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Abstract

This paper addresses the task of estimating the light ar-

riving from all directions to a 3D point observed at a se-

lected pixel in an RGB image. This task is challenging be-

cause it requires predicting a mapping from a partial scene

observation by a camera to a complete illumination map for

a selected position, which depends on the 3D location of the

selection, the distribution of unobserved light sources, the

occlusions caused by scene geometry, etc. Previous meth-

ods attempt to learn this complex mapping directly using

a single black-box neural network, which often fails to esti-

mate high-frequency lighting details for scenes with compli-

cated 3D geometry. Instead, we propose “Neural Illumina-

tion,” a new approach that decomposes illumination predic-

tion into several simpler differentiable sub-tasks: 1) geom-

etry estimation, 2) scene completion, and 3) LDR-to-HDR

estimation. The advantage of this approach is that the sub-

tasks are relatively easy to learn and can be trained with

direct supervision, while the whole pipeline is fully differ-

entiable and can be fine-tuned with end-to-end supervision.

Experiments show that our approach performs significantly

better quantitatively and qualitatively than prior work.

1. Introduction

The goal of this paper is to estimate the illumination ar-

riving at a location in an indoor scene based on a selected

pixel in a single RGB image. As shown in Figure 1(a), the

input is a low dynamic range RGB image and a selected

2D pixel, and the output is a high dynamic range RGB illu-

mination map encoding the incident radiance arriving from

every direction at the 3D location (“locale”) associated with

the selected pixel (Figure 1(b)). This task is important for

a range of applications in mixed reality and scene under-

standing. For example, the output illumination map can be

used to light virtual objects placed at the locale so that they

blend seamlessly into the real world imagery (Figure 8) and

can assist estimating other scene properties, such as surface

materials.

This goal is challenging because it requires a compre-

hensive understanding of the lighting environment. First,
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Figure 1. Given a single LDR image and a selected 2D pixel, the

goal of Neural Illumination is to infer a panoramic HDR illu-

mination map representing the light arriving from all directions at

the locale. The illumination map is encoded as a spherical image

parameterized horizontally by φ (0-360◦) and vertically by θ (0-

180◦), where each pixel (e.g. A,B,C,D) stores the RGB intensity

of light arriving at the “locale” from the direction (φ, θ).

it requires understanding the 3D geometry of the scene in

order to map between illumination observations at one 3D

location (the camera) and another (the selected 3D locale).

Second, it requires predicting the illumination coming from

everywhere in the scene, even though only part of the scene

is observed in the input image (e.g. the unobserved win-

dow in Figure 2). Third, it requires inferring HDR illumi-

nation from LDR observations so that virtual objects can be

lit realistically. While it is possible to train a single neu-

ral network that directly models the illumination function

end-to-end (from an input LDR image to an output HDR il-

lumination map) [7], in practice optimizing a model for this

complex function is challenging, and thus previous attempts

have not been able to model high-frequency lighting details

for scenes with complicated 3D geometry.

In this paper, we propose to address these challenges by

decomposing the problem into three sub-tasks. First, to es-

timate the 3D geometric relationship between pixels in the

input image and the output illumination map, we train a net-
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Figure 2. Neural Illumination. In contrast to prior work (a) [7] that directly trains a single network to learn the mapping from input

images to output illumination maps, our network (b) decomposes the problem into three sub-modules: first the network takes a single LDR

RGB image as input and estimate the 3D geometry of the observed scene. This geometry is used to warp pixels from the input image

onto a spherical projection centered around an input locale. The warped image is then fed into LDR completion network to predict color

information for the pixels in the unobserved regions. Finally, the completed image is passed through the LDR2HDR network to infer the

HDR image. The entire network is differentiable and is trained with supervision end-to-end as well as for each intermediate sub-module.

work that estimates the 3D geometry from the observed im-

age – the estimated geometry is then used to warp pixels

from the input image to a spherical projection centered at

the target locale to produce a partial LDR illumination map.

Second, to estimate out-of-view and occluded lighting, we

train a generative network that takes in the resulting par-

tial illumination map and “completes” it – i.e., estimates the

LDR illumination for all unobserved regions of the illumi-

nation map. Finally, to recover high dynamic range infor-

mation, we train another network that maps estimated LDR

colors to HDR light intensities. All these sub-modules are

differentiable. They are first pre-trained individually with

direct supervision and then fine-tuned end-to-end with the

supervision of the final illumination estimation.

