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Abstract

Event cameras asynchronously report timestamped

changes in pixel intensity and offer advantages over conven-

tional raster scan cameras in terms of low-latency, low re-

dundancy sensing and high dynamic range. In recent years,

much of research in event based vision has been focused on

performing tasks such as optic flow estimation, moving ob-

ject segmentation, feature tracking, camera rotation estima-

tion and more, through contrast maximization. In contrast

maximization, events are warped along motion trajectories

whose parameters depend on the quantity being estimated,

to some time tref. The parameters are then scored by some

reward function of the accumulated events at tref. The ver-

satility of this approach has lead to a flurry of research in

recent years, but no in-depth study of the reward chosen

during optimization has yet been made. In this work we ex-

amine the choice of reward used in contrast maximization,

propose a classification of different rewards and show how

a reward can be constructed that is more robust to noise and

aperture uncertainty. We validate our work experimentally

by predicting optical flow and comparing to ground-truth.

1. Introduction

Event cameras, also known as Dynamic Vision Sensors

or Neuromorphic Cameras [1], have presented vision and

robotics researchers with a new class of visual information.

Where traditional frame-based cameras sample the scene at

a fixed rate, event cameras capture visual information asyn-

chronously, corresponding to intensity changes at each pixel

location. As the intensity at a pixel changes above a cer-

tain threshold, an event is generated as a tuple of x, y posi-

tion, timestamp t and intensity change sign s. Event based

cameras offer several advantages over traditional cameras

in terms of low latency, high dynamic range (120 dB) and

low power consumption (10 mW) [2].

Event data is inherently sparse, because static back-

grounds or otherwise slowly changing elements in the scene

don’t generate events. Since conventional cameras sample

the scene based on a fixed clock, they under-sample swiftly

(a) Event camera moves

around a scene.

(b) Events (red) generated

by intensity gradients in the

scene (black).
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(c) Plot of reward vs opti-

cal flow estimate. Red dot-

ted lines = ground truth, black

circle = estimate.

(d) Motion-compensating the

events reveals the original

gradients.

Figure 1: Contrast Maximization: Events generated by

scene or camera motion (1a) form a point cloud in a space-

time volume (1b). If the events are motion-compensated

by some trajectory, the contrast at that point can be evalu-

ated by some reward. Since the resulting reward has gradi-

ents with respect to trajectory parameters (1c), the original

trajectory can be estimated, giving optic flow and motion-

correction (1d) in one step.

changing scenes or redundantly over-sample slowly chang-

ing scenes. In contrast, an event camera samples the scene

at a rate proportional to the dynamics of the scene.

Events carry little information individually and so are not

meaningfully treated in isolation. So far, event based algo-

rithms have been in one of two categories: those which op-

erate on individual events to update some previous state and

those which operate on a set of events to perform a given

task or estimate a particular quantity [3]. Those methods

which operate on individual events typically require historic
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information, such as grayscale images reconstructed from

the event stream to make inferences. On the other hand,

those which operate on a set of events require no external

information. As noted in [3], the former category can be

further broken down into those methods which (a) discard

the temporal information carried by the events, for exam-

ple by accumulating the events into frames over a temporal

window and then performing computations on those frames

(such as [4–7]) and those (b) which utilize the temporal in-

formation of the events (such as [3, 6, 8–18]). This group

tends to require more novel techniques, since traditional

computer vision algorithms are not well suited to dealing

with the continuous time representations that events attempt

to approximate.

One such technique is that of contrast maximization

(CM), whereby events are warped along point trajectories

to the image plane. The trajectories can then be optimized

with respect to the resulting image of warped events (IWE)

H to recover the point trajectories that best fit the original

set of events.

