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Abstract

Many studies have been conducted so far on image

restoration, the problem of restoring a clean image from

its distorted version. There are many different types of dis-

tortion which affect image quality. Previous studies have

focused on single types of distortion, proposing methods for

removing them. However, image quality degrades due to

multiple factors in the real world. Thus, depending on ap-

plications, e.g., vision for autonomous cars or surveillance

cameras, we need to be able to deal with multiple combined

distortions with unknown mixture ratios. For this purpose,

we propose a simple yet effective layer architecture of neu-

ral networks. It performs multiple operations in parallel,

which are weighted by an attention mechanism to enable

selection of proper operations depending on the input. The

layer can be stacked to form a deep network, which is dif-

ferentiable and thus can be trained in an end-to-end fash-

ion by gradient descent. The experimental results show that

the proposed method works better than previous methods by

a good margin on tasks of restoring images with multiple

combined distortions.

1. Introduction

The problem of image restoration, which is to restore a

clean image from its degraded version, has a long history

of research. Previously, researchers tackled the problem by

modeling (clean) natural images, where they design image

prior, such as edge statistics [7, 34] and sparse represen-

tation [1, 45], based on statistics or physics-based models

of natural images. Recently, learning-based methods using

convolutional neural networks (CNNs) [18, 16] have been

shown to work better than previous methods that are based

on the hand-crafted priors, and have raised the level of per-

formance on various image restoration tasks, such as de-

noising [44, 50, 39, 51], deblurring [29, 38, 17], and super-

resolution [6, 19, 53].

There are many types of image distortion, such as

Gaussian/salt-and-pepper/shot noises, defocus/motion blur,

compression artifacts, haze, raindrops, etc. Then, there are

two application scenarios for image restoration methods.

One is the scenario where the user knows what image dis-

tortion he/she wants to remove; an example is a deblurring

filter tool implemented in a photo editing software. The

other is the scenario where the user does not know what

distortion(s) the image undergoes but wants to improve its

quality, e.g., applications to vision for autonomous cars and

surveillance cameras.

In this paper, we consider the latter application scenario.

Most of the existing studies are targeted at the former sce-

nario, and they cannot be directly applied to the latter. Con-

sidering that real-world images often suffer from a com-

bination of different types of distortion, we need image

restoration methods that can deal with combined distortions

with unknown mixture ratios and strengths.

There are few works dealing with this problem. A no-

table exception is the work of Yu et al. [48], which pro-

poses a framework in which multiple light-weight CNNs

are trained for different image distortions and are adaptively

applied to input images by a mechanism learned by deep re-

inforcement learning. Although their method is shown to be

effective, we think there is room for improvements. One is

its limited accuracy; the accuracy improvement gained by

their method is not so large, as compared with application

of existing methods for a single type of distortion to images

with combined distortions. Another is its inefficiency; it

uses multiple distortion-specific CNNs in parallel, each of

which also needs pretraining.

In this paper, we show that a simple attention mechanism

can better handle aforementioned combined image distor-

tions. We design a layer that performs many operations

in parallel, such as convolution and pooling with different

parameters. We equip the layer with an attention mecha-

nism that produces weights on these operations, intending

to make the attention mechanism to work as a switcher of

these operations in the layer. Given an input feature map,

the proposed layer first generates attention weights on the

multiple operations. The outputs of the operations are mul-
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tiplied with the attention weights and then concatenated,

forming the output of this layer to be transferred to the next

layer.

We call the layer operation-wise attention layer. This

layer can be stacked to form a deep structure, which can be

trained in an end-to-end manner by gradient descent; hence,

any special technique is not necessary for training. We eval-

uate the effectiveness of our approach through several ex-

periments.

The contribution of this study is summarized as follows:

• We show that a simple attention mechanism is effec-

tive for image restoration in the presence of multiple

combined distortions; our method achieves the state-

of-the-art performance for the task.

• Owing to its simplicity, the proposed network is more

efficient than previous methods. Moreover, it is fully

differentiable, and thus it can be trained in an end-to-

end fashion by a stochastic gradient descent.

• We analyze how the attention mechanism behaves

for different inputs with different distortion types and

strengths. To do this, we visualize the attention

weights generated conditioned on the input signal to

the layer.

2. Related Work

This section briefly reviews previous studies on image

restoration using deep neural networks as well as attention

mechanisms used for computer vision tasks.

