max Iter do

2: Sample a domain Dl ∈ {D1, D2, ..., DM}
3: Sample {(x1, x̃1, y1), . . . , (xCb

, x̃Cb
, yCb

)} ∈ Dl

4: θ̂ ← hω(gφ(x̃))

5: Construct online memory Ŵ using Eq. 3

6: Calculate losses: Lid, Lmat, Lreg, and Ltri

7: Optimize Lfull via the optimizer

8: Update target memory using Eq. 5

9: end for

Domain Dataset # Train IDs # Train images

Source

CUHK02 1,816 7,264

CUHK03 1,467 14,097

Duke 1,812 36,411

Market1501 1,501 29,419

PersonSearch 11,934 34,574

Domain Dataset
# Test IDs # Test images

#Pr. IDs #Ga. IDs #Pr. imgs #Ga. imgs

Target

VIPeR 316 316 316 316

PRID 100 649 100 649

GRID 125 900 125 1,025

i-LIDS 60 60 60 60

Table 1. Dataset statistics. “Pr.”: Probe; “Ga.”:Gallery.

hω(gφ(x̃j)) · gφ(xi) as the ranking score. It is importantly

to point out that: (1) Although it looks like a one-shot learn-

ing method, DIMN is a DG method as the model itself (i.e.,

gφ(·) and hω(·)) is fixed once trained on source domain. (2)

Conventional deep ReID models only have a encoding net-

work gφ(·), and uses the Euclidean distance between gφ(xi)
and gφ(x̃j) as the ranking score. Comparing to them, our

DIMN has very similar inference cost during the testing

stage.

4. Experiments

4.1. Dataset and Settings

A Large-Scale ReID benchmark We introduce a large-

scale ReID benchmark to evaluate the domain general-

ization ability of a ReID model. We aim to simulate

a real-world scenario where a ReID model is likely to

be trained with all the public ReID datasets, in the hope

that it can generalize well to an unseen domain. To

this end, we deliberately use existing large-scale ReID

datasets to form the source domains, and the smaller

ones as target domains. More specifically, the source

datasets include CUHK02 [26], CUHK03 [27], Market-

1501 [57], DukeMTMC-ReID [60], and CUHK-SYSU Per-

sonSearch [53]. All the images in these datasets, regardless

of their original train/test splits, are used for model train-

ing. The test datasets/domains are VIPeR [13], PRID [18],

GRID [31], and i-LIDS [58]. We evaluate the model perfor-

mance on the standard testing split only, so our results are
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directly comparable to prior reported results. The dataset

details are listed in Table 1. Note that the total number of

training identities is C = 18, 530 with 121, 765 training

images, much bigger than the size of each dataset alone.

Evaluation Protocols We follow the standard evaluation

protocols on the testing datasets. For VIPeR, results on 5
random train/test splits, plus their swapped version are av-

eraged, as mentioned in [12]. On PRID, in each trial, 100
randomly selected identities in view A are used as the probe

set, while the corresponding 100 identities along with 549
unique identities in view B are used as the gallery. The av-

erage result of 10 trials is reported. On GRID, we follow the

standard testing split recommended in [31]. On i-LIDS, we

first split the dataset into training and test sets. In the test-

ing split with r identities, we randomly select one image per

identity for r identities as probe images, and randomly one

of the remaining images from the corresponding identities

to form the gallery set. Similar to the previous works, we

do half split on the iLIDS dataset, yielding a testing split

with r = 60 in our experiment, and we repeat the testing

procedure 10 times as well.

Implementation Details We use MobileNetV2 [38] as

the encoding subnet, with width multiplier of 1.4. The out-

put feature dimension is thus 1, 792. Our mapping subnet is

composed of a single fully-connected (FC) layer. The out-

put size is set to the same as the input size, as the dimension

of the classifier weights should be the same as the feature di-

mension. The running average parameter α = 0.5 (Eq. 5).

The logit-triplet loss margin (Eq. 7) is set to ∆ = 0.8. The

weights for the classification loss and logit-triplet loss are

set as equal, i.e., λ1 = λ3 = 1, with regularization loss

weight λ2 = 0.01 (Eq. 8). We implement our model in

Tensorflow [1] and train it with a single Titan X GPU. The

model is trained for a fixed 180, 000 iterations with batch

size 64, which means in each iteration, we sample 32 per-

son identities (Cb); each comes with 2 images, of which

32 images are used as “probe” while the remaining 32 im-

ages are used as “gallery”. Exponential decay learning rate

scheduling is used with initial rate 0.00035 and ending with

0.0001. Adam optimizer [21] is used for all experiments.

Evaluation Metrics Two commonly used evaluation

metrics are used. The first is cumulative matching char-

acteristics (CMC). We report the CMC at rank-k, where

k = 1, 5, 10, representing the ranking accuracy of the target

identities in the top k results. The second metric is the mean

average precision (mAP), which reflects the overall ranking

quality rather than looking at top k positions only.

