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Abstract
How do computers and intelligent agents view the world

around them? Feature extraction and representation consti-

tutes one the basic building blocks towards answering this

question. Traditionally, this has been done with carefully

engineered hand-crafted techniques such as HOG, SIFT or

ORB. However, there is no “one size fits all” approach that

satisfies all requirements.

In recent years, the rising popularity of deep learning

has resulted in a myriad of end-to-end solutions to many

computer vision problems. These approaches, while suc-

cessful, tend to lack scalability and can’t easily exploit in-

formation learned by other systems.

Instead, we propose SAND features, a dedicated deep

learning solution to feature extraction capable of provid-

ing hierarchical context information. This is achieved by

employing sparse relative labels indicating relationships of

similarity/dissimilarity between image locations. The na-

ture of these labels results in an almost infinite set of dis-

similar examples to choose from. We demonstrate how the

selection of negative examples during training can be used

to modify the feature space and vary it’s properties.

To demonstrate the generality of this approach, we apply

the proposed features to a multitude of tasks, each requir-

ing different properties. This includes disparity estimation,

semantic segmentation, self-localisation and SLAM. In all

cases, we show how incorporating SAND features results in

better or comparable results to the baseline, whilst requir-

ing little to no additional training. Code can be found at:

https://github.com/jspenmar/SAND_features

1. Introduction

Feature extraction and representation is a fundamental

component of most computer vision research. We pro-

pose to learn a feature representation capable of support-

ing a wide range of computer vision tasks. Designing such

a system proves challenging, as it requires these features

to be both unique and capable of generalizing over radical

changes in appearances at the pixel-level. Areas such as

(a) Source (b) Global

(c) Local (d) Hierarchical

Figure 1: Visualization of SAND features trained using

varying context hierarchies to target specific properties.

Simultaneous Localisation and Mapping (SLAM) or Visual

Odometry (VO) tend to use feature extraction in an explicit

manner [2, 17, 20, 46], where hand-crafted sparse features

are extracted from pairs of images and matched against each

other. This requires globally consistent and unique features

that are recognisable from wide baselines.

On the other hand, methods for optical flow [32] or

object tracking [3] might instead favour locally unique or

smooth feature spaces since they tend to require iterative

processes over narrow baselines. Finally, approaches typi-

cally associated with deep learning assume feature extrac-

tion to be implicitly included within the learning pipeline.

End-to-end methods for semantic segmentation [6], dispar-

ity estimation [44] or camera pose regression [29] focus on

the learning of implicit “features” specific to each task.

Contrary to these approaches, we treat feature extraction

as it’s own separate deep learning problem. By employing

sparsely labelled correspondences between pairs of images,

we explore approaches to automatically learn dense repre-

sentations which solve the correspondence problem while

exhibiting a range of potential properties. In order to learn

from this training data, we extend the concept of contrastive

loss [16] to pixel-wise non-aligned data. This results in a

fixed set of positive matches from the ground truth corre-

spondences between the images, but leaves an almost infi-

nite range of potential negative samples. We show how by

carefully targeting specific negatives, the properties of the
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learned feature representations can be modified to adapt to

multiple domains, as shown in Figure 1. Furthermore, these

features can be used in combination with each other to cover

a wider range of scenarios. We refer to this framework as

Scale-Adaptive Neural Dense (SAND) features.

Throughout the remainder of this paper we demonstrate

the generality of the learned features across several types of

computer vision tasks, including stereo disparity estimation,

semantic segmentation, self-localisation and SLAM. Dis-

parity estimation and semantic segmentation first combine

stereo feature representations to create a 4D cost volume

covering all possible disparity levels. The resulting cost

volume is processed in a 3D stacked hourglass network [5],

using intermediate supervision and a final upsampling and

regression stage. Self-localisation uses the popular PoseNet

[19], replacing the raw input images with our dense 3D

feature representation. Finally, the features are used in a

sparse feature matching scenario by replacing ORB/BRIEF

features in SLAM [33].