Our key idea is that by decomposing the problem into

sub-tasks, it becomes practical to train an end-to-end neu-

ral network – each sub-module is able to focus on a rela-

tively easier task and can be trained with direct supervision.

The first sub-task is of particular importance – by predict-

ing the 3D structure of the scene from the input image and

using it to geometrically warp the input image such that it

is spatially aligned with the output illumination map, we

are able to enforce pixel-to-pixel spatial correspondence be-

tween the input and output representations, which has pre-

viously been shown to be crucial for other dense prediction

tasks, such as image segmentation and edge detection.

To train and evaluate networks for this task, we have cu-

rated a benchmark dataset of paired input LDR images and

output HDR illumination maps for a diverse set of locales

in real-world scenes. In contrast to prior work, our dataset

leverages panoramas captured densely in real-world scenes

with HDR color and depth cameras [2]. We use the depth

channel to warp and resample those panoramas at arbitrary

locales to produce a set of 90,280 “ground truth” illumina-

tion maps observed in 129,600 images.

The primary contribution of our paper is introducing an

end-to-end neural network architecture for illumination es-

timation (Neural Illumination) that decomposes the illumi-

nation estimation task into three sub-tasks. Our problem

decomposition enables us 1) to provide both direct interme-

diate and end-to-end supervision, and 2) to convert the input

observation into an intermediate representation that shares

the pixel-wise spatial correspondence with the output rep-

resentation. We show that this combination of neural net-

work sub-modules leads to significantly better quantitative

and qualitative results over prior work in experiments with

our new benchmark dataset.

2. Related Work

Illumination estimation has been a long-standing prob-

lem in both computer vision and graphics. In this section,

we briefly review work most relevant to this paper.

Capture-based Methods A direct way of obtaining the

illumination of an environment is to capture the light inten-

sity at a target location using a physical probe. Debevec et

al. [3] first showed that photographs of a mirrored sphere

with different exposures can be used to compute the illu-

mination at the sphere’s location. Subsequent works show

that beyond mirrored spheres, it is also possible to capture

illumination using hybrid spheres [4], known 3D objects

[24], object’s with know surface material [8], or even hu-

man faces [1] as proxies for light probes.

However, the process of physically capturing high-

quality illumination maps can be expensive and difficult to

scale, especially when the goal is to obtain training data for

a dense set of visible locations in a large variety of envi-

ronments. In this paper, we propose to use existing large-

scale datasets with RGB-D and HDR panoramas (Matter-

port3D [2]) combined with image-based rendering methods
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Figure 3. Spatially varying illumination. By using the 3D ge-

ometry, we can generate ground truth illumination for any target

locale. As a result, our model is also able to infer spatially varying

illumination conditioned on the target pixel location.

to generate a large training set of high-resolution illumina-

tion maps in diverse lighting environments.

Optimization-based Methods One standard approach to

estimating illumination is to jointly optimize the geome-

try, reflectance properties, and lighting models of the scene

in order to find the set of values that best explain the ob-

served input image. However, directly optimizing all scene

parameters is often a highly under-constrained problem –

an error in one parameter estimation can easily propagate

into another. Therefore to ease the optimization process,

many prior methods either assume additional user-provided

ground truth information as input or make strong assump-

tions about the lighting models. For example, Karsch et al.

[12] uses user annotations for initial lighting and geometry

estimates. Zhang et al. [26] uses manually-annotated light-

source locations and assumes knowledge of depth informa-

tion. Lombardi and Nishino [19] propose approximating

illumination with a low-dimensional model, which subse-

quently has been shown to be sub-optimal for indoor scenes

due to object reflective and geometric properties [7].

There are also works that explore the idea that similar

images share similar illumination estimates. For example,

Karsch et al. [13] uses image matching to find the most sim-

ilar image crop from a panoramic database [25] and then use

the lighting annotations on those panoramic images to pre-

dict out-of-view light sources. Khan et al. [14] directly flips

observed HDR images to produce environment maps. In

contrast, our system does not require additional user inputs

or manual annotations, and it does not make any explicit

assumptions about the scene content or its lighting models.

Instead, we enable our learning-based model to learn illu-

mination priors directly from data.