4.2. Comparisons against state­of­the­art

Baselines We compare with a variety of baselines, in-

cluding the domain aggregation baseline, meta-learning

baselines PPA [40] and Reptile [35], and two domain gener-

alization methods, MLDG [23] and CrossGrad [39]. In the

VIPeR Dataset Type rank-1 rank-5 rank-10 mAP

Agg MobileV2 D 42.88% 61.33% 68.86% 51.91%

Agg PCB [43] D 38.10% 53.20% 59.30% 45.38%

Agg Align [56] D 42.78% 63.67% 73.58% 52.94%

PPA [40] M 45.06% 65.09% 72.66% 54.46%

Reptile [35] M 22.06% 39.43% 49.21% 31.33%

MLDG [23] D 23.51% 43.80% 52.47% 33.52%

CrossGrad [39] D 20.89% 39.05% 49.72% 30.40%

Ours D 51.23% 70.19% 75.98% 60.12%

PRID Dataset Type rank-1 rank-5 rank-10 mAP

Agg MobileV2 D 38.90% 63.50% 75.00% 50.98%

Agg PCB [43] D 21.50% 42.60% 49.70% 32.04%

Agg Align [56] D 17.20% 33.40% 39.60% 25.50%

PPA [40] M 31.90% 61.10% 70.50% 45.26%

Reptile [35] M 17.90% 33.80% 44.10% 26.90%

MLDG [23] D 24.00% 48.00% 53.60% 35.36%

CrossGrad [39] D 18.80% 35.30% 46.00% 28.18%

Ours D 39.20% 67.00% 76.70% 51.95%

GRID Dataset Type rank-1 rank-5 rank-10 mAP

Agg MobileV2 D 29.68% 51.12% 60.24% 39.79%

Agg PCB [43] D 36.00% 53.68% 63.28% 44.66%

Agg Align [56] D 15.92% 33.52% 41.44% 24.67%

PPA [40] M 26.88% 50.48% 61.52% 37.98%

Reptile [35] M 16.24% 29.44% 38.40% 23.02%

MLDG [23] D 15.76% 31.12% 39.76% 23.57%

CrossGrad [39] D 8.96% 22.08% 30.08% 16.00%

Ours D 29.28% 53.28% 65.84% 41.09%

iLIDS Dataset Type rank-1 rank-5 rank-10 mAP

Agg MobileV2 D 69.17% 84.17% 88.83% 75.95%

Agg PCB [43] D 66.67% 81.67% 86.83% 73.92%

Agg Align [56] D 63.83% 89.17% 95.50% 74.69%

PPA [40] M 64.50% 83.75% 88.00% 72.73%

Reptile [35] M 56.00% 80.67% 89.83% 67.11%

MLDG [23] D 53.83% 78.67% 88.00% 65.18%

CrossGrad [39] D 49.67% 74.17% 83.83% 61.29%

Ours D 70.17% 89.67% 94.50% 78.39%

Table 2. Comparison against state-of-the-art methods.

domain aggregation baseline, we assume there exists a uni-

versal model θ∗ which is effective for all domains. There are

two versions: Agg MobileV2 uses the same MobileNetV2

backbone for fair comparison to our DIMN; Agg PCB uses

the PCB model in [43], which has a ResNet50 backbone and

achieved the best single dataset performance on Market-

1501 and DukeMTMC-ReID so far; Agg Align uses the

AlignReID model in [56] also based on ResNet50, suggest-

ing to enhance the discriminitive ability by take advantage

of the global branch and local branch. This domain aggre-

gation baseline has been proven to be a very strong baseline

in DG [22], especially given our big source domain size.

Two meta-learning methods, PPA [40] and Reptile [35], are

effective for alleviating over-fitting in few-shot learning-to-

learn, and both can be adapted for the DG ReID problem

here (unlike most others that require model updating). Ex-

isting Domain generalization baselines are the most relevant

competitors, and we include two state-of-the-art methods in

the comparison, namely MLDG [23] and CrossGrad [39].

We use “M” to denote the methods coming from the meta-

4326724



learning community, while “D” indicates that the method is

of a domain-generalization type.

Results We compare the proposed method with five base-

lines on the four target ReID datasets, VIPeR, PRID, GRID,

and i-LIDS. ReID performance is listed in Table 2. The fol-

lowing observations can be made: (1): Overall, our method

achieves the best result on all four target datasets among all

compared methods. (2) The Aggregation baseline indeed

is very strong, given a large and diverse set of source do-

mains. Comparing the two versions with different backbone

network, the lighter MobileNetV2 are clearly better over

the state-of-the-art ReID models PCB [43] and AlignReID

[56], except on GRID. Nevertheless, our DIMN consistently

beats this strong baseline with the only exception of GRID.