1.1. Contrast Maximization

Contrast maximization (CM) emerged recently as a

promising technique for solving a number of problems in

event based vision. Since events are produced by inten-

sity gradients moving over the image plane, CM makes the

assumption that if the events are motion compensated by

warping them along their point trajectories to some dis-

cretized plane at time tref, events generated by the same

point on the intensity gradient will project to the same lo-

cation at tref and accumulate there, (see Fig. 2) giving

a resulting image of warped events H (Fig. 1). While it

is possible to generate an IWE with any arbitrary trajec-

tory, certain quantities such as the contrast of the IWE will

be maximized by warping the events along the true point

trajectories. More formally, given an event defined by its

image position, time-stamp and sign of intensity change,

en = {xn, tn, sn}, we define the warped location of the

event with respect to the warp parameters θ as

x′

n = W (xn, tn; θ), (1)

[3], where W is the warping function. Thus the image of

warped events from Ne events can be formulated as

H(x; θ) =

Ne∑

n=1

bnδ(x− x′

n), (2)

[3], where each pixel x sums the warped events x′

n that map

to it (indicated by δ since they represent intensity spikes). If

bk is set equal to 1 the number of events are summed, if

bk = sk the event polarities are summed. This IWE can

now be evaluated using a reward function. Since a well pa-

rameterized IWE will warp events to the locations of inten-

sity gradients on the image plane, the IWE will seem sharp

and hence the variance of the IWE is commonly used as a

measure of contrast. Thus, the steps of the CM method are:

• Collect a set of events generated by gradients moving

across the image plane

• Based on a motion assumption, generate image of

warped events H

• Use a reward function to evaluate H

• Optimize the reward with respect to the motion param-

eters

An advantage of this method is that the problem of event

associations (which events were produced by the same fea-

ture) is solved implicitly. CM is a versatile method and has

been recently used to estimate camera rotation on a static

scene [12], estimate optical flow [13], track features in the

event stream [14], estimate camera motion and depth [3],

perform moving object detection [15], motion segmenta-

tion [18] and provide a training signal for deep learning us-

ing events [6].

1.2. Contributions

Our contributions are:

• To analyze the properties of CM reward functions and

provide new insights into existing reward functions

• Show how different reward functions can be used and

combined to get improved results on noisy data with

large aperture-uncertainty

• Quantify this improvement using optical flow as a

benchmark, without loss of generality for the CM

method.

An unsolved problem with CM is determining how many

events should be processed at once. For the sake of effi-

ciency the warping model used is typically a linearization

of some higher dimensional trajectory, thus it is important

that the set of events does not span too great a time. How-

ever this time is again dependent on the dynamics of the

scene. We propose a new solution to this problem which is

fully compatible with the general CM framework.

2. Reward Functions

In [3, 12] the total variance of I,

rσ2(H) =
1

Np

∑

i,j

(hi,j − µH)2, (3)

was used to evaluate the warp, where Np is the number of

pixels, µH is the mean of H and hi,j is the value of pixel i, j

in H . In [13] the sum of squares of H (4) was used. These

two rewards are essentially equivalent as shown in [12]. The

reason these two rewards work is because they dispropor-

tionately reward event accumulations of a high magnitude
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(a) (b)

Figure 2: Events from circle moving across the image plane

projected along a good (2b) and a poor (2a) estimate of the

actual trajectory. In 2a sum of accumulations squared (rSoS)

is 5, 683 while in 2b rSoS = 27, 884.

(see Fig. 2). This occurs since, at the optimal trajectory,

events are accumulated onto the small set of locations on

the image plane at tref that was occupied by the original

gradients at tref. In other words any reward will work that

rewards high accumulations more than the same total accu-

mulations spread across more locations. At the same time,

if most events are accumulated at fewer locations, it means

that most locations at tref contain no events at all. Therefore

we propose to explore the benefits of the following rewards

for contrast maximization:

Sum of Squares (rSoS):

rSoS(H) =
∑

i,j

h(i, j)2. (4)

This reward was used in the past [13] and is sufficiently sim-

ilar to the variance (rσ2 ) that we will not consider variance

in this work.

Sum of Exponentials (rSoE):

rSoE(H) =
∑

i,j

eh(i,j). (5)

Exponentials reward higher numbers even more dispropor-

tionately than do polynomials (for proof of this note that

limn→∞

nb

an = 0). Therefore this reward is more extreme

than rSoS or rσ2 .

Max of Accumulations (rMoA):

rMoA(H) = max(h(i, j) ∈ H). (6)

Simply returns the greatest accumulation. This reward takes

no other information into account and thus is yet more ex-

treme than exponentiation.