Our contributions can be summarized as follows:

1. We present a methodology for generic feature learning

from sparse image correspondences.

2. Building on “pixel-wise” contrastive losses, we

demonstrate how targeted negative mining can be used

to alter the properties of the learned descriptors and

combined into a context hierarchy.

3. We explore the uses for the proposed framework in

several applications, namely stereo disparity, seman-

tic segmentation, self-localisation and SLAM. This

leads to better or comparable results in the correspond-

ing baseline with reduced training data and little or no

feature finetuning.

2. Related Work
Traditional approaches to matching with hand-

engineered features typically rely on sparse keypoint

detection and extraction. SIFT [24] and ORB [35], for

example, still remain a popular and effective option in

many research areas. Such is the case with ORB-SLAM

[27, 28] and its variants for VO [12, 48] or visual object

tracking methods, including Sakai et al. [36], Danelljan et

al. [25, 8] or Wu et al. [43]. In these cases, only globally

discriminative features are required, since the keypoint

detector can remove local ambiguity.

As an intermediate step to dense feature learning, some

approaches aim to learn both keypoint detection and feature

representation. Most methods employ hand-crafted feature

detectors as a baseline from which to collect data, such as

[1, 21]. Alternative methods include Salti et al. [37], who

treat keypoint detection as a binary classification task, and

Georgakis et al. [15], who instead propose a joint end-to-

end detection and extraction network.

On the other hand, most approaches to dedicated feature

learning tend to focus on solving dense correspondence es-

timation rather than using sparse keypoints. Early work in

this area did not perform explicit feature extraction and in-

stead learns a task specific latent space. Such is the case

with end-to-end VO methods [42, 22], camera pose regres-

sion [19, 4] or stereo disparity estimation [47]. Mean-

while, semantic and instance segmentation approaches such

as those proposed by Long et al. [23], Noh et al. [31] or

Wang et al. [41] produce a dense representation of the im-

age containing each pixel’s class. These require dense abso-

lute labels describing specific properties of each pixel. De-

spite advances in the annotation tools [9], manual checking

and refinement still constitutes a significant burden.

Relative labels, which describe the relationships of sim-

ilarity or dissimilarity between pixels, are much easier to

obtain and are available in larger quantities. Chopra et al.

[7], Sun et al. [40] and Kang et al. [18] apply these to face

re-identification, which requires learning a discriminative

feature space that can generalize over a large amount of

unseen data. As such, these approaches make use of re-

lational learning losses such as contrastive [16] or triplet

loss [39]. Further work by Yu et al. [45] and Ge et al. [13]

discusses the issues caused by triplet selection bias and pro-

vides methods to overcome them.

As originally presented, these losses don’t tackle dense

image representation and instead compare holistic image

descriptors. Schmidt et al. [38] propose a “pixel-wise”

contrastive loss based on correspondences obtained from

KinectFusion [34] and DynamicFusion [30]. Fathy et al.

[10] incorporate an additional matching loss for interme-

diate layer representations. More recently, the contextual

loss [26] has been proposed as a similarity measure for non-

aligned feature representations. In this paper we generalise

the concept of “pixel-wise” contrastive loss to generic cor-

respondence data and demonstrate how the properties of the

learned feature space can be manipulated.

3. SAND Feature Extraction

The aim of this work is to provide a high-dimensional

feature descriptor for every pixel within an image, capable

of describing the context at multiple scales. We achieve

this by employing a pixel-wise contrastive loss in a siamese

network architecture.

Each branch of the siamese network consists of a series

of convolutional residual blocks followed by a Spatial Pool-

ing Pyramid (SPP) module, shown in Figure 2. The con-

volution block and base residual blocks serve as the initial

feature learning. In order to increase the receptive field, the

final two residual blocks employ an atrous convolution with

dilations of two and four, respectively.

