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Abstract

Obtaining deep networks that are robust against adver-

sarial examples and generalize well is an open problem. A

recent hypothesis [102, 95] even states that both robust and

accurate models are impossible, i.e., adversarial robustness

and generalization are conflicting goals. In an effort to clar-

ify the relationship between robustness and generalization,

we assume an underlying, low-dimensional data manifold

and show that: 1. regular adversarial examples leave the

manifold; 2. adversarial examples constrained to the mani-

fold, i.e., on-manifold adversarial examples, exist; 3. on–

manifold adversarial examples are generalization errors,

and on-manifold adversarial training boosts generaliza-

tion; 4. regular robustness and generalization are not nec-

essarily contradicting goals. These assumptions imply that

both robust and accurate models are possible. However,

different models (architectures, training strategies etc.) can

exhibit different robustness and generalization characteris-

tics. To confirm our claims, we present extensive experi-

ments on synthetic data (with known manifold) as well as

on EMNIST [19], Fashion-MNIST [106] and CelebA [58].

1. Introduction

Adversarial robustness describes a deep network’s abil-

ity to defend against adversarial examples [97], impercep-

tibly perturbed images causing mis-classification. These

adversarial attacks pose severe security threats, as demon-

strated against Clarifai.com [57, 8] or Google Cloud Vi-

sion [37]. Despite these serious risks, defenses against such

attacks have been largely ineffective; only adversarial train-

ing, i.e., training on adversarial examples [62, 30], has been

shown to work well in practice [6, 5] – at the cost of compu-

tational overhead and reduced accuracy. Overall, the prob-

lem of adversarial robustness is left open and poorly under-

stood – even for simple datasets such as EMNIST [19] and

Fashion-MNIST [106].

The phenomenon of adversarial examples itself, i.e.,

their mere existence, has also received considerable atten-
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Figure 1: Adversarial examples, and their (normalized) dif-

ference to the original image, in the context of the underly-

ing manifold, e.g., class manifolds “5” and “6” on EMNIST

[19], allow to study their relation to generalization. Regular

adversarial examples are not constrained to the manifold, cf.

(a), and often result in (seemingly) random noise patterns;

in fact, we show that they leave the manifold. However, ad-

versarial examples on the manifold can be found as well,

cf. (b), resulting in meaningful manipulations of the image

content; however, care needs to be taken that the actual, true

label wrt. the manifold does not change, cf. (c).

tion. Recently, early explanations, e.g., attributing adver-

sarial examples to “rare pockets” of the classification sur-

face [97] or linearities in deep networks [30], have been

superseded by the manifold assumption [27, 99]: adver-

sarial examples are assumed to leave the underlying, low-

dimensional but usually unknown data manifold. However,

only [92] provide experimental evidence supporting this as-

sumption. Yet, on a simplistic toy dataset, Gilmer et al.

[27] also found adversarial examples on the manifold, as
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also tried on real datasets [93, 11, 110], rendering the man-

ifold assumption questionable. Still, the manifold assump-

tion fostered research on novel defenses [39, 72, 82].

Beyond the existence of adversarial examples, their re-

lation to generalization is an important open problem. Re-

cently, it has been argued [102, 95] that there exists an in-

herent trade-off, i.e., robust and accurate models seem im-

possible. While Tsipras et al. [102] provide a theoretical

argument on a toy dataset, Su et al. [95] evaluate the robust-

ness of different models on ImageNet [79]. However, these

findings have to be questioned given the results in [27, 77]

showing the opposite, i.e., better generalization helps ro-

bustness.

In order to address this controversy, and in contrast to

[102, 96, 77], we consider adversarial robustness in the con-

text of the underlying manifold. In particular, to break the

hypothesis down, we explicitly ask whether adversarial ex-

amples leave, or stay on, the manifold. On EMNIST, for ex-

ample, considering the class manifolds for “5” and “6”, as

illustrated in Fig. 1, adversarial examples are not guaranteed

to lie on the manifold, cf. Fig. 1 (a). Adversarial examples

can, however, also be constrained to the manifold, cf. Fig. 1

(b); in this case, it is important to ensure that the adversarial

examples do not actually change their label, i.e., are more

likely to be a “6” than a “5”, as in Fig. 1 (c). For clarity, we

refer to unconstrained adversarial examples, as illustrated

in Fig. 1 (a), as regular adversarial examples; in contrast to

adversarial examples constrained to the manifold, so-called

on-manifold adversarial examples.