Inverse Sum of Accumulations (rISoA):

rISoA(H) =
1∑

i,j h(i, j) > 1
. (7)

This reward inverts the count of the number of locations

with an event accumulated to them. The count will be at

a minimum at the correct trajectory, so in order to define

a reward we invert the sum. A similar reward was used

in [15].
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(a) rSoS of events generated by

a line (motion vector in red).
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(b) rSoS of events generated by

a cross (motion vector in red).

Figure 3: The reward function (using rSoS) of the events

generated by a straight line segment (3a) shows the effect

of aperture problem on contrast maximisation techniques

when compared to the reward function of a cross moving

with the same optic flow velocity indicated by red dotted

lines (3b)

Sum of Suppressed Accumulations (rSoSA):

rSoSA(H) =
∑

i,j

e(−h(i,j)∗p). (8)

This reward gives locations with few accumulations in them

a higher value than locations with many accumulations

in them and saturates for large values of H(x, y). This

reward is maximized at the optimal trajectory, since most

events are accumulated at few locations and thus at most

locations xl, yl will return a high value. The factor p is an

arbitrary shifting factor which decides the saturation point.

Of these rewards, rSoS, rSoE and rMoA favor trajecto-

ries that result in large accumulations (they are magnitude-

rewarding) and rISoA and rSoSA favor those that result in

many locations having few or no accumulations (they are

sparsity-rewarding).

2.1. Aperture Problem

The aperture problem arises when optical flow is esti-

mated using only a local region of a moving object. In this

case it can happen that only a line feature of the object is

visible and thus only the velocity component perpendicular

to the local line feature can be estimated. Contrast maxi-

mization techniques don’t suffer from the aperture problem

in the way that local optic flow estimators such as Lucas-

Kanade [19] do, since they consider the scene globally.

However, long line segments do introduce uncertainty to

the optic flow estimates when using contrast maximization,

which can be considered analogous to the aperture prob-

lem. A line segment moving over the DVS image plane

will generate events which lie on a plane in the space-time

volume [20]. Although warping the events along the trajec-

tory of the line segment will generate a large value in the

reward function, trajectories which vary slightly but still lie

on the event plane will generate large values as well. This

can be seen in Fig. 3a; the reward function for the straight
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line segment features a long ridge, along which the values

are similar to each other. Indeed, there are likely to be two

local maxima to either side of the true trajectory in cases of

pure line segments and none at the true trajectory. This is

because it is possible to achieve greater event accumulations

when warping over the diagonal of the plane; since greater

accumulations are rewarded in rSoS, these trajectories will

maximize the reward function (see Fig. 4).

Once the line segment gains features on other axes, this

uncertainty is much reduced, the region around the ground

truth forming a sharp spike, since changing the trajectory

slightly in the direction of one of the image gradient’s prin-

cipal axes will cause events along the other axis to accumu-

late less (Fig. 3b).

For sparsity-rewarding rewards the reward will experi-

ence much stronger relative change to slightly incorrect tra-

jectories and thus suffer less from aperture problem. The

reason for this is demonstrated in Fig. 4; while warping the

events parallel to the plane of events diagonally is not likely

to influence the rSoS strongly, it will cause the events on the

resulting IWE to take up substantially more space and thus

strongly affect the rISoA. This effect is validated experimen-

tally in datasets with dominant line segments (see Section

4.1, 4.3) and is visualized in Fig. 5.

2.2. Noise Tolerance

As sparsity-rewarding methods essentially measure the

number of locations containing events in them, they are

susceptible to noise. For example, rISoA becomes entirely

meaningless in the worst case, where the event stream be-

comes so noisy that every location at tref contains at least

one event. As more noise is added, these rewards become

more and more uniform, until they are almost entirely flat

(see Fig. 8).

2.3. Data Sufficiency

Contrast maximization falls into the category of algo-

rithms that operate on groups of events [3]. This means that

events need to be collected over some period of time be-

fore a meaningful estimate, such as optic flow can be made.