The SPP module is formed by four parallel branches,

each with average pooling scales of 8, 16, 32 and 64, respec-

tively. Each branch produces a 32D output with a resolution
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Figure 2: SAND architecture trained for dense feature ex-

traction. The initial convolutions are residual blocks, fol-

lowed by a 4-branch SPP module and multi-stage decoder.

of (H/4,W/4). In order to produce the final dense feature

map, the resulting block is upsampled in several stages in-

corporating skip connections and reducing it to the desired

number of dimensions, n.

Given an input image I , it’s dense n-dimensional feature

representation can be obtained by

F (p) = Φ(I(p)|w), (1)

where p represents a 2D point and Φ represents a SAND

branch, parametrized by a set of weights w. I stores RGB

colour values, whereas F stores n-dimensional feature de-

scriptors, Φ : N3 → R
n.

3.1. Pixel­wise Contrastive Loss
To train this feature embedding network we build on the

ideas presented in [38] and propose a pixel-wise contrastive

loss. A siamese network with two identical SAND branches

is trained using this loss to produce dense descriptor maps.

Given a pair of input points, contrastive loss is defined as

l(y,p1,p2) =











1
2 (d)

2 if y = 1
1
2{max(0,m− d)}2 if y = 0

0 otherwise

(2)

where d is the euclidean distance of the feature embeddings

||F 1(p1) − F 2(p2)||, y is the label indicating if the pair

is a match and m is the margin. Intuitively, positive pairs

(matching points) should be close in the latent space, while

negative pairs (non-matching points) should be separated by

at least the margin.

The labels indicating the similarity or dissimilarity can

be obtained through a multitude of sources. In the simplest

case, the correspondences are given directly by disparity or

optical flow maps. If the data is instead given as homoge-

neous 3D world points q̇ in a depth map or pointcloud, these

can be projected onto pairs of images. A set of correspond-

ing pixels can be obtained through

p = π(q̇) = KPq̇, (3)

(c1, c2) = (p1,p2) where π1(q̇) 7→ π2(q̇), (4)

where π is the projection function parametrized by the cor-

responding camera’s intrinsics K and global pose P .

(a) Source (b) (0,∞)

(c) (0, 25) (d) (0,∞) - (0, 25)

Figure 3: Effect of (α, β) thresholds on the scale informa-

tion observed by each individual pixel. Large values of α
and β favour global features, while low β values increase

local discrimination.

A label mask Y is created indicating if every possible

combination of pixels is a positive example, negative ex-

ample or should be ignored. Unlike a traditional siamese

network, every input image has many matches, which are

not spatially aligned. As an extension to (2) we obtain

L(Y ,F 1,F 2) =
∑

p
1

∑

p
2

l(Y (p1,p2), p1, p2). (5)

3.2. Targeted Negative Mining

The label map Y provides the list of similar and dissim-

ilar pairs used during training. The list of similar pairs is

limited by the ground truth correspondences between the in-

put images. However, each of these points has (H×W )−1
potential dissimilar pairs ĉ2 to choose from. This only in-

creases if we consider all potential dissimilar pairs within a

training batch. For converting 3D ground truth data we can

define an equivalent to (4) for negative matches,

ĉ2 ∼ p2 where π−1
1 (c1) = π−1

2 (p2). (6)

It is immediately obvious that it is infeasible to use all

available combinations due to computational cost and bal-

ancing. In the naı̈ve case, one can simply select a fixed num-

ber of random negative pairs for each point with a ground

truth correspondence. By selecting a larger number of nega-

tive samples, we can better utilise the variability in the avail-

able data. It is also apparent that the resulting highly unbal-

anced label distributions calls for loss balancing, where the

losses attributed to negative samples are inversely weighted

according to the total number of pairs selected.

In practice, uniform random sampling serves to provide

globally consistent features. However, these properties are

not ideal for many applications. By instead intelligently tar-

geting the selection of negative samples we can control the

properties of the learned features.