Contributions: Based on this distinction between regular

robustness, i.e., against regular, unconstrained adversarial

examples, and on-manifold robustness, i.e., against adver-

sarial examples constrained to the manifold, we show:

1. regular adversarial examples leave the manifold;

2. adversarial examples constrained to the manifold, i.e.,

on-manifold adversarial examples, exist and can be

computed using an approximation of the manifold;

3. on-manifold robustness is essentially generalization;

4. and regular robustness and generalization are not nec-

essarily contradicting goals, i.e., for any arbitrary but

fixed model, better generalization through additional

training data does not worsen robustness.

We conclude that both robust and accurate models are pos-

sible and can, e.g., be obtained through adversarial train-

ing on larger training sets. Additionally, we propose on-

manifold adversarial training to boost generalization in set-

tings where the manifold is known, can be approximated,

or invariances of the data are known. We present exper-

imental results on a novel MNIST-like, synthetic dataset

with known manifold, as well as on EMNIST [19], Fashion-

MNIST [106] and CelebA [58]. We will make our code and

data publicly available.

2. Related Work

Attacks: Adversarial examples for deep networks were first

reported in [97]; the problem of adversarial machine learn-

ing, however, has already been studied earlier [9]. Adver-

sarial attacks on deep networks range from white-box at-

tacks [97, 30, 49, 71, 66, 61, 14, 78, 21, 59], with full ac-

cess to the model (weights, gradients etc.), to black-box at-

tacks [17, 10, 96, 38, 80, 67], with limited access to model

queries. White-box attacks based on first-order optimiza-

tion, e.g., [61, 14], are considered state-of-the-art. Due to

their transferability [57, 108, 70], these attacks can also

be used in a black-box setting (e.g. using model stealing

[87, 70, 101, 103, 69, 43]) and have, thus, become standard

for evaluation. Recently, generative models have also been

utilized to craft – or learn – more natural adversarial exam-

ples [93, 11, 110, 82]. Finally, adversarial examples have

been applied to a wide variety of tasks, also beyond com-

puter vision, e.g., [26, 18, 98, 48, 36, 55, 2, 16].

Defenses: Proposed defenses include detection and rejec-

tion methods [31, 25, 54, 60, 3, 63], pre-processing, quan-

tization and dimensionality reduction methods [12, 73, 7],

manifold-projection methods [39, 72, 82, 86], methods

based on stochasticity/regularization or adapted architec-

tures [109, 7, 68, 88, 34, 42, 76, 44, 50, 107], ensemble

methods [56, 94, 33, 100], as well as adversarial training

[109, 65, 35, 83, 90, 53, 61]; however, many defenses have

been broken, often by considering “specialized” or novel

attacks [13, 15, 5, 6]. In [6], only adversarial training, e.g.,

the work by Madry et al. [61], has been shown to be effec-

tive – although many recent defenses have not been studied

extensively. Manifold-based methods, in particular, have

received some attention lately: in [39, 72], generative ad-

versarial networks [29] are used to project an adversarial

example back to the learned manifold. Similarly, in [82],

variational auto-encoders [47] are used to perform robust

classification.

Generalization: Research also includes independent

benchmarks of attacks and defenses [13, 15, 5, 6, 85],

their properties [57, 84], as well as theoretical questions

[34, 42, 23, 99, 27, 88, 102, 104]. Among others, the ex-

istence of adversarial examples [97, 30, 99] raises many

questions. While Szegedy et al. [97] originally thought

of adversarial examples as “extremely” rare negatives and

Goodfellow et al. [30] attributed adversarial examples to the

linearity in deep networks, others argued against these as-

sumptions [27, 99]. Instead, a widely accepted theory is the

manifold assumption; adversarial examples are assumed to

leave the data manifold [27, 99, 39, 72, 82].