In practice, waiting for movement of at least several pix-

els is necessary for a reliable estimate (see Fig. 7), which

can take a long time for slow moving gradients. Estimat-

ing for how long events should be collected before contrast

maximization is applied is an important task, since the al-

gorithms presented in [3, 13, 15, 18] make an assumption

of constant velocity over small periods of time in order to

work. Further, the number of events generated by gradi-

ents in the image is dependent on the relative strength of

the gradients. In our case it is necessary to know how many

events the gradient is producing per pixel moved, since the

rSoSA reward contains a shifting parameter, which needs to

be tuned according to this value.

t 

y 

x 

Figure 4: The plane in x, y, t represents a set of events

generated by a line segment moving in the direction of

the y axis. If the events are projected along the veloc-

ity vector (dashed arrows), they accumulate (green dou-

ble arrow), giving the rISoA1. The integral of those accu-

mulations (green area) squared is rSoS1. If the events are

instead (incorrectly) projected across the diagonal of the

plane, the corresponding accumulations (blue arrow) give

rISoA2, which being the inverse of the arrow length becomes

smaller. The rSoS2 (blue area) however becomes larger,

since it rewards the larger peak in the accumulations. Thus

maximizing the rISoA would give a correct result, the rSoS

an incorrect one, showing how sparsity-rewarding rewards

are less susceptible to the aperture problem.

We can estimate how many events are produced per pixel

moved directly from the rSoS reward, under projection along

the zero velocity. As a structure begins to move onto a new

pixel, it generates events proportional to the intensity of its

gradients. At v = 0, these events on the same pixel will ac-

cumulate, causing the rSoS reward to grow exponentially.

As the structure moves on to the next pixel, exponential

growth will have to start anew, since the structure will be

entering an empty set of pixels (see Fig. 6a). Thus the rate

of change of the rSoS along the v = (0, 0) trajectory should

flatten off periodically as the structure moves over the im-

age plane. In real data, this is what happens (see Fig. 6),

allowing estimation of whether contrast maximization will

be able to give an optic flow estimate given a set of events.

3. Combined Reward Functions

We have identified two classes of reward, sparsity- and

magnitude-rewarding, that can be used to optimize the total

contrast of an image of warped events and shown that the

one class should be much better at dealing with aperture-

uncertainty while the other should be more capable of tol-

erating noise. We wish now to use that knowledge to con-
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Figure 5: Various rewards sampled vs optical velocities vx, vy for a dataset with strong line features (see Fig. 9). Ground

truth is indicated by red dotted lines. Note that the magnitude-rewarding rSoS, rSoE and rMoA are much more prone to having

incorrect local maxima, for reasons illustrated in Fig. 4 than the sparsity rewarding rISoA and rSoSA.

t

x

y

(a) Events (white cubes) are ac-

cumulated on the image plane as

an edge (grey) moves in the di-

rection of the red arrow. The

green arrow indicates the first

crossing of a pixel boundary

(where d

dx
rSoS), the orange arrow

the second.

(b) rSoS as events are

added.

(c) Derivative of 6c.

Figure 6: As an edge (grey) moves across the image plane

of an idealised event camera, it generates some number

of events proportional to the intensity of the edge. These

events can be summed and squared to give the rSoS. As the

edge moves onto the next pixel, the rSoS grows at a slower

rate, so the derivative of rSoS with respect to added events

becomes close to zero. The minimum number of events re-

quired to compute the optic flow is shown by the green ar-

row. This effect can be seen in real data - Fig. 6b shows

the rSoS as events are added from the sequence in Section 2.

In Fig. 6c the temporal derivative is zero when the object

crosses pixel boundaries.

struct a new, hybrid reward, which is able to take the best

from both classes of reward. Since rSoSA gave better re-

sults than rISoA (since it is not a binary measure it is slightly

more noise-tolerant), we combined this with a variety of

magnitude-rewarding rewards:

• rR1 = rSoS + rSoSA In this reward we use the rSoS

reward with the constraint during optimization that

successive improved estimates must not decrease the

rSoSA.