(3) PPA [40] is related to our method in that it also predicts

classifier weight vector using a mapping network. However,

the mapping network takes as input the feature output of

an independently trained encoding network; this two-stage

training strategy thus leads to sub-optimal solutions. Ta-

ble 2 shows that with end-to-end training enabled by the

hyper-network and memory bank modules introduced in our

model, DIMN outperforms PPA significantly. (4) Cross-

Grad [39] requires a domain label (in our case, the camera

ID) and assumes that the source domains are controlled by

a latent domain descriptor that spans the whole spectrum of

all possible domains. This assumption is clearly invalid in

the ReID case, resulting in very poor performance. (5) Both

Reptile [35] and MLDG [23] are variants of a classic meta-

learning model MAML [10]. The results show that they

all fail completely because they were originally designed

for category-level recognition problems and unable to cope

with both domain and identity changes.

Comparison against supervised/unsupervised baselines

We also compare with the supervised and unsupervised

state-of-the-art baselines published in the recent three years.

The supervised and unsupervised settings are indicated by

“S” and “U” respectively, whilst our domain generalization

setting is “D”. Note that both supervised and unsupervised

settings require the use of the training splits of the target

dataset, whilst our model does not, putting it at a big dis-

advantage. In addition, most compared methods also use

a source domain for training and transfer. The results on

the four datasets are shown in Tables 3, 4, 5, and 6 re-

spectively. It is clear that our model, despite not using any

target domain data, outperforms most of the competitors.

Even when it is beaten by a supervised baseline, the margin

is small. It is also noted that our DIMN significantly out-

performs the state-of-the-art unsupervised ReID model [28]

which needs additional attribute annotation in the source

domain, as well as the unlabelled target domain training

split. These results have great relevance when one builds

a real-world ReID system: Our model is clearly the first

choice because it is almost as good as the best supervised

Method Type rank-1 rank-5 rank-10 mAP

GatedSia [47] S 37.80% 66.90% 77.40% –

DeepRank [5] S 38.37% 69.22% 81.33% –

NullReid [55] S 42.28% 71.46% 82.94% –

SiaLSTM [48] S 42.40% 68.70% 79.40% 47.90%

Ensembles [36] S 45.90% 77.50% 88.90% –

ImpTrpLoss [8] S 47.80% 74.40% 84.80% –

GOG [32] S 49.70% 79.70% 88.70% –

MTDnet [7] S 47.47% 73.10% 82.59% –

OneShot [3] S 34.30% – – –

SSM [2] S 53.73% – 91.49% –

SSPR [24] S 26.50% 50.51% 62.18% –

JLML [28] S 50.20% 74.20% 84.30% –

TJAIDL [50] U 38.50% – – –

Ours D 51.23% 70.19% 75.98% 60.12%

Table 3. Comparative results against baselines on VIPeR dataset.

‘-’ indicates result not reported.

Method Type rank-1 rank-5 rank-10 mAP

NullReid [55] S 29.80% 52.90% 66.00% –

Ensembles [36] S 17.90% 40.00% 50.00% –

ImpTrpLoss [8] S 22.00% – 47.00% –

MTDnet [7] S 32.00% 51.00% 62.00% –

OneShot [3] S 41.40% – – –

TJAIDL [50] U 34.80% – – –

Ours D 39.20% 67.00% 76.70% 51.95%

Table 4. Comparative results against baselines on PRID dataset

Method Type rank-1 rank-5 rank-10 mAP

GOG [32] S 24.70% 47.00% 58.40% –

SSM [2] S 27.20% – 61.20% –

JLML [28] S 37.50% 61.40% 69.40% –

Ours D 29.28% 53.28% 65.84% 41.09%

Table 5. Comparative results against baselines on GRID dataset

Method Type rank-1 rank-5 rank-10 mAP

Ensembles [36] S 50.34% 72.00% 82.50% –

ImpTrpLoss [8] S 60.40% 82.70 90.70% –

MTDnet [7] S 58.38% 80.35% 87.28% –

OneShot [3] S 51.20% – – –

DSPSL [25] S 55.17% 82.00% 90.67% –

Ours D 70.17% 89.67% 94.50% 78.39%

Table 6. Comparative results against baselines on i-LIDS dataset

models but can be used out-of-the-box for any unseen do-

main.