Learning-based Methods Deep learning has recently

shown promising results on a number of computer vision

tasks, including depth estimation [17, 15] and intrinsic im-

age decomposition [27, 16]. Recently Gardner et al. [7]

propose to formulate the illumination estimation function

as an end-to-end neural network. However, since the in-

put and output representation of their network architecture

does not share any immediate notion of pixel-to-pixel spa-

tial correspondence, their model tends to generate illumi-

nation maps that reflect general color statistics of the train-

ing dataset, as opposed to important high-frequency light-

ing details. In contrast, our model predicts the 3D geomet-

ric structure of the scene and uses it to warp the observed

image into an intermediate representation that encodes the

input information in a way that is spatially aligned to the

output illumination map. This results in the ability to fully

utilize input information and preserve high-frequency light-

ing details. Moreover, Gardner et al.’s algorithm does not

generate illumination conditioned on a selected target pixel

(i.e., it produces only one solution for each input image). In

contrast, our algorithm is able to recover the spatially vary-

ing illumination for any selected pixel (Figure 3).

Apart from differences in network design, Gardner et al.

also suffers from the lack of accurate ground truth train-

ing data. Since their training data does not have depth,

they use a sphere to approximate the scene geometry to

warp a panorama to the target location. Moreover, since

most of their training data is LDR, they use a binary light

mask to approximate the bright HDR illumination during

pre-training. While reasonable in the absence of 3D geo-

metric and HDR information, these methods serve as weak

approximations of ground truth. We address both of these

data issues by directly training our model on a dataset that

has both accurate 3D geometry and illumination informa-

tion for a dense set of observations.

3. Problem formulation

We formulate illumination estimation as a pixel-wise re-

gression problem modeled by a function f : f(I|ℓ) = Hℓ

where I is an input LDR image of a scene, p is a selected

pixel in the image. ℓ is the 3D location of the pixel, and

Hℓ is the output HDR illumination around ℓ. Hℓ is repre-

sented as a spherical panoramic image with a 180◦vertical

FoV and 360◦horizontal FoV. Each pixel h(φ, θ) ∈ Hℓ of

the panorama encodes the RGB intensity of incoming light

to ℓ from the direction (φ, θ). We model f as a feedforward

convolutional neural network, the details of the network are

described in Sec. 5. We train f on a large dataset of {I ,ℓ}
and H∗

ℓ
pairs generated from Matterport3D (Sec. 4).

4. Generating a Dataset of Illumination Maps

Obtaining a large dataset of ground truth illumination

maps for training is challenging. On the one hand, using

physical probes to directly capture illumination at a target

locale [3, 20, 4] provides accurate data, but scaling this cap-

turing process across a diverse set of environments can be

both costly and time-consuming. On the other hand, exist-
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Figure 4. Ground truth illumination map generation. We generate reconstructions of over 90 different building-scale indoor scenes

using HDR RGB-D images from the Matterport3D dataset [2]. From these reconstructions, we sample target locales (a) on supporting

surfaces (floors and flat horizontal surfaces on furniture). For each locale, we use HDR and 3D geometric information from nearby RGB-D

images to generate ground truth panoramic illumination maps.

ing panoramic datasets (e.g. [25]) provide a simple way to

obtain illumination maps, but only at the camera locations

around which the panoramas were captured.

Instead, we propose to leverage the HDR RGB-D im-

ages from the Matterport3D dataset [2] in combination with

geometric warping to generate training data for arbitrary

locales. Matterport3D contains 194,400 registered HDR

RGB-D images arranged in 10,800 panoramas within 90

different building-scale indoor scenes. Since the panoramas

provide ground truth HDR illumination maps for their cen-

ter locations by direct observation, since they are acquired

densely throughout each scene (separated by 2.5m or so),

and since they have depth in addition to color, an RGB-

D image-based rendering algorithm can reconstruct the il-

lumination map at any point in the scene by warping and

compositing nearby panoramas.

The first step of our dataset curation process is to sam-

ple a set of target locales. Ideally, the locales would cover

the range of locations at which virtual objects could be

placed in a scene. Accordingly, we densely sample loca-

tions 10cm above the surface of the input mesh and create

a new locale if a) it is supported by a horizontal surface

(nz >cos(π/8)), b) the support surface has semantic label

∈ {floor, furniture}, c) there is sufficient volumetric clear-

ance to fit an object with radius of 10cm, d) it is not within

50cm of any previously created locale. For each locale, we

backproject its location into every image I , check the depth

channel to discard occlusions, and form a image-locale pair,

{I ,ℓ}, for all others.