• rR2 = rSoS+rSoSA+rSoE Here we use the same reward

as rR1, except that when we have finally found an es-
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Figure 7: The current optic flow estimate using rSoS (blue

line) is noisy and uncertain when the structure has moved

less than two pixels, but converges to the ground truth (red

line) as the structure moves across more pixels and thus

more events are added.

timate, we use it as a starting point for gradient ascent

using the rSoE.

The rSoE gives precise and noise-tolerant results, given that

the starting point for the optimization used is close to the

maximum, which is why we incorporate it in the rR2 reward.

Given a bad initial point rSoE performs poorly since it is not

sufficiently smooth for most optimization methods.

4. Experimental Results

We tested our rewards on high quality optical flow

ground truth data collected from a DAVIS 240C event cam-

era [21], using a linear slider to pan over a variety of scenes.

We tested on two simple sequences of a line segment (Fig.

9) and a circle (Fig. 10) moving across the image plane.

The line segment sequence introduces a lot of aperture-

uncertainty, while the circle has none. We also tested the

rewards on a real office scene (Fig. 11) to show that the

hypotheses tested on the circle and line segment carry over

to real world scenes. We restricted ourselves to relatively

simple scenes, since it made it easier to collect ground truth

data and control the level of aperture uncertainty. The use-

fulness of the CM framework on complex scenes has been

shown in several other works [3, 6, 12–15, 18].

In the experiments we added random noise to the event

stream to give us a signal/noise ratio of 1/10. In this way

we were able to show the benefits of different rewards with

respect to noise, which can be quite a significant component

of current event camera output, as well as the benefits with
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Figure 8: Various rewards sampled vs optical velocities vx, vy at various Event-to-Noise (E/N) ratios. Ground truth indicated

by red dotted lines. Note that the magnitude-rewarding rewards are much more robust at high event to noise ratios, still

giving reasonable estimates at 1/100 E/N. The sparsity-rewarding rewards fail, becoming increasingly flat distributions with

the center at v = 0, 0.

respect to aperture-uncertainty.

In all of the experiments the same gradient-ascent opti-

mization was used, with numeric gradients derived through

the same method. Optimization was performed on consecu-

tive batches of events, using a sliding window with a width

of one pixel displacement with regard to the optic flow ve-

locity, with 100 samples taken per sequence.

Optical flow with respect to events is a slightly differ-

ent creature from the conventional definition; usually op-

tic flow measures the displacement of pixels between con-

secutive frames, hence the usual way of evaluating optical

flow is through looking at the average endpoint error. For

events however, this definition makes less sense, since op-

tical flow relates to the velocity of an event on the image

plane, not the displacement. Instead we will look at the

average absolute magnitude error µ(|ME|), so the average

error of the magnitudes of the optical flow vector estimates

with respect to ground truth, and the average angular error

µ(AE), so the average error of the estimated vector angles.

This way we can also look at the standard deviation of the

errors, σ2(|ME|) and σ2(AE).

4.1. Line Segment Sequence

The line-segment sequence (Fig. 9) illustrates the be-

havior of the different rewards when exposed to data with

strong line features (this particular sequence consisting only

of line features). As discussed in Section 2.1, one would

expect sparsity-rewarding rewards to perform better on this

sequence, at least in the case where the event to noise ratio

is high. Indeed, of the conventional rewards, the sparsity re-

warding ones rISoA and rSoSA score best under this extreme

case of aperture uncertainty (Tab. 1).

However, as hypothesized, once noise is added to the

event stream, the sparsity-rewarding rewards perform much

worse than the magnitude-rewarding ones. It is worth point-

ing out here the remarkable robustness of the CM method;

even with an order of magnitude more noise polluting the

events, the optic flow estimates are still quite reasonable and

only slightly deteriorated. The hybrid methods, which are

able to take advantage of the best properties of both types

or reward, perform best under both normal conditions and

with large amounts of noise.

4.2. Circle Sequence

In the circle sequence the event camera slides past an

image of a circle generating the events visualized in Fig.

10. This sequence illustrates a scene in which there is no

aperture-uncertainty, since there are no dominant line fea-

tures in the resulting events. In fact, the winner in such a

scene is the commonly implemented rSoS, which performs

almost three times better than even our hybrid rewards,

though these have got slightly better accuracy in the aver-

age angular error (Tab. 2).