2.1. Deep Learning for Image Restoration

CNNs have proved their effectiveness on various image

restoration tasks, such as denoising [44, 50, 39, 51, 37],

deblurring [29, 38, 17], single image super-resolution [6,

19, 10, 52, 54, 53], JPEG artifacts removal [5, 9, 50], rain-

drop removal [35], deraining [46, 20, 49, 22], and image

inpainting [33, 13, 47, 23]. Researchers have studied these

problems basically from two directions. One is to design

new network architectures and the other is to develop novel

training methods or loss functions, such as the employment

of adversarial training [8].

Mao et al. [28] proposed an architecture consisting of a

series of symmetric convolutional and deconvolutional lay-

ers, with skip connections [36, 11] for the tasks of denois-

ing and super-resolution. Tai et al. [39] proposed the mem-

ory network having 80 layers consisting of a lot of recur-

sive units and gate units, and applied it to denoising, super-

resolution, and JPEG artifacts reduction. Li et al. [22] pro-

posed a novel network based on convolutional and recurrent

networks for deraining, i.e., a task of removing rain-streaks

from an image.

A recent trend is to use generative adversarial networks

(GANs), where two networks are trained in an adversarial

fashion; a generator is trained to perform image restoration,

and a discriminator is trained to distinguish whether its in-

put is a clean image or a restored one. Kupyn et al. [17]

employed GANs for blind motion deblurring. Qian et al.

[35] introduced an attention mechanism into the framework

of GANs and achieved the state-of-the-art performance on

the task of raindrop removal. Pathak et al. [33] and Iizuka

et al. [13] employed GANs for image inpainting. Other re-

searchers proposed new loss functions, such as the percep-

tual loss [14, 19, 23]. We point out that, except for the work

of [48] mentioned in Sec. 1, there is no study dealing with

combined distortions.

2.2. Attention Mechanisms for Vision Tasks

Attention has been playing an important role in the so-

lutions to many computer vision problems [42, 21, 12, 2].

While several types of attention mechanisms are used for

language tasks [40] and vision-language tasks [2, 30], in

the case of feed-forward CNNs applied to computer vision

tasks, researchers have employed the same type of atten-

tion mechanism, which generates attention weights from

the input (or features extracted from it) and then apply

them on some feature maps also generated from the in-

put. There are many applications of this attention mecha-

nism. Hu et al. [12] proposed the squeeze-and-excitation

block to weight outputs of a convolution layer in its out-

put channel dimension, showing its effectiveness on image

classification. Zhang et al. [53] incorporated an attention

mechanism into residual networks, showing that channel-

wise attention contributes to accuracy improvement for im-

age super-resolution. There are many other studies employ-

ing the same type of attention mechanism; [31, 43, 25] to

name a few.

Our method follows basically the same approach, but

differs from previous studies in that we consider attention

over multiple different operations, not over image regions or

channels, aiming at selecting the operations according to the

input. To the authors’ knowledge, there is no study employ-

ing exactly the same approach. Although it is categorized

as neural architecture search (NAS) methods, the study of

Liu et al. [24] is similar to ours in that they attempt to select

multiple operations by computing weights on them. How-

ever, in their method, the weights are fixed parameters to

be learned along with network weights in training. The

weights are binarized after optimization, and do not vary

depending on the input. The study of Veit et al. [41] is also

similar to ours in that operation(s) in a network can vary de-

pending on the input. However, their method only chooses

whether to perform convolution or not in residual blocks

[11] using a gate function; it does not select mulitple differ-

ent operations.
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3. Operation-wise Attention Network

In this section, we describe the architecture of an entire

network that employs the proposed operation-wise attention

layers; see Fig.1 for its overview. It consists of three parts: a

feature extraction block, a stack of operation-wise attention

layers, and an output layer. We first describe the operation-

wise attention layer (Sec.3.1) and then explain the feature

extraction block and the output layer (Sec.3.2).

3.1. Operation­wise Attention Layer

3.1.1 Overview

The operation-wise attention layer consists of an operation

layer and an attention layer; see Fig.2. The operation layer

contains multiple parallel operations, such as convolution

and average pooling with different parameters. The atten-

tion layer takes the feature map generated by the previous

layer as inputs and computes attention weights on the paral-

lel outputs of the operation layer. The operation outputs

are multiplied with their attention weights and then con-

catenated to form the output of this layer. We intend this

attention mechanism to work as a selector of the operations

depending on the input.