This paper is particularly related to work on the connec-

tion of adversarial examples to generalization [102, 95, 27,

77]. Tsipras et al. [102] and Su et al. [95] argue that there

exists an inherent trade-off between robustness and gen-
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Figure 2: Regular and on-manifold adversarial examples on our synthetic dataset, FONTS, consisting of randomly trans-

formed characters “A” to “J”, EMNIST [19], F-MNIST [106] and CelebA [58]. On FONTS, the manifold is known by

construction; in the other cases, the class manifolds have been approximated using VAE-GANs [51, 75]. The difference (nor-

malized; or their magnitude on CelebA) to the original test image reveals the (seemingly) random noise patterns of regular

adversarial examples in contrast to reasonable concept changes of on-manifold adversarial examples.

eralization. However, the theoretical argument in [102] is

questionable as adversarial examples are allowed to change

their actual, true label wrt. the data distribution, as illus-

trated Fig. 1 (c). The experimental results obtained in

[95, 77] stem from comparing different architectures and

training strategies; in contrast, we consider robustness and

generalization for any arbitrary but fixed model. On a sim-

ple synthetic toy dataset, Gilmer et al. [27] show that on-

manifold adversarial examples exist. We further show that

on-manifold adversarial examples also exist on real datasets

with unknown manifold, similar to [110]. In contrast to

[27, 110], we utilize a gradient-based attack on the mani-

fold, not in image space. Our work is also related to [24] and

[65, 64] where variants of adversarial training are used to

boost (semi-)supervised learning. While, e.g., Fawzi et al.

[24], apply adversarial training to image transformations,

we further perform adversarial training on adversarial ex-

amples constrained to the true, or approximated, manifold.

This is also different from adversarial data augmentation

schemes driven by GANs, e.g., [74, 91, 4, 20], where train-

ing examples are generated, but without the goal to be mis-

classified. Finally, [92] provide experimental evidence that

adversarial examples have low probability under the data

distribution; we show that adversarial examples have, in

fact, zero probability.

3. Disentangling Adversarial Robustness

and Generalization

To clarify the relationship between adversarial robust-

ness and generalization, we explicitly distinguish between

regular and on-manifold adversarial examples, as illustrated

in Fig. 1. Then, the hypothesis [102, 95] that robustness

and generalization are contradicting goals is challenged in

four arguments: regular unconstrained adversarial examples

leave the manifold; adversarial examples constrained to the

manifold exist; robustness against on-manifold adversarial

examples is essentially generalization; robustness against

regular adversarial examples is not influenced by general-

ization when controlled through the amount of training data.

Altogether, our results imply that adversarial robustness and

generalization are not opposing objectives and both robust

and accurate models are possible but require higher sample

complexity.

3.1. Experimental Setup

Datasets: We use EMNIST [19], F(ashion)-MNIST [106]

and CelebA [58] for our experiments (240k/40k, 60k/10k

and 182k/20k training/test images); CelebA has been re-

sized to 56×48 and we classify “Male” vs. “Female”. Our

synthetic dataset, FONTS, consists of letters “A” to “J” of

1000 Google Fonts randomly transformed (uniformly over

translation, shear, scale, rotation in [−0.2, 0.2], [−0.5, 0.5],
[0.75, 1.15], [−π/2, π/2]) using a spatial transformer network

[41] such that the generation process is completely differen-

tiable. The latent variables correspond to the transformation

parameters, font and class. We generated 960k/40k (bal-

anced) training/test images of size 28×28.

We consider classifiers with three (four on CelebA) con-

volutional layers (4 × 4 kernels; stride 2; 16, 32, 64 chan-

nels), each followed by ReLU activations and batch normal-

ization [40], and two fully connected layers. The networks

are trained using ADAM [46], with learning rate 0.01 (de-

cayed by 0.95 per epoch), weight decay 0.0001 and batch

size 100, for 20 epochs. Most importantly, to control their

generalization performance, we use N training images, with

N between 250 and 40k; for each N , we train 5 models with

random weight initialization [28] an report averages.