4.3. Ablation Study

There are three important components in the proposed

DIMN: the memory bank representing the global “iden-

tity” information, the running average updating strategy and

the specifically designed logit-triplet loss built on the logit

vector. To evaluate the contribution of each component,

we compare our full model with three stripped-down ver-

sions, each of which is obtained by removing one compo-

nent. Note that by removing the memory bank, we will also

lose the running average updating strategy as the latter is

built on top of the memory bank mechanism. In addition,
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VIPeR Dataset rank-1 rank-5 rank-10 mAP

w/o Memory bank 45.44% 67.44% 73.73% 55.49%

w/o Running average 50.03% 69.40% 74.40% 59.04%

w/o Logit-triplet 49.53% 68.29% 74.59% 58.29%

Ours-full 51.23% 70.19% 75.98% 60.12%

PRID Dataset rank-1 rank-5 rank-10 mAP

w/o Memory bank 37.10% 58.20% 72.60% 48.27%

w/o Running average 36.50% 58.20% 67.20% 46.70%

w/o Logit-triplet 37.90% 63.60% 72.10% 49.75%

Ours-full 39.20% 67.00% 76.70% 51.95%

GRID Dataset rank-1 rank-5 rank-10 mAP

w/o Memory bank 30.08% 51.68% 60.64% 40.50%

w/o Running average 30.48% 53.20% 67.12% 41.49%

w/o Logit-triplet 32.88% 53.28% 63.52% 42.75%

Ours-full 29.28% 53.28% 65.84% 41.09%

iLIDS Dataset rank-1 rank-5 rank-10 mAP

w/o Memory bank 69.00% 87.17% 94.33% 77.05%

w/o Running average 67.67% 90.00% 94.00% 77.15%

w/o Logit-triplet 65.50% 84.50% 92.50% 74.40%

Ours-full 70.17% 89.67 94.50% 78.39%

Table 7. Contributions of different components

without running average updating strategy means that we

will use the weight prediction from the hyper-network to

directly rewrite the memory. Table 7 shows that each com-

ponent contributes the ReID performance. Among all the

components, the memory bank seems to be the most critical

one. Without it, our DIMN is down-graded to a conven-

tional meta-learning method that sacrifices discriminativity

in exchange for scalability.

4.4. Qualitative Result

Some qualitative results are shown in Fig. 3. In this fig-

ure, the left column represents the probe images randomly

sampled from the four testing datasets, while the remaining

person images are the retrieved result using DIMN. From

Fig. 3, it is clear to see that our method is able to distin-

guish the correct match from many impostors with similar

appearances.
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Figure 3. Retrieved result visualization on the four testing datasets.

4.5. Few­shot Learning on MiniImageNet

Although our DIMN is designed specifically for domain-

generalizable ReID, its meta-learning pipeline of sampling

tasks and performing one-shot classification on each sam-

pled task makes it suitable for generic one-shot recognition

tasks. To demonstrate its applicability to other learning-to-

learn problems, we repurpose DIMN for the popular 5-way

1-shot/5-shot MiniImageNet benchmark, used by most pre-

vious meta-learning works. Originally proposed in [49],

MiniImageNet is a subset of the ImageNet ILSVRC-12

dataset. It contains 100 classes split into 64/16/20 for

train/validation/test. Each class has 600 examples. We

follow the same training split as mentioned in [49]. We

adopt the same basenet (SimpleNet) with four convolua-

tional blocks as in [49] and [40]. All compared methods

use exactly the same basenet and data split for a fair com-

parison. Following the standard protocol, We evaluate our

method and calculate the average 5-way 1-shot/5-shot ac-

curacy with the 95% confidence interval of 1000 testing

rounds. The performance of our methods against other

baselines is summarized in Table 8. The results demonstrate

that our method is fairly competitive even for category-level

recognition.

Mini-ImageNet 1-shot 5-shot

Matching Network [49] 43.56±0.84% 55.31±0.73%

Meta-Learner LSTM [37] 43.44±0.77% 60.00±0.71%

Reptile [35] 47.07±0.26% 62.74±0.37%

MAML [10] 48.70±1.84% 63.11±0.92%

PPA [40] 49.64±0.58% 61.94±0.44%

Ours 50.74±0.54% 63.13±0.42%

Table 8. Few-shot learning results on MiniImageNet

5. Conclusion

A domain-generalizable person re-identification (ReID)

approach was proposed to enable a ReID model to be de-

ployed out-of-the-box for any new camera network domain.

Specifically, a novel deep ReID model termed Domain-

Invariant Mapping Network (DIMN) was introduced. It has

an encoding subnet to extract features from input images

and a mapping subnet that predicts a classifier weight vector

from a single input image. The two subnets are trained end-

to-end by using the mapping subnet as a hyper-network.

The training follows a meta-learning pipeline to make the

model domain invariant and generalizable to unseen do-

mains. Thanks to a memory bank module, the training is

scalable without sacrificing model discriminativity. Exten-

sive experiments on a newly defined large-scale benchmark

validated the effectiveness of our DIMN. The experiments

also showed that domain generalization in Re-ID is a very

hard problem and many existing domain generalization and

meta-learning methods failed to beat the strong but naive

domain aggregation baseline. However, given our promis-

ing results, and the practical value of a domain-agnostic Re-

ID system, this is an important avenue for future work.
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