For each locale ℓ, we construct an illumination map H∗

ℓ

using RGB-D image-based rendering. Though straightfor-

ward in principle, this process is complicated by missing

depths at bright regions of the image (light sources, win-

dows, strong specular highlights, etc.). A simple forward

projection algorithm based on observed depths would omit

these important elements of the illumination map. There-

fore, we implemented a two-step process. During the first

step, we estimate the distance to the closest surface in every

direction d(φ, θ) by forward mapping the depth channel of

every input image I to ℓ, remembering the minimum dis-

tance in every direction, and filling holes with interpolation

where no samples were mapped. Then, we reconstruct the

illumination map for ℓ by resampling the HDR color chan-

nels of the input images via reverse mapping and blend-

ing the samples with weights proportional to 1/d4, where

d is the distance between the camera and the locale. This

process produces illumination maps with smooth blends of

pixels from the nearest panoramas with holes filled by other

panoramas further away. Overall, we generate 90,280 lo-

cales and 360,432 {I ,ℓ} and H∗

ℓ
pairs using this process

Figure 4 (a) shows examples for one scene.

Though the illumination maps produced this way are

not always perfect (especially for highly specular surfaces),

they have several favorable properties for training on our

task. First, they are sampled from data collected by a large

number of photographers [2] (mostly for real estate appli-

cations), and thus they contain a diverse set of lighting en-

vironments that would be difficult to gain access to other-

wise. Second, they provide a unique illumination map for

each 3D locale in a scene. Since multiple locales are usually

visible in every single image, the dataset supports learning

of spatial dependencies between pixel selections and illumi-

nation maps. For example, Figure 3 shows that our network

is able to infer different illumination maps for different pix-

els selections in the same input image. Third, the “ground

truth” illumination maps produced with our RGB-D warp-

ing procedure are more geometrically accurate than others

produced with spherical warping [7]. As shown in Figure 5,

our warping procedure is able to account for complex geo-

metric structures and occlusions in the scene.

5. Network Architecture

In this section, we describe the convolutional neural net-

work architecture used to model f , which consists of four

sequential modules: 1) a geometry (RGB-to-3D) estimation

module, 2) a differential warping module which warps the

input RGB observation to the target locale using the esti-

mated 3D information, 3) an out-of-view illumination esti-

mation module, and 4) an LDR-to-HDR estimation module.

Each module is pre-trained individually with its input and
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Figure 5. Comparison of warping methods. In our data genera-

tion process, we use 3D scene geometry to generate geometrically

accurate ground truth illumination, which accounts for complex

geometric structures and therefore more accurate than using spher-

ical warping from 2D panoramas as in [7].

output pairs derived from ground truth information. Then

all the modules are fine-tuned together end-to-end. Figure

2, shows the network architecture. By decomposing the net-

work into sub-modules we allow each sub-module to focus

on a relatively easier task with direct supervision. We find

that providing both intermediate and end-to-end supervision

is crucial for efficient learning.

5.1. Geometry Estimation

The geometry estimation module takes a single RGB im-

age I as input and outputs a dense pixel-wise prediction of

the visible 3D geometry GI . Similar to Song et al. [22],

GI is represented with a “plane equation” for each pixel.

Specifically, we feed I through a two-stream fully convo-

lutional U-Net [21] to infer pixel-wise predictions of sur-

face normals and plane offsets (i.e. distance-to-origin). We

then pass both predicted outputs through a differentiable

PN-layer [22] to convert the estimated surface normals and

plane distances into a pixel-wise prediction of 3D locations.

Direct supervision is provided to the 1) surface normal pre-

dictions via a cosine loss, 2) plane offset predictions via

an ℓ1 loss, and 3) final 3D point locations via an ℓ1 to en-

sure consistency between the surface normal and plane off-

set predictions. Training labels are automatically obtained

from the 3D data available in the Matterport3D dataset [2].