We learn class-specific VAE-GANs, similar to [51, 75],
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Figure 3: Distance of adversarial examples to the true,

on FONTS (left), or approximated, on EMNIST (right),

manifold. We show normalized histograms of the L2

distance of adversarial examples to their projections onto

the manifold (4377/3837 regular adversarial examples on

FONTS/EMNIST; 667 on-manifold adversarial examples

on EMNIST). Regular adversarial examples exhibit a sig-

nificant distance to the manifold; on EMNIST, clearly dis-

tinguishable from on-manifold adversarial examples.

to approximate the underlying manifold; we refer to the

supplementary material for details.

Attack: Given an image-label pair (x, y) from an unknown

data distribution p and a classifier f , an adversarial exam-

ple is a perturbed image x̃ = x + δ which is mis-classified

by the model, i.e., f(x̃) 6= y. While our results can be

confirmed using other attacks and norms (see the supple-

mentary material for [14] and transfer attacks), for clarity,

we concentrate on the L∞ white-box attack by Madry et al.

[62] that directly maximizes the training loss,

max
δ

L(f(x+ δ), y) s.t. ‖δ‖∞ ≤ ǫ, x̃i ∈ [0, 1], (1)

using projected gradient descent; where L is the cross-

entropy loss and x̃ = x + δ. The ǫ-constraint is meant

to ensure perceptual similarity. We run 40 iterations of

ADAM [46] with learning rate 0.005 and consider 5 restarts,

(distance and direction) uniformly sampled in the ǫ-ball for

ǫ = 0.3. Optimization is stopped as soon as the predicted

label changes, i.e., f(x̃) 6= y. We attack 1000 test images.

Adversarial Training: An established defense is adversar-

ial training, i.e., training on adversarial examples crafted

during training [109, 65, 35, 83, 90, 53, 62]. Madry et al.

[62] consider the min-max problem

min
w

N∑

n=1

max
‖δ‖∞≤ǫ

L(f(xn + δ;w), yn) s.t. xn+δ ∈ [0, 1] (2)

where w are the classifier’s weights and xn the training im-

ages. As shown in the supplementary material, we consid-

ered different variants [97, 30, 62]; in the paper, however,

we follow common practice and train on 50% clean images

and 50% adversarial examples [97]. For ǫ = 0.3, the at-

tack (for the inner optimization problem) is run for full 40
iterations, i.e., is not stopped at the first adversarial example

found. Robustness of the obtained network is measured by

computing the attack success rate, i.e., the fraction of suc-

cessful attacks on correctly classified test images, as, e.g.,

in [14], for a fixed ǫ; lower success rate indicates higher

robustness of the network.

3.2. Adversarial Examples Leave the Manifold

The idea of adversarial examples leaving the manifold

is intuitive on EMNIST where particular background pix-

els are known to be constant, see Fig. 2. If an adversarial

example x̃ manipulates these pixels, it has zero probability

under the data distribution and its distance to the manifold,

i.e., the distance to its projection π(x̃) onto the manifold,

should be non-zero. On FONTS, with known generative

process in the form of a decoder dec mapping latent vari-

ables z to images x, the projection is obtained iteratively:

π(x̃) = dec(z̃) with z̃ = argmin z ‖ dec(z) − x̃)‖2 and z
constrained to valid transformations (font and class, known

from the test image x, stay constant). On EMNIST, as il-

lustrated in Fig. 4 (right), the manifold is approximated us-

ing 50 nearest neighbors; the projection π(x̃) onto the sub-

space spanned by the x-centered nearest neighbors is com-

puted through least squares. On both FONTS and EMNIST,

the distance ‖x̃−π(x̃)‖2 is considered to asses whether the

adversarial example x̃ actually left the manifold.

On FONTS, Fig. 3 (left) shows that regular adversarial

examples clearly exhibit non-zero distance to the manifold.