Typically, negative mining consists of selecting hard ex-

amples, i.e. examples that produce false positives in the net-

work. Whilst this concept could still be applied within the

proposed method, we instead focus on spatial mining strate-

gies, as demonstrated in Figure 3. The proposed mining

strategy can be defined as

6202



ĉ′2 ∼ ĉ2 where α < ||ĉ2 − c2|| < β. (7)

In other words, the negative samples are drawn from a re-

gion within a radius with lower and higher bounds of (α, β),
respectively. As such, this region represents the area in

which the features are required to be unique, i.e. the scale

of the features.

For example, narrow baseline stereo requires locally dis-

criminative features. It is not important for distant re-

gions to be distinct as long as fine details cause measurable

changes in the feature embedding. To encourage this, only

samples within a designated radius, i.e. a small β threshold,

should be used as negative pairs. On the other hand, global

descriptors can be obtained by ignoring nearby samples and

selecting negatives exclusively from distant image regions,

i.e. large α and β = ∞.

3.3. Hierarchical Context Aggregation

It is also possible to benefit from the properties of multi-

ple negative mining strategies simultaneously by “splitting”

the output feature map and providing each section with dif-

ferent negative sampling strategies. For NS number of min-

ing strategies, NC represents the number of channels per

strategy, ⌊n/NS⌋. As a modification to (2), we define the

final pixel-level loss as

l(y,p1, p
1
2...p

NS

2 )=



























1

2

NS∑

i=1

d2(i) if y = 1

1

2

NS∑

i=1

{max(0,mi-d(i))}
2 if y = 0

0 otherwise

(8)

where pi
2 represents a negative sample from strategy i and

d2(i) =

(i+1)NC
∑

z=iNC

(

F 1(p1, z)− F 2(p
i

2, z)
)2

. (9)

This represents a powerful and generic tool that allows

us to further adapt to many tasks. Depending on the prob-

lem at hand, we can choose corresponding features scales

that best suit the property requirements. Furthermore, more

complicated tasks or those requiring multiple types of fea-

ture can benefit from the appropriate scale hierarchy. For

the purpose of this paper, we will evaluate three main cat-

egories: global features, local features and the hierarchical

combination of both.

3.4. Feature Training & Evaluation

Training. In order to obtain the pair correspondences

required to train the proposed SAND features, we make use

of the popular Kitti dataset [14]. Despite evaluating on three

of the available Kitti challenges (Odometry, Semantics and

Stereo) and the Cambridge Landmarks Dataset, the feature

network Φ is pretrained exclusively on a relatively modest

subsection of 700 pairs from the odometry sequence 00.

Each of these pairs has 10-15 thousand positive corre-

spondences obtained by projecting 3D data onto the im-

ages, with 10 negative samples each, generated using the

presented mining approaches. This includes thresholds of

(0,∞) for Global descriptors, (0, 25) for Local descrip-

tors and the hierarchical combination of both (GL). Each

method is trained for 3, 10 and 32 dimensional feature space

variants with a target margin of 0.5.

Visualization. To begin, a qualitative evaluation of the

learned features can be found in Figure 4. This visualisation

makes use of the 3D descriptors, as their values can simply

be projected onto the RGB color cube. The exception to this

is GL, which makes use of 6D descriptors reduced to 3D

through PCA. It is immediately apparent how the selected

mining process affects the learned feature space.

When considering small image patches, G descriptors

are found to be smooth and consistent, while they are dis-

criminative regarding distant features. Contrary to this,

L shows repeated features across the whole image, but

sharp contrasts and edges in their local neighbourhood.

This aligns with the expected response from each mining

method. Finally, GL shows a combination of properties

from both previous methods.

Image

Global

Local

G+L

Figure 4: Learned descriptor visualizations for 3D. From top to bottom: source image, Global mining, 25 pixel Local mining

and hierarchical approach. L descriptors show more defined edges and local changes, whereas GL provides a combination

of both.
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D Mining µ+
Global perf. Local perf.