As shown in [22], this output representation provides strong

regularization for large planar surface and is therefore able

to produce higher quality predictions than directly predict-

ing raw depth values [5, 15]. At the same time, it also main-

tains the flexibility of representing any surfaces – i.e., is not

limited to a fixed number of planar surfaces, as in [18]).

5.2. Geometry­aware Warping

The next module uses the estimated scene geometry GI

to map the pixels in the input image I to a panoramic im-

(a) LDR pano

log HDR 
intensity

diffuse 
conv

(b) HDR (log intensity) (c) HDR (intensity) (d) Diffuse conv

Figure 6. Examples of a) LDR image, b) log scaled HDR J , c)

HDR intensity H , d) diffuse convolution of HDR intensity D(H).

age φℓ representing the unit sphere of rays arriving at ℓ. We

do this warping through a forward projection using the es-

timated scene geometry and camera pose. The unit sphere

projection that defines the panorama φℓ is oriented upright

along nℓ, which should be aligned with the gravity direc-

tion assuming that ℓ lays on a supporting surface (e.g. floors

and flat horizontal surfaces on furniture). Image regions in

φℓ that do not have a projected pixel are set to -1. The re-

sulting warped input observation is a panorama image with

missing values that shares a pixel-wise spatial correspon-

dence to the output illumination map. Since this warping

module is entirely differentiable, we implement it as a sin-

gle network layer.

5.3. LDR Panorama Completion

The third module takes the mapped observed pixels of

φℓ as input and outputs a dense pixel-wise prediction of il-

lumination for the full panoramic image ψℓ including both

observed and unobserved pixels. ψℓ is represented as a 3-

channel LDR color panorama.

One of the biggest challenges for out-of-view illumina-

tion estimation comes from the multi-modal nature of the

problem – there can be multiple possible solutions of ψℓ

with illumination patterns that result in similar observa-

tions. Therefore, in addition to providing only pixel-wise

supervision, we train this module with adversarial loss us-

ing a discriminator network [9, 11]. This adversarial loss

provides a learnable high-level objective by learning a loss

that tries to classify if the output image is real or fake, while

simultaneously training the generative model to minimize

this loss. Our experiments show that this adversarial loss

enables the network to produce and more realistic illumina-

tion outputs with sharper and richer details.

This module is implemented as a fully convolutional

ResNet50 [10]. Since both the input and output of this mod-

ule are represented as spherical panoramic images, we uti-

lize distortion-aware convolutional filters that account for

the different spherical distortion distributions for different

regions of the image [23]. This distortion-aware convolu-

tion resamples the feature space according to the image dis-

tortion model in order to improve the translational invari-

ance of the learned filters in the network.
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5.4. LDR­to­HDR Estimation

The final module takes the predicted LDR illumination

as input and outputs a dense pixel-wise prediction of HDR

illumination intensities representing incident radiance in ev-

ery direction at ℓ. This prediction is important because LDR

images may have intensity clipping and/or tone-mapping,

which would not be suitable for lighting virtual objects.

Like Eilertsen et al. [6], we formulate the LDR-to-HDR

estimation as a pixel-wise regression problem, but instead

of predicting the HDR value for only bright pixels and us-

ing a fixed function to map the rest of the pixels, our LDR-

to-HDR module learns the mapping function for all pixels

from the LDR space to the HDR space. The module is

trained with supervision from: 1) a pixel-wise ℓ2 loss Lℓ2,

and 2) a diffuse convolutional loss Ld.

The pixel-wise ℓ2 loss measures the visual error when

re-lighting a perfectly specular surface at ℓ:

Lℓ2 =
1

N

N
∑

i=1

(J(i)− J∗(i))

where the J is log-scaled image of the final light intensity

H , defined as:

H(i) =

{

J(i) ∗ 65536 ∗ 8e−8, J(i) ≤ 3000

2.4e−4 ∗ 1.0002(J(i)∗65536−3000), J(i) > 3000

The diffuse convolutional loss measures the visual error
when re-lighting a perfectly diffuse surface:

Ld =
1

N

N
∑

i=1

(D(H(i))−D(H∗(i)))

where D is the diffuse convolution function defined as:

D(H, i) =
1

Ki

∑

ω∈Ωi

H(ω)s(ω)(ω · ~ni)

and Ωi is the hemisphere centered at pixel i on the illumi-

nation map, ~ni the unit normal at pixel i, and Ki the sum

of solid angles on Ωi. ω is a unit vector of direction on

ωi and s(ω) the solid angle for the pixel in the direction

ω. This loss function is similar to the “cosine loss” func-

tion proposed by Gardner et al. [7], but rather than progres-

sively increasing the Phong exponent value during training,

we keep the Phong exponent value equal to 1. In our imple-

mentation, we reduce the memory usage by computing Ld

on a downsized illumination map with average pooling.