In fact, the projections of these adversarial examples to the

manifold are almost always the original test images; as a re-

sult, the distance to the manifold is essentially the norm of

the corresponding perturbation: ‖x̃−π(x̃)‖2 ≈ ‖x̃−x‖2 =
‖δ‖2. This suggests that the adversarial examples leave the

manifold in an almost orthogonal direction. On EMNIST,

in Fig. 3 (right), these results can be confirmed in spite of

the crude local approximation of the manifold. Again, regu-

lar adversarial examples seem to leave the manifold almost

orthogonally, i.e., their distance to the manifold coincides

with the norm of the corresponding perturbations. These re-

sults show that regular adversarial examples essentially are

off-manifold adversarial examples; this finding is intuitive

as for well-trained classifiers, leaving the manifold should

be the “easiest” way to fool it; results on F-MNIST as well

as a more formal statement of this intuition can be found in

the supplementary material.

3.3. On­Manifold Adversarial Examples

Given that regular adversarial examples leave the man-

ifold, we intend to explicitly compute on-manifold adver-

sarial examples. To this end, we assume our data dis-

tribution p(x, y) to be conditional on the latent variables

z, i.e., p(x, y|z), corresponding to the underlying, low-

dimensional manifold. On this manifold, however, there

is no notion of “perceptual similarity” in order to ensure

label invariance, i.e., distinguish valid on-manifold adver-

sarial examples, Fig. 1 (b), from invalid ones that change

the actual, true label, Fig. 1 (c):
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Definition 1 (On-Manifold Adversarial Example). Given

the data distribution p, an on-manifold adversarial exam-

ple for x with label y is a perturbed version x̃ such that

f(x̃) 6= y but p(y|x̃) > p(y′|x̃)∀y′ 6= y.

Note that the posteriors p(y|x̃) correspond to the true, un-

known data distribution; any on-manifold adversarial exam-

ple x̃ violating Def. 1 changed its actual, true label.

In practice, we assume access to an encoder and decoder

modeling the (class-conditional) distributions p(z|x, y) and

p(x|z, y) – in our case, achieved using VAE-GANs [51, 75].

Then, given the encoder enc and decoder dec and as illus-

trated in Fig. 4 (left), we obtain the latent code z = enc(x)
and compute the perturbation ζ by maximizing:

max
ζ

L(f(dec(z + ζ)), y) s.t. ‖ζ‖∞ ≤ η. (3)

The image-constraint, i.e., dec(z + ζ) ∈ [0, 1], is enforced

by the decoder; the η-constraint can, again, be enforced by

projection; and we can additionally enforce a constraint on

z + ζ, e.g., corresponding to a prior on z. Label invariance,

as in Def. 1, is ensured by considering only class-specific

encoders and decoders, i.e., the data distribution is approxi-

mated per class. We use η = 0.3 and the same optimization

procedure as for Eq. (1); on approximated manifolds, the

perturbation z + ζ is additionally constrained to [−2, 2]10,

corresponding to a truncated normal prior from the class-

specific VAE-GANs; we attack 2500 test images.

On-manifold adversarial examples obtained through

Eq. (3) are similar to those crafted in [27], [82], [6] or [110].

However, in contrast to [27, 82, 6], we directly compute the

perturbation ζ on the manifold instead of computing the per-

turbation δ in the image space and subsequently projecting

x+δ to the manifold. Also note that enforcing any similarity

constraint through a norm on the manifold is significantly

more meaningful compared to using a norm on the image

space, as becomes apparent when comparing the obtained

on-manifold adversarial examples in Fig. 2 to their regular

counterparts. Compared to [110], we find on-manifold ad-

versarial examples using a gradient-based approach instead

of randomly sampling the latent space.

Fig. 2 shows on-manifold adversarial examples for all

datasets, which we found significantly harder to obtain

compared to their regular counterparts. On FONTS, us-

ing the true, known class manifolds, on-manifold adversar-

ial examples clearly correspond to transformations of the

original test image – reflecting the true latent space. For

the learned class manifolds, the perturbations are less pro-

nounced, often manipulating boldness or details of the char-

acters. Due to the approximate nature of the learned VAE-

GANs, these adversarial examples are strictly speaking not

always part of the true manifold – as can be seen for the

irregular “A” (Fig. 2, 6th column). On EMNIST and F-

MNIST, on-manifold adversarial examples represent mean-

ingful manipulations, such as removing the tail of a hand-
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Figure 4: Left: On-manifold adversarial examples can