AUC µ− AUC µ−

32 ORB NA 85.83 NA 84.06 NA

3

G 0.095 98.62 0.951 84.70 0.300

L 0.147 96.05 0.628 91.92 0.564

GL (6D) 0.181 97.86 1.161 90.67 0.709

10

G 0.095 99.43 0.730 86.99 0.286

L 0.157 98.04 0.579 93.57 0.510

GL 0.187 98.60 1.062 91.87 0.678

32

G 0.093 99.73 0.746 87.06 0.266

I 0.120 99.61 0.675 91.94 0.406

L 0.156 98.88 0.592 94.34 0.505

GL 0.183 99.28 0.996 93.34 0.642

GIL 0.214 98.88 1.217 91.97 0.784

Table 1: Feature metrics for varying dimensionality and

mining method vs. ORB baseline. Global and Local pro-

vide the best descriptors in their respective areas, while GL

and GIL maximise the negative distance and provides a bal-

anced matching performance.

Distance distributions. A series of objective measures

is provided through the distribution of positive and negative

distances in Table 1. This includes a similarity measure for

positive examples µ+ (lower is better) and a dissimilarity

measure for negative examples µ− (higher is better). Ad-

ditionally, the Area Under the Curve (AUC) measure repre-

sents the probability that a randomly chosen negative sam-

ple will have a greater distance than the corresponding pos-

itive ground truth match. These studies were carried out for

both local (25 pixels radius) and global negative selection

strategies. Additionally, the 32D features were tested with

an intermediate (75 pixel radius) and fully combined GIL

approach.

From these results, it can be seen that the global ap-

proach G performs best in terms of positive correspondence

representation, since it minimizes µ+ and maximizes the

global AUC across all descriptor sizes. On the other hand,

L descriptors provide the best matching performance within

the local neighbourhood, but the lowest in the global con-

text. Meanwhile, I descriptors provide a compromise be-

tween G and L. Similarly, the combined approach provide

an intermediate ground where the distance between all neg-

ative samples is maximised and the matching performance

at all scales is balanced. All proposed variants signifi-

cantly outperform the shown ORB feature baseline. Finally,

it is interesting to note that these properties are preserved

across the varying number of dimensions of the learnt fea-

ture space, revealing the consistency of the proposed mining

strategies.

4. Feature Matching Cost Volumes

Inspired by [5], after performing the initial feature ex-

traction on the stereo images, these are combined in a cost

volume ρ by concatenating the left and right features across

all possible disparity levels, as defined by

ρ(x, y, δ, z) =

{

F1(x, y, z) if z ≤ n

F2(x+ δ, y, z) otherwise
, (10)

where n corresponds to the dimensionality of the feature

maps. This results in ρ(H × W × D × 2n), with D rep-

resenting the levels of disparity. As such, the cost volume

provides a mapping from a 4-dimensional index to a single

value, ρ : N4 → R.

It is worth noting that this disparity replicated cost vol-

ume represents an application agnostic extension of tradi-

tional dense feature matching cost volumes [11]. The fol-

lowing layers are able to produce traditional pixel-wise fea-

ture distance maps, but can also perform multi-scale infor-

mation aggregation and deal with viewpoint variance. The

resulting cost volume is fed to a 3D stacked hourglass net-

work composed of three modules. In order to reuse the

information learned by previous hourglasses, skip connec-

tions are incorporated between corresponding sized layers.

As a final modification, additional skip connections from

the early feature extraction layers are incorporated before

the final upsampling and regression stages.

To illustrate the generality of this system, we exploit the

same cost volume and network in two very different tasks.

Stereo disparity estimation represents a traditional applica-

tion for this kind of approach. Meanwhile, semantic seg-

mentation has traditionally made use of a single input im-

age. In order to adapt the network for this purpose, only the

final layer is modified to produce an output with the desired

number of segmentation classes.

5. Results

In addition to the previously mentioned disparity and

semantic segmentation, we demonstrate applicability of

the proposed SAND features in two more areas: self-

localisation and SLAM. Each of these areas represents a

different computer vision problem with a different set of

desired properties.