The final loss is computed as L = λ1Lℓ2 + λ2Ld,

where λ1 = 0.1 and λ2 = 0.05. By combining these

two losses during training, we encourage our model to re-

produce both low and high frequency illumination signals.

Figure 6 shows examples of HDR images and their diffuse

convolution.

6. Evaluation

We train and test our algorithm on the data generated

from Section 4, using the train/test split provided by the

Matterport3D dataset [2]. The following experiments in-

vestigate qualitative and quantitative comparisons to prior

work and results of ablation studies. More results and visu-

alizations can be found in the supplementary material.

Evaluation metrics. We use the following evaluation

metrics to quantitatively evaluate our predicted illumination

maps Hℓ:

· Pixel-wise ℓ2 distance error is the sum of all pixel-

wise ℓ2 distances between the predictedHℓ and ground

truth H∗

ℓ
illumination maps. ℓ2(log) computes the

ℓ2 distance in the log intensity. Intuitively, this error

measures the approximate visual differences observed

when the maps are used to render a perfectly specular

surface at the target locale.

· Pixel-wise diffuse convolution error is the sum of all

pixel-wise ℓ2 distances between D(Hℓ) and D(H∗

ℓ
).

This error measures the approximate visual differences

observed when the maps are used to render a perfectly

diffuse surface at the target locale.

Comparisons to state-of-the-art. Table 1 shows quanti-

tative comparisons of our approach to two alternative base-

lines: 1) Gardner et al. [7], and 2) a nearest neighbour re-

trieval method. Gardner et al. estimates the illumination

condition of a given input image by training a single con-

volutional neural network with end-to-end supervision. We

rotated each of the predicted panorama along the x-axis to

align with ground truth coordinate frame before evaluation.

Row 1 of Table 1 shows the performance of Gardner et

al.’s model trained on their original LRD+HDR panorama

dataset and tested on our test set. We also re-implement an

image-to-image prediction network that is similar to Gard-

ner et al.’s model and train it directly on our training data

(LDR and full HDR illumination pairs) to remove poten-

tial dataset biases. This model [Im2Im network] achieves

better performance than the original model but is still less

accurate than ours. With a qualitative comparison (Figure

7,8), we can observe that by estimating and utilizing the

3D scene geometry, our algorithm is able to produce output

illumination maps that contain much richer and more realis-

tic high frequency details. Moreover, Gardner et al.’s algo-

rithm does not allow users to input a specific target pixel –

i.e., they generate only one lighting solution for each input

image. In contrast, our algorithm is able to recover the spa-

tially varying lighting distribution for any selected locale in

the image, which can be quite different from one another

(Figure 3).

Modularization v.s. additional supervision. While we

show that our network is able to achieve better performance

than the single end-to-end model, it is still unclear whether

the performance gain comes from the additional supervision
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Figure 7. Qualitative Results (Row 1) show the input image and selected locale. (Row 2,3) show the warped observation using ground

truth an predicted geometry. (Row 4,5) show the completed LDR. (Row 6-10) show the final HDR illumination visualized with gamma

correction (γ=3.3). We can observe that the illumination estimation from our approach is more accurate and also contain richer high

frequency details.

Method ℓ2(log) ℓ2 diffuse

Gardner et al. [7] 0.375 0.977 1.706

Im2Im network 0.229 0.369 0.927

Nearest Neighbour 0.296 0.647 1.679

Ours 0.202 0.280 0.772

Table 1. Comparing the quantitative performance of our method to

that of Gardner et al. [7] and a nearest neighbour retrieval method.

or the network modularization. To investigate this ques-

tion, we trained an end-to-end network that takes in a single

LDR image as input and directly outputs the completed 3D

geometry, LDR images, and HDR images at the final lay-

ers. This network is trained with supervision for all three

predictions but does not have any network decomposition.