be computed using learned, class-specific VAE-GANs [51,

75]. The perturbation ζ is obtained via Eq. (3) and added

to the latent code z = enc(x) yielding the adversarial ex-

ample x̃ = dec(z + ζ) with difference δ = x̃− x in image

space. Right: The distance of a regular adversarial example

x̃ to the manifold, approximated using nearest neighbors, is

computed as the distance to its orthogonal projection π(x̃):
‖x̃ − π(x̃)‖2. Large distances indicate that the adversarial

example likely left the manifold.

drawn “8” (Fig. 2, 10th column) or removing the collar of

a pullover (Fig. 2, 11th column), in contrast to the random

noise patterns of regular adversarial examples. However,

these usually incur a smaller change in the images space;

which also explains why regular, unconstrained adversar-

ial examples almost always leave the manifold. Still, on-

manifold adversarial examples are perceptually close to the

original images. On CelebA, the quality of on-manifold ad-

versarial examples is clearly limited by the approximation

quality of our VAE-GANs. Finally, Fig. 3 (right) shows that

on-manifold adversarial examples are closer to the manifold

than regular adversarial examples – in spite of the crude ap-

proximation of the manifold on EMNIST.

3.4. On­Manifold Robustness is Essentially

Generalization

We argue that on-manifold robustness is nothing differ-

ent than generalization: as on-manifold adversarial exam-

ples have non-zero probability under the data distribution,

they are merely generalization errors. This is shown in

Fig. 5 (top left) where test error and on-manifold success

rate on FONTS are shown. As expected, better generaliza-

tion, i.e., using more training images N , also reduces on-

manifold success rate. In order to make this relationship ex-

plicit, Fig. 5 (bottom) plots on-manifold success rate against

test error. Then, especially for FONTS and EMNIST, the re-

lationship of on-manifold robustness and generalization be-

comes apparent. On F-MNIST, the relationship is less pro-

nounced because on-manifold adversarial examples, com-

puted using our VAE-GANs, are not close enough to real

generalization errors. However, even on F-MNIST, the ex-

periments show a clear relationship between on-manifold

robustness and generalization.
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Figure 5: On-manifold robustness is strongly related to generalization, as shown on FONTS, EMNIST and F-MNIST con-

sidering on-manifold success rate and test error. Top: test error and on-manifold success rate in relation to the number of

training images. As test error reduces, so does on-manifold success rate. Bottom: on-manifold success rate plotted against

test error reveals the strong relationship between on-manifold robustness and generalization.

3.4.1 On-Manifold Adversarial Training

Boosts Generalization

Given that generalization positively influences on-manifold

robustness, we propose to adapt adversarial training to the

on-manifold case in order to boost generalization:

min
w

N∑

n=1

max
‖ζ‖∞≤η

L(f(dec(zn + ζ);w), yn). (4)

with zn = dec(xn) being the latent codes corresponding

to training images xn. Then, on-manifold adversarial train-

ing corresponds to robust optimization wrt. the true, or ap-

proximated, data distribution. For example, with the per-

fect decoder on FONTS, the inner optimization problem

finds “hard” images irrespective of their likelihood under

the data distribution. For approximate dec, the benefit of

on-manifold adversarial training depends on how well the

true data distribution is matched, i.e., how realistic the ob-

tained on-manifold adversarial examples are; in our case,

this depends on the quality of the learned VAE-GANs.

Instead of approximating the manifold using genera-

tive models, we can exploit known invariances of the data.

Then, adversarial training can be applied to these invari-

ances, assuming that they are part of the true manifold.