For instance, stereo disparity represents a narrow base-

line matching task and as such may favour local descriptors

in order to produce sharp response boundaries. Meanwhile,

semantic segmentation makes use of implicit feature extrac-

tion in end-to-end learned representations. Due to the na-

ture of the problem, feature aggregation and multiple scales

should improve performance.

On the other side of the spectrum, self-localisation em-

phasizes wide baselines and revisitation, where the global

appearance of the scene helps determine the likely location.

In this case, it is crucial to have globally robust features that

are invariant to changes in viewpoint and appearance. Fur-

thermore, the specific method chosen makes use of holistic

image representations.

Finally, SLAM has similar requirements to self-

localisation, where global consistency and viewpoint invari-

ance is crucial to loop closure and drift minimization. How-
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Method Train (%) Eval (%)

Baseline [5] 1.49 2.87

10D-G 1.19 3.00

10D-L 1.34 2.82

10D-GL 1.16 2.91

32D-G 1.05 2.65

32D-L 1.09 2.85

32D-GL 1.06 2.79

Table 2: Disparity error on Kitti Stereo train/eval split. With

less training, the proposed methods achieves comparable or

better performance than the baseline.

ever, it represents a completely different style of applica-

tion. In this case, revisitation is detected through sparse di-

rect matching rather than an end-to-end learning approach.

Furthermore, the task is particularly demanding of it’s fea-

tures, requiring both wide baseline invariance (mapping)

and narrow baseline (VO). As such, it is an ideal use case

for the combined feature descriptors.

5.1. Disparity Estimation

Based on the architecture described in Section 4, we

compare our approach with the implementation in [5]. We

compare against the original model trained exclusively on

the Kitti Stereo 2015 dataset for 600 epochs. Our model

fixes the pretrained features for the first 200 epochs and

finetunes them at a lower learning rate for 250 epochs. The

final error metrics on the original train/eval splits from the

public Stereo dataset are found in Table 2 (lower is better).

(a) Ground Truth

(b) Baseline

(c) 32D-G-FT

(d) 32D-GL-FT

Figure 5: Semantic segmentation visualization for valida-

tion set images. The incorporation of SAND features im-

proves the overall level of detail and consistency of the seg-

mented regions.

(a) Baseline

(b) 10D-G (c) 10D-L (d) 10D-GL

(e) 32D-G (f) 32D-L (g) 32D-GL

Figure 6: Disparity visualization for two evaluation images

(prediction vs. error). The proposed feature representation

increases estimation robustness in complicated areas such

as the vehicle windows.

As seen, with 150 less epochs of training the 10D variant

achieves a comparable performance, while the 32D variants

provide up to a 30% reduction in error. It is interesting to

note that G features tend to perform better than local and

combined approaches, L and GL. We theorize that the addi-

tional skip connections from the early SAND branch make

up for any local information required, while the additional

global features boost the contextual information. Further-

more, a visual comparison for the results in shown in Figure

6. The second and fourth rows provide a visual representa-

tion of the error, where red areas indicate larger errors. As

seen in the bottom row, the proposed method increases the

robustness in areas such as the transparent car windows.

5.2. Semantic Segmentation

Once again, this approach is based on the cost volume

presented in Section 4, with the final layer producing a 19-

class segmentation. The presented models are all trained

on the Kitti pixel-level semantic segmentation dataset for

600 epochs. In order to obtain the baseline performance,
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Method IoU Class IoU Cat. Flat Nature Object Sky Construction Human Vehicle

Baseline 29.3 53.8 87.1 78.1 30.1 63.3 54.4 1.6 62.1

32D-G 31.1 55.8 87.3 78.5 36.0 59.8 57.5 6.7 66.8

32D-G-FT 35.4 59.9 88.7 83.0 46.7 62.7 63.3 6.7 68.1

32D-GL 29.4 51.7 85.1 76.6 33.8 51.8 54.4 4.3 56.3

32D-GL-FT 33.1 56.6 87.4 91.5 42.6 56.7 60.4 3.9 63.7

Table 3: Intersection over Union (%) measures for class and category average and per-category breakdown. The incorporation

of the proposed features results in an increase in accuracy in complicated categories such as Object and Human.

the stacked hourglass network is trained directly with the

input images, whereas the rest use the 32D variants with

G and LG learned features. Unsurprisingly L alone does

not contain enough contextual information to converge and

therefore is not shown in the following results.