3.1.2 Operation-wise Attention

We denote the output of the l-th operation-wise attention

layer by xl ∈ R
H×W×C (l = 1, . . .), where H , W , and C

are its height, width, and the number of channels, respec-

tively. The input to the first layer in the stack of operation-

wise attention layers, denoted by x0, is the output of the

feature extraction block connecting to the stack. Let O be

a set of operations contained in the operation layer; we use

the same set for any layer l. Given xl−1, we calculate the

attended value āol on an operation o(·) in O as

āol =
exp(Fl(xl−1))∑
exp(Fl(xl−1))

=
exp(aol )∑|O|
o=1

exp(aol )
, (1)

where Fl is a mapping realized by the attention layer, which

is given by

Fl(x) = W2σ(W1z), (2)

where W1 ∈ R
T×C and W2 ∈ R

|O|×T are learnable

weight matrices; σ(·) denotes a ReLU function; and z ∈
R

C is a vector containing the channel-wise averages of the

input x as

zc =
1

H ×W

H∑

i=1

W∑

j=1

xi,j,c. (3)

Thus, we use the channel-wise average z to generate atten-

tion weights al = [ā1l , . . . , ā
|O|
l ] instead of using full feature

maps, which is computationally expensive.
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Figure 1. Overview of the operation-wise attention network. It

consists of a feature extraction block, a stack of operation-wise

attention layers, and an output layer.

We found in our preliminary experiments that it makes

training more stable to generate attention weights in the first

layer of every few layers rather than to generate and use at-

tention weights within each individual layer. (By layer, we

mean operation-wise attention layer here.) To be specific,

we compute the attention weights to be used in a group of k

consecutive layers at the first layer of the group; see Fig.2.

Letting l = nk+1 for a non-negative integer n, we compute

attention weights ank+1, . . . ,ank+k at the l-th layer, where

the computation of Eq.(2) is performed using different W1

and W2 for each of ank+1, . . . ,ank+k but the same x and z

of the l-th layer. We will refer to this attention computation

as group attention.

We multiply the outputs of the multiple operations with

the attention weights computed as above. Let fo be the o-th

operation and ho
l (≡ fo(xl−1)) ∈ R

H×W×C be its output

for o = 1, . . . , |O|. We multiply ho
l ’s with the attention

weights āol ’s, and then concatenate them in the channel di-

mension, obtaining sl ∈ R
H×W×C |O|:

sl = Concat[ā1l h
1
l , . . . , ā

|O|
l h

|O|
l ]. (4)

The output of the l-th operation-wise attention layer is cal-

culated by

xl = Fc(sl) + xl−1, (5)

where Fc denotes a 1× 1 convolution operation with C fil-

ters. This operation makes activation of different channels

interact with each other and adjusts the number of chan-

nels. We employ a skip connection between the input and

the output of each operation-wise attention layer, as shown

in Fig. 2.

3.1.3 Operation Layer

Considering the design of recent successful CNN models,

we select 8 popular operations for the operation layer: sep-

arable convolutions [4] with filter sizes 1 × 1, 3 × 3, 5 ×
5, 7 × 7, dilated separable convolutions with filter sizes

3 × 3, 5 × 5, 7 × 7 all with dilation rate = 2, and aver-

age pooling with a 3 × 3 receptive field. All convolution

operations use C = 16 filters with stride = 1, which is
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Figure 2. Architecture of the operation-wise attention layer. It consists of an attention layer, an operation layer, a concatenation operation,

and 1 × 1 convolution. Attention weights over operations of each layer are generated at the first layer in a group of consecutive k layers.

Note that different attention weights are generated for each layer.

Operation Layer

!"#$

%"

conv. 1×1

conv. 3×3

conv. 5×5

conv. 7×7

ave_pool 3×3

max_pool 3×3
Feature maps

+×,×-

Figure 3. An example of the operation layer in the operation-wise

attention layer.

followed by a ReLU. Also, we zero-pad the input feature

maps computed in each operation not to change the sizes

of its input and output. As shown in Fig.3, the operations

are performed in parallel, and they are concatenated in the

channel dimension as mentioned above.

3.2. Feature Extraction Block and Output Layer

As mentioned earlier, our network consists of three parts,

the feature extraction block, the stack of operation-wise at-

tention layers, and the output layer. For the feature ex-

traction block, we use a stack of standard residual blocks,

specifically, K residual blocks (K = 4 in our experiments),

in which each residual block has two convolution layers

with 16 filters of size 3×3 followed by a ReLU. This block

extracts features from a (distorted) input image and passes

them to the operation-wise attention layer stack. For the

output layer, we use a single convolution layer with kernel

size 3 × 3. The number of filters (i.e., output channels) is

one if the input/output is a gray-scale image and three if it

is a color image.