In practice, this can, for example, be accomplished us-

ing adversarial deformations [1, 105, 22], i.e., adversarially

crafted transformations of the image. For example, as on

FONTS, we consider 6-degrees-of-freedom transformations

corresponding to translation, shear, scaling and rotation:

min
w

N∑

n=1

max
‖t‖∞≤η,t∈R6

L(f(T (xn; t);w), yn). (5)

where T (x; t) denotes the transformation of image x with

parameters t and the η-constraint ensures similarity and la-

bel invariance. Again, the transformations can be applied

using spatial transformer networks [41] such that T is dif-

ferentiable; t can additionally be constrained to a reasonable

space of transformations. We note that a similar approach

has been used by Fawzi et al. [24] to boost generalization

on, e.g., MNIST [52]. However, the approach was consid-

ered as an adversarial variant of data augmentation and not

motivated through the lens of on-manifold robustness. We

refer to Eq. (5) as adversarial transformation training and

note that, on FONTS, this approach is equivalent to on-

manifold adversarial training as the transformations coin-

cide with the actual, true manifold by construction. We also

include a data augmentation baseline, where the transfor-

mations t are applied randomly.

We demonstrate the effectiveness of on-manifold adver-

sarial training in Fig. 5 (top). On FONTS, with access to

the true manifold, on-manifold adversarial training is able

to boost generalization significantly, especially for low N ,

i.e., few training images. Our VAE-GAN approximation

on FONTS seems to be good enough to preserve the ben-

efit of on-manifold adversarial training. On EMNIST and

F-MNIST, the benefit reduces with the difficulty of approx-

imating the manifold; this is the “cost” of imperfect approx-
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Figure 6: Regular robustness is not related to generalization, as demonstrated on FONTS, EMNIST and F-MNIST consider-

ing test error and (regular) success rate. On FONTS (left), success rate is not influenced by test error, except for adversarial

training. Plotting success rate against test error highlights the independence of robustness and generalization; however,

different training strategies exhibit different robustness-generalization characteristics.

imation. While the benefit is still significant on EMNIST, it

diminishes on F-MNIST. However, both on EMNIST and

F-MNIST, identifying invariances and utilizing adversar-

ial transformation training recovers the boost in generaliza-

tion; especially in contrast to the random data augmenta-

tion baseline. Overall, on-manifold adversarial training is a

promising tool for improving generalization and we expect

its benefit to increase with better generative models.

3.5. Regular Robustness is Independent of

Generalization

We argue that generalization, as measured on the mani-

fold wrt. the data distribution, is mostly independent of ro-

bustness against regular, possibly off-manifold, adversarial

examples when varying the amount of training data. Specif-

ically, in Fig. 6 (left) for FONTS, it can be observed that –

except for adversarial training – the success rate is invari-

ant to the test error. This can best be seen when plotting

the success rate against test error for different numbers of

training examples, cf. Fig. 6 (middle left): only for adver-

sarial training there exists a clear relationship; for the re-

maining training schemes success rate is barely influenced

by the test error. In particular, better generalization does

not worsen robustness. Similar behavior can be observed

on EMNIST and F-MNIST, see Fig. 6 (right). Here, it can

also be seen that different training strategies exhibit differ-

ent characteristics wrt. robustness and generalization. Over-

all, regular robustness and generalization are not necessarily

contradicting goals.

As mentioned in Section 1, these findings are in contrast

to related work [102, 95] claiming that an inherent trade-off

between robustness and generalization exists. For example,

Tsipras et al. [102] use a synthetic toy dataset to theoreti-

cally show that no model can be both robust and accurate

(on this dataset). However, they allow the adversary to pro-

duce perturbations that change the actual, true label wrt. the

data distribution, i.e., the considered adversarial examples

are not adversarial examples according to Def. 1. Thus, it is

unclear whether the suggested trade-off actually exists for

real datasets; our experiments, at least, as well as further

analysis in the supplementary material seem to indicate the

contrary. Similarly, Su et al. [95] experimentally show a

trade-off between adversarial robustness and generalization

by studying different models on ImageNet [79]. However,

Su et al. compare the robustness and generalization char-

acteristics of different models (i.e., different architectures,

training strategies etc.), while we found that the general-

ization performance does not influence robustness for any

arbitrary, but fixed model.

3.6. Discussion

Our results imply that robustness and generalization are

not necessarily conflicting goals, as believed in related work

[102, 95]. This means, in practice, for any arbitrary but

fixed model, better generalization will not worsen regular

robustness. Different models (architectures, training strate-

gies etc.) might, however, exhibit different robustness and

generalization characteristics, as also shown in [95, 77].