Table 2 shows the results. The performance gap between

this network and ours demonstrates that naively adding all

of the available supervision at the end of the network with-

out proper network modularization and intermediate super-

vision does not work as well as our approach and generates

significantly lower-quality illumination maps.

ℓ2(log) ℓ2 diffuse

without 0.213 0.319 0.856

with (ours) 0.202 0.280 0.772

Table 2. Effects of modularization.

Comparisons to variants with oracles. To study how er-

rors in intermediate predictions impacts our results, we ex-

ecute a series of experiments where some data is provided

by oracles rather than our predictions. In the first experi-

ment, we trained a network that takes as input a LDR im-

age already warped by a depth oracle and omits the first

two modules (LDR+D→HDR). In a second experiment,

we trained a version of that network that instead inputs a

warped HDR image and omits execution of the last mod-

ule. These networks utilize ground truth data, and thus are

not fair comparisons. Yet, they provide valuable informa-

tion about how well our network possibly could perform

and which modules contribute most to the error. Looking
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Figure 8. Object relighting example. Here we show qualitative comparisons of relighting results rendered by Mitsuba using the illumi-

nation maps from (a) ground truth, (b) our algorithm, and (c) Gardner et al. We show images rendered with two different surface materials

composited over the original observations (the first and second rows) and the illumination maps (third row). Compared to (c), our algorithm

is able to produce output illumination maps that contain much richer and more realistic high frequency detail. Of course, it also makes

mistakes, for example by predicting extra light sources on the ceiling, which is incorrect but still plausible given the observation.

at Table 3, we see that providing ground truth depth im-

proves our algorithm marginally (e.g., ∆ℓ2 = 0.011), while

also providing ground truth HDR improves it more (e.g.,

∆ℓ2 = 0.043). We conjecture it is because errors are con-

centrated on bright light sources. Overall, the performance

of our algorithm is about halfway between the best oracled

version [HDR+D→HDR] and the baselines in Table 1.

Method ℓ2(log) ℓ2 diffuse

LDR→HDR 0.202 0.280 0.772

LDR+D→HDR 0.188 0.269 0.761

HDR+D→HDR 0.131 0.212 0.619

Table 3. Comparisons to variants with oracles.

Effects of different losses. To study the effects of dif-

ferent loss functions, we evaluate the performance of the

model “HDR+D→HDR” using different combinations of

loss functions. Figure 4 shows quantitative and qualitative

results. From the results we can observe that with only an

ℓ2 loss, the network tends to produce very blurry estima-

tions that are close to the mean intensity of the input im-

ages. By adding the adversarial loss, the network starts to

be able to infer more realistic high frequency signals and

spotlights, but also introduces additional noises and errors

in the prediction. By further adding a diffuse convolution

loss [l2+gan+df], the network is able to predict overall more

accurate illumination especially for the high intensity areas.

Conclusion and Future Work This paper presents “Neu-

ral Illumination,” an end-to-end framework for estimating

high dynamic range illumination maps for a selected pixel

in a low dynamic range image of an indoor scene. We pro-

pose to decompose the task into subtasks and train a net-

054075be204d4fd58f51f17368afd5fd_i2_4227_i_0.232_0.18
2_0.276_0.271_0.155

3eb69cf4537541678d4bdf0e962c77c2_i2_1125_i
_0.305_0.000_0.307_0.000_0.260

l2 only l2+gan l2+gan+df Ground truth

loss ℓ2(log) ℓ2 diffuse

l2 0.116 0.235 0.691

l2+gan 0.224 0.275 0.713

l2+gan+df 0.131 0.212 0.619

Table 4. Effects of different losses.

work module for: 1) inferring 3D scene geometry, 2) warp-

ing observations to illumination maps, 3) estimating unob-

served illumination, and 4) mapping LDR to HDR. Experi-

ments show that we can train a network with this decompo-

sition that predicts illumination maps with better details and

accuracy than alternative methods. While “Neural Illumina-

tion” is able to improve the accuracy of existing methods,

it is still far from perfect. In particular, it often produces

plausible illumination maps rather than accurate ones when

no lights are observed directly in the input. Possible direc-

tions for future work include explicit modeling of surface

material and reflective properties and exploring alternative

3D geometric representations that facilitate out-of-view il-

lumination estimation through whole scene understanding.
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