4. Experiments

We conducted several experiments to evaluate the pro-

posed method.

4.1. Experimental Configuration

We used a network with 40 operation-wise attention lay-

ers in all the experiments. We set the dimension of the

weight matrices W1, W2 in each layer to T = 32 and

use 16 convolution filters in all the convolutional layers.

For the proposed group attention, we treat four consecutive

operation-wise attention layers as a group (i.e., k = 4).

For the training loss, we use ℓ1 loss between the restored

images and their ground truths as

L =
1

N

N∑

n=1

‖OWAN(yn)− xn‖1, (6)

where x is a clean image, y is its corrupted version, N is

the number of training samples, and OWAN indicates the

proposed operation-wise attention network.

In our experiments, we employed the Adam optimizer

[15] with parameters α = 0.001, β1 = 0.9, and β2 = 0.99,

along with the cosine annealing technique of [27] for adjust-

ing the learning rate. We trained our model for 100 epochs

with mini-batch size 32. We conducted all the experiments

using PyTorch [32].

4.2. Performance on the Standard Dataset

4.2.1 DIV2K Dataset

In the first experiment on combined distortions, we follow

the experimental procedure described in [48]. They use the
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Table 1. Results on DIV2K. Comparison of DnCNN, RL-Restore, and our operation-wise attention network using DIV2K test sets. RL-

Restore* displays the PSNR and SSIM values reported in [48].

Test set Mild (unseen) Moderate Severe (unseen)

Metric PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN [50] 27.51 0.7315 26.50 0.6650 25.26 0.5974
RL-Restore* [48] 28.04 0.6498 26.45 0.5544 25.20 0.4629
RL-Restore [48] 28.04 0.7313 26.45 0.6557 25.20 0.5915

Ours 28.33 0.7455 27.07 0.6787 25.88 0.6167

Mild

Input

Ours

RL-Restore

DnCNN

Moderate Severe

Ground

truth

Figure 4. Examples of restored images by our method, RL-Restore [48], and DnCNN [50].

DIV2K dataset containing 800 high-quality, large-scale im-

ages. The 800 images are divided into two parts: (1) the first

750 images for training and (2) the remaining 50 images for

testing. Then 63× 63 pixel patches are cropped from these

images, yielding a training set and a testing set consisting

of 249, 344 and 3, 584 patches, respectively.

They then apply multiple types of distortion to these

patches. Specifically, a sequence of Gaussian blur, Gaus-

sian noise and JPEG compression is added to the training

and testing images with different degradation levels. The

standard deviations of Gaussian blur and Gaussian noise

are randomly chosen from the range of [0, 5] and [0, 50],
respectively. The quality of JPEG compression is randomly

chosen from the range of [10, 100]. The resulting images

are divided into three categories based on the applied degra-

dation levels; mild, moderate, and severe (examples of the

images are shown at the first row of Fig.4). The training

are performed using only images of the moderate class, and

testing are conducted on all three classes.

4.2.2 Comparison with State-of-the-art Methods

We evaluate the performance of our method on the DIV2K

dataset and compared with previous methods. In [48], the

authors compared the performances of DnCNN [50] and

their proposed method, RL-Restore, using PSNR and SSIM

metrics. However, we found that the SSIM values computed

in our experiments for these methods tend to be higher than

those reported in [48], supposedly because of some differ-

ence in algorithm for calculating SSIM values. There are

practically no difference in PSNR values. For fair compar-

isons, we report here PSNR and SSIM values we calculated

using the same code for all the methods. To run RL-Restore

and DnCNN, we used the author’s code for each1.

Table 1 shows the PSNR and SSIM values of the three

methods on different degradation levels of DIV2K test sets.

RL-Restore* indicates the numbers reported in [48]. It is

seen that our method outperforms the two methods in all of

the degradation levels in both the PSNR and SSIM metrics.