For adversarial training, on regular adversarial examples,

the commonly observed trade-off between robustness and

generalization is explained by the tendency of adversarial

examples to leave the manifold. As result, the network

has to learn (seemingly) random, but adversarial, noise pat-

terns in addition to the actual task at hand; rendering the

learning problem harder. On simple datasets, such as EM-

NIST, these adversarial directions might avoid overfitting;

on harder tasks, e.g., FONTS or F-MNIST, the discrepancy

in test error between normal and adversarial training in-

creases. Our results also support the hypothesis that regular

adversarial training has higher sample complexity [81, 45].

In fact, on FONTS, adversarial training can reach the same

accuracy as normal training with roughly twice the amount

of training data, as demonstrated in Fig. 7 (top). Further-

more, as illustrated in Fig. 7 (bottom), the trade-off between
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Figure 7: Adversarial training on regular adversarial exam-

ples, potentially leaving the manifold, renders the learn-

ing problem more difficult. Top: With roughly 1.5 to 2
times the training data, adversarial training can still reach

the same accuracy as normal training; results for ResNet-

13 [32]. Bottom: Additionally, the trade-off can be con-

trolled by combining regular and on-manifold adversarial

training; results averaged over 3 models.

regular robustness and generalization can be controlled by

combining regular and on-manifold adversarial training, i.e.

boost generalization while reducing robustness.

The presented results can also be confirmed on more

complex datasets, such as CelebA, and using different threat

models, i.e., attacks. On CelebA, where VAE-GANs have

difficulties approximating the manifold, Fig. 8 (top left)

shows that on-manifold robustness still improves with gen-

eralization although most on-manifold adversarial examples

are not very realistic, see Fig. 2. Similarly, regular robust-

ness, see Fig. 8 (top right), is not influenced by generaliza-

tion; here, we also show that the average distance of the per-

turbation, i.e., average ‖δ‖∞, when used to asses robustness

leads to the same conclusions. Similarly, as shown in Fig. 8

(bottom), our findings are confirmed using Carlini and Wag-

ner’s attack [14] with L2-norm – to show that the results

generalize across norms. However, overall, we observed

lower success rates using [14] and the L2 norm. Finally, our

results can also be reproduced using transfer attacks (i.e.,

black-box attacks, which are generally assumed to be sub-

sumed by white-box attacks [6]) as well as and different

architectures such as multi-layer perceptrons, ResNets [32]

and VGG [89], as detailed in the supplementary material.
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Figure 8: Results on CelebA and using the L2 Carlini and

Wagner [14] attack. On CelebA, as the class manifolds

are significantly harder to approximate, the benefit of on-

manifold adversarial training diminishes. For [14], we used

120 iterations; our hypotheses are confirmed, although [14]

does not use the training loss as attack objective and the L2

norm changes the similarity-constraint for regular and on-

manifold adversarial examples.

4. Conclusion

In this paper, we intended to disentangle the relationship

between adversarial robustness and generalization by ini-

tially adopting the hypothesis that robustness and general-

ization are contradictory [102, 95]. By considering adver-

sarial examples in the context of the low-dimensional, un-

derlying data manifold, we formulated and experimentally

confirmed four assumptions. First, we showed that regular

adversarial examples indeed leave the manifold, as widely

assumed in related work [27, 99, 39, 72, 82]. Second, we

demonstrated that adversarial examples can also be found

on the manifold, so-called on-manifold adversarial exam-

ples; even if the manifold has to be approximated, e.g., us-

ing VAE-GANs [51, 75]. Third, we established that robust-

ness against on-manifold adversarial examples is clearly re-

lated to generalization. Our proposed on-manifold adver-

sarial training exploits this relationship to boost generaliza-

tion using an approximate manifold, or known invariances.

Fourth, we provided evidence that robustness against regu-

lar, unconstrained adversarial examples and generalization

are not necessarily contradicting goals: for any arbitrary but

fixed model, better generalization, e.g., through more train-

ing data, does not reduce robustness.
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