In the case of the proposed methods, two SAND vari-

ants are trained. The first two fix the features for the first

400 epochs. The remaining two part from these models and

finetune the features at a lower learning rate for 200 addi-

tional epochs.

As seen in the results in Table 3, the proposed methods

significantly outperform the baseline. This is especially the

case with Human and Object, the more complicated cate-

gories where the baseline fails almost completely. In terms

of our features, global features tend to outperform their

combined counterpart. Again, this shows that this particular

task requires more global information in order to determine

what objects are present in the scene than exact location in-

formation provided by L features.

5.3. Self­localisation

As previously mentioned, self-localisation is performed

using the well known method PoseNet [19]. While PoseNet

has several disadvantages, including additional training for

every new scene, it has proven highly successful and serves

as an example application requiring holistic image repre-

sentation. The baseline was obtained by training a base

ResNet34 architecture as described in [19] from scratch

with the original dataset images. Once again, the pro-

posed method replaces the input images with their respec-

tive SAND feature representation. Both approaches were

trained for 100 epochs with a constant learning rate. Once

again, only versions denoted FT present any additional fine-

tuning to the original pretrained SAND features.

As shown in Table 4, the proposed method with 32D

finetuned features generally outperforms the baseline. This

contains errors for the regressed position, measured in me-

ters from the ground truth, and rotation representing the ori-

entation of the camera. As expected, increasing the dimen-

sionality of the representation (3 vs. 32) increases the final

accuracy, as does finetuning the learnt representations.

Most notably it performs well in sequences like Great-

Court, KingsCollege or ShopFacade. We theorize that this

is due to the distinctive features and shapes of the buildings,

which allows for a more robust representation. However,

the approach tends to perform worse in sequences contain-

ing similar or repeating surroundings, such as the Street se-

quence. This represent a complicated environment for the

proposed features in the context of PoseNet, since the global

representation can’t be reliably correlated with the exact po-

sition without additional information.

5.4. SLAM
All previous areas of work explore the use of our fea-

tures in a deep learning environment, where the dense fea-

ture representations are used. This set of experiments in-

stead focuses on their use in a sparse matching domain with

explicit feature extraction. The learned features serve as a

direct replacement for hand-engineered features. The base-

line SLAM system used is an implementation for S-PTAM

[33]. This system makes use of ORB descriptors to estimate

VO and create the environment maps.

We perform no additional training or adaptation of our

features, or any other part of the pipeline for this task. We

simply drop our features into the architecture that was built

around ORB. It is worth emphasising that we also do not

aggregate our features over a local patch. Instead we rely

on the feature extraction network to have already encoded

all relevant contextual information in the pixel’s descriptor.

Method
GreatCourt KingsCollege OldHospital ShopFacade StMarysChurch Street

P R P R P R P R P R P R

Baseline 10.30 0.35 1.54 0.09 3.14 0.10 2.224 0.19 2.77 0.22 22.60 1.01

3D-G 12.05 0.33 2.18 0.09 4.07 0.09 2.66 0.29 4.21 0.26 36.13 1.53

32D-G 11.46 0.30 1.62 0.09 3.30 0.11 2.20 0.25 3.67 0.23 31.92 1.24

32D-G-FT 8.226 0.26 1.52 0.08 3.21 0.9 2.01 0.22 3.16 0.22 29.89 0.99

Table 4: Position (m) and Rotation (deg/m) error for baseline PoseNet vs. SAND feature variants. FT indicates a variant

with finetuned features. The proposed methods outperforms the baseline in half of the sequence in terms of position error

and all except one in terms of rotation error.
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Method
00 02 03 04 05