Once noise is added to the event stream however, the

accuracy of rSoS is two entire orders of magnitude worse,

whereas the hybrid reward rR2 only becomes five times

12305



Line Segment Sequence

Event/Noise = 1/0 (No Noise)

r µ(|ME|) σ
2(|ME|) µ(AE) σ

2(AE)
rSoS 38.29 1.68 -0.311 0.007

rSoE 137.51 14.02 -0.546 0.019

rMoA 22.41 10.92 -0.280 0.038

rISoA 11.36 5.41 -0.204 0.006

rSoSA 12.79 1.02 -0.234 0.006

rR1 10.31 3.26 -0.122 0.003

rR2 10.50 3.14 -0.103 0.004

Event/Noise = 1/10

r µ(|ME|) σ
2(|ME|) µ(AE) σ

2(AE)
rSoS 49.14 25.48 -0.611 0.077

rSoE 47.64 30.86 -0.712 0.401

rMoA 82.11 33.63 -0.482 0.051

rISoA 88.06 11.25 0.559 1.096

rSoSA 67.05 3.60 -0.635 0.010

rR1 55.33 12.56 -0.547 0.012

rR2 37.48 3.52 -0.440 0.007

Table 1: Absolute magnitude error |ME| and angular error

AE of flow estimate vectors for line segment sequence

(a) Experimental setup:

Event camera on a linear

slider pans past circle.

(b) Timeslice of events to

be processed.

(c) Noise added to the

events.

(d) Motion-compensated

events using rR2.

Figure 9: Line segment sequence: in the experimental

setup, the event camera is moved past a line segment using

a linear slider. A slice of the resulting events is processed to

extract optical flow estimates, both with noise added to the

event stream and once using only the original events.

worse, clearly beating the other methods. Interestingly, the

extreme magnitude-rewarding rewards rSoE and rMoA ac-

tually improve as the scene becomes nosier. This is be-

cause these reward functions have quite strong peaks and

are thus prone to local convergence issues; the noise effec-

tively blurs the reward function and thus makes gradient as-

cent easier. In the interest of a fair comparison, the same

amount of smoothing was applied to all rewards during op-

timization; for more details on the effect of smoothing on

different reward types, see the supplementary materials.

Circle Sequence

Event/Noise = 1/0 (No Noise)

r µ(|ME|) σ
2(|ME|) µ(AE) σ

2(AE)
rSoS 0.49 0.37 -0.153 0.010

rSoE 72.14 11.20 1.517 0.033

rMoA 73.45 18.32 1.066 0.051

rISoA 2.37 1.91 -0.305 0.034

rSoSA 1.25 0.78 -0.350 0.009

rR1 1.58 1.27 -0.100 0.009

rR2 1.69 1.42 -0.036 0.040

Event/Noise = 1/10

r µ(|ME|) σ
2(|ME|) µ(AE) σ

2(AE)
rSoS 43.41 2.52 -0.512 0.010

rSoE 23.56 27.46 0.354 0.640

rMoA 11.10 3.83 0.132 0.090

rISoA 89.33 7.76 0.898 1.053

rSoSA 72.79 2.61 -0.737 0.009

rR1 57.95 14.91 -0.531 0.014

rR2 5.29 1.57 0.113 0.053

Table 2: Absolute magnitude error |ME| and angular error

AE of flow estimate vectors for circle sequence

(a) Experimental setup:

Event camera on a linear

slider pans past circle.

(b) Timeslice of events to

be processed.

(c) Noise added to the

events.

(d) Motion-compensated

events using rR2.

Figure 10: Circle sequence: in the experimental setup, the

event camera is moved past a circle using a linear slider. A

slice of the resulting events is processed to extract optical

flow estimates, both with noise added to the event stream

and once using only the original events.

4.3. Office Sequence

The office sequence (Fig. 11) consists of panning across

an office scene, to which the ground truth optic flow veloc-

ities were hand-annotated afterward. The sequence serves

to illustrate that the ideas tested in the previous experiments

also apply to real scenarios. As is often the case in real

world sequences, there are several strong line features visi-

ble in the event stream, due to the edges of windows, tables,

etc. As such, it is hardly surprising to see that our hybrid

approach is able to out-compete the existing methods both

with and without added noise (Tab. 3).
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(a) Experimental setup:

Event camera on a linear

slider pans past circle.