APE RPE APE RPE APE RPE APE RPE APE RPE

Baseline 5.63 0.21 8.99 0.28 6.39 0.05 0.69 0.04 2.35 0.12

32D-G 13.09 0.21 41.65 0.36 6.00 0.08 6.43 0.13 6.59 0.16

32D-L 5.99 0.21 9.83 0.29 4.40 0.04 1.13 0.05 2.37 0.12

32D-GL 4.84 0.20 9.66 0.29 3.69 0.04 1.35 0.05 1.93 0.11

Method 06 07 08 09 10

Baseline 3.78 0.09 1.10 0.19 4.19 0.13 5.77 0.43 2.06 0.28

32D-G 9.10 0.13 2.05 0.21 15.40 0.17 11.50 0.45 18.25 0.35

32D-L 2.54 0.09 0.88 0.19 5.26 0.13 6.25 0.42 2.03 0.30

32D-GL 2.00 0.08 0.96 0.19 6.00 0.13 5.48 0.42 1.36 0.29

Table 5: Absolute and relative pose error (lower is better) breakdown for all public Kitti odometry sequences, except 01. APE

represents aligned trajectory absolute distance error, while RPE represents motion estimation error. On average, 32D-GL

provides the best results, with comparable performance from 32D-L.

A visual comparison between the predicted trajectories

for two Kitti odometry sequences can be found in Figure

7. As seen, the proposed method follows the ground truth

more closely and presents less drift. In turn, this shows

that our features are generally robust to revisitations and are

viewpoint invariant.

Additionally, the average absolute and relative pose er-

rors for the available Kitti sequences are shown in Table 5.

These measures represent the absolute distance between the

aligned trajectory poses and the error in the predicted mo-

tion, respectively. In this application, it can be seen how

the system greatly benefits from the hierarchical aggrega-

−300 −200 −100 0 100 200 300
x (m)

0

100

200

300

400

500

z (
m

)

Ground Truth
Baseline
32D-G
32D-L
32D-GL

−200 −100 0 100 200
x (m)

−100

0

100

200

300

z (
m

)

Ground Truth
Baseline
32D-G
32D-L
32D-GL

−60 −40 −20 0 20 40
x (m)

−160

−140

−120

−100

−80

−60

z (
m

)

Ground Truth
Baseline
32D-G
32D-L
32D-GL

Figure 7: Kitti odometry trajectory predictions for varying

SAND features vs. baseline. Top row shows two full se-

quences, with zoomed details in the bottom row. The hier-

archical approach GL provides both robust motion and drift

correction.

tion learning approach. This is due to SLAM requiring two

different sets of features. In order to estimate the motion of

the agent in a narrow baseline, the system requires locally

discriminative features. On the other hand, loop closure de-

tection and map creation requires globally consistent fea-

tures. This is refected in the results, where G consistently

drifts more than L (higher RPE) and GL provides better ab-

solute pose (lower APE).

6. Conclusions & Future Work

We have presented SAND, a novel method for dense fea-

ture descriptor learning with a pixel-wise contrastive loss.

By using sparsely labelled data from a fraction of the avail-

able training data we demonstrate that it is possible to learn

generic feature representations. While other methods em-

ploy hard negative mining as a way to increase robustness,

we instead develop a generic contrastive loss framework

allowing us to modify and manipulate the learned feature

space. This results in a hierarchical aggregation of contex-

tual information visible to each pixel throughout training.

In order to demonstrate the generality and applicabil-

ity of this approach, we evaluate it on a series of different

computer vision applications each requiring different fea-

ture properties. This ranges from dense and sparse correla-

tion detection to holistic image description and pixel-wise

classification. In all cases SAND features are shown to out-

perform the original baselines.

We hope this is a useful tool for most areas of computer

vision research by providing easier to use features requir-

ing less or no training. Further work in this area could in-

clude exploring additional desirable properties for the learnt

features spaces and the application of these to novel tasks.

Additionally, in order to increase the generality of these fea-

tures they can be trained with much larger datasets contain-

ing a larger variety of environments, such as indoor scenes

or seasonal changes.
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