(b) Timeslice of events to

be processed.

(c) Noise added to the

events.

(d) Motion-compensated

events using rR2

Figure 11: Office sequence: in the experimental setup, the

event camera is panned around an office. A slice of the re-

sulting events is processed to extract optical flow estimates,

both with noise added to the event stream and once using

only the original events.

Office Sequence

Event/Noise = 1/0 (No Noise)

r µ(|ME|) σ
2(|ME|) µ(AE) σ

2(AE)
rSoS 5.58 3.58 -0.116 0.029

rSoE 17.89 18.43 0.178 0.879

rMoA 19.79 19.68 0.369 0.890

rISoA 16.28 18.64 -0.064 0.365

rSoSA 5.47 3.28 -0.170 0.041

rR1 9.09 12.93 -0.009 0.041

rR2 4.95 3.23 -0.008 0.112

Event/Noise = 1/10

r µ(|ME|) σ
2(|ME|) µ(AE) σ

2(AE)
rSoS 16.07 5.95 -0.455 0.042

rSoE 15.83 14.98 -0.084 0.766

rMoA 20.26 17.40 -0.139 0.692

rISoA 46.82 3.55 -0.679 1.121

rSoSA 49.09 0.40 -0.993 0.684

rR1 48.66 1.45 -1.119 0.312

rR2 15.08 14.66 -0.048 0.262

Table 3: Absolute magnitude error |ME| and angular error

AE of flow estimate vectors for office sequence

4.4. Real World Noise

Since the previous experiments include synthetic noise,

we show a sequence with natural noise. In our experience

even if the contrast thresholds are re-calibrated, extreme

temperatures, direct sunlight, or very dim scenes tend to

generate large amounts of noise in current event cameras.

Even in a perfect sensor, phenomena such as lens flare can

cause large numbers of “erroneous” events to be generated.

In Fig. 12 many noise events are generated as a cyclist rides

past while the event camera faces straight into the sun. In

this case, noise events are generated by both the sun as well

Bicycle Sequence - no Artificial Noise

r µ(|ME|) σ
2(|ME|) µ(AE) σ

2(AE)
rSoS 30.92 42.31 -0.428 0.409

rSoE 22.12 36.01 -0.163 0.577

rMoA 48.45 59.18 0.434 0.652

rISoA 543.58 585.26 0.292 0.861

rSoSA 36.32 41.68 -0.532 0.350

rR1 31.05 42.46 -0.426 0.405

rR2 8.83 13.26 -0.136 0.270

Figure 12: Below: Absolute magnitude error |ME| and

angular error AE of flow estimate vectors for bicycle se-

quence. Above: Conventional frame of the scene, as a bicy-

cle moves past the camera. On the right, the resulting events

are shown in the spatiotemporal volume, displaying signifi-

cant amounts of noise. Figure animates in Adobe Acrobat.

as by lens flaring. Here the rR2 reward performs substan-

tially better than the other metrics, with rSoE following sec-

ond, showing that our findings translate well to real-world

settings.

5. Conclusion

In this paper we show that the underlying assumption

made about contrast maximization is that good trajectory

estimates are those where events accumulate in fewer lo-

cations. From this observation we are able to devise two

categories of reward function, sparsity, and magnitude re-

warding functions and from this categorization create four

other rewards.

We touch upon the issue of how many events are needed

to make good predictions and how this quantity can be esti-

mated. We show which kind of data is likely to cause errors

due to aperture uncertainty and that sparsity-rewarding re-

wards are much less susceptible to this uncertainty. We test

various derived reward functions on real data and confirm

the hypothesized traits of sparsity and magnitude reward-

ing functions. Using this knowledge we create the rR1 and

rR2 rewards, which experimentally perform better than pre-

vious rewards. Thus, we hope that this work will aid future

event-based vision research, providing better reward func-

tions and stimulating discussion about what these rewards

fundamentally do.
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