It should be noted that RL-Restore requires a set of pre-

trained CNNs for multiple expected distortion types and

levels in advance; specifically, they train 12 CNN models,

where each model is trained on images with a single distor-

tion type and level, e.g., Gaussian blur, Gaussian noise, and

JPEG compression with a certain degradation level. Our

method does not require such pretrained models; it performs

a standard training on a single model in an end-to-end man-

1 https://github.com/yuke93/RL-Restore for RL-Restore and

https://github.com/cszn/DnCNN/tree/master/TrainingCodes/

dncnn pytorch for DnCNN.
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Table 2. Results on PASCAL VOC. Comparison of RL-Restore [48] and our method. A pretrained SSD300 [26] is applied to distorted

images (“w/o restoration”) and their restored versions.

VOC Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

w/o restoration 39.1 42.4 45.7 29.5 26.0 36.3 63.9 48.1 33.6 27.9 40.6 32.5 43.9 52.1 41.6 44.2 18.3 34.6 40.8 55.1 26.0
2007 RL-Restore [48] 66.0 74.9 78.2 60.1 43.2 49.9 80.8 72.9 68.1 51.5 69.9 63.4 76.2 78.6 82.6 68.3 41.6 50.0 69.1 75.7 65.8

Ours 69.3 78.7 78.3 64.8 41.2 47.8 80.8 74.7 69.4 62.1 68.7 74.7 76.5 79.2 86.0 69.0 40.8 61.3 80.4 76.1 76.6

w/o restoration 37.0 39.8 50.0 36.7 25.0 32.9 57.4 36.4 42.2 28.3 39.3 30.0 41.7 44.7 34.7 43.4 23.0 33.2 25.8 49.2 28.2
2012 RL-Restore [48] 62.0 73.4 73.8 64.0 41.2 50.5 76.7 59.3 69.8 45.8 58.8 59.9 72.2 72.3 76.6 69.3 41.3 51.0 53.0 71.5 59.6

Ours 67.3 77.6 76.3 69.2 42.4 52.0 78.2 64.5 76.6 56.6 61.9 70.8 74.6 76.0 81.4 71.0 43.2 57.7 69.3 72.1 75.7

Clean Distorted RL-Restore Ours

Person

Person

Tvmonitor

Chair

Dining table Chair

Person Person

Chair

Dining table

Bottle
Bottle Person

Dining table

Chair

Aeroplane

Aeroplane

Chair

Cow

Sofa

Train
Cow

Car

Person Person

BoatBoat

Train

Sofa

Car
Boat

Figure 5. Examples of results of object detection on PASCAL

VOC. The box colors indicate class categories.

ner. This may be advantageous in application to real-world

distorted images, since it is hard to identify in advance what

types of distortion they undergo.

We show examples of restored images obtained by our

method, RL-Restore, and DnCNN along with their input

images and ground truths in Fig.4. They agree with the

above observation on the PSNR/SSIM values shown in Ta-

ble 1.

4.3. Evaluation on Object Detection

To further compare the performance of our method and

RL-Restore, we use the task of object detection. To be spe-

cific, we synthesized distorted images, then restored them

and finally applied a pretrained object detector (we used

SSD300 [26] here) to the restored images. We used the im-

ages from the PASCAL VOC detection dataset. We added

Gaussian blur, Gaussian Noise, and JPEG compression to

the images of the validation set. For each image, we ran-

domly choose the degradation levels (i.e., standard devia-

tions) for Gaussian blur and Gaussian noises from uniform

distributions in the range [0, 10] and [30, 60], respectively,

and the quality of JPEG compression from a uniform distri-

bution with [10, 50].
Table 2 shows the mAP values obtained on (the distorted

version of) the validation sets of PASCAL VOC2007 and

VOC2012. As we can see, our method improves detection

accuracy by a large margin (around 30% mAP) compared to

the distorted images. Our method also provides better mAP

results than RL-Restore for almost all categories. Figure 5

shows a few examples of detection results. It can be seen

that our method removes the combined noises effectively,

which we think contributes to the improvement of detection

accuracy.

4.4. Ablation Study

The key ingredient of the proposed method is the atten-

tion mechanism in the operation-wise attention layer. We

conduct an ablation test to evaluate how it contributes to the

performance.

4.4.1 Datasets

In this test, we constructed and used a different dataset of

images with combined distortions. We use the Raindrop

dataset [35] for the base image set. Its training set con-

tains 861 pairs of a clean image of a scene and its dis-

torted version with raindrops, and the test set contains 58
images. We first cropped 128 × 128 pixel patches con-

taining raindrops from each image and then added Gaussian

noise, JPEG compression, and motion blur to them. We ran-

domly changed the number of distortion types to be added

to each patch, and also randomly chose the level (i.e., the

standard deviation) of the Gaussian noise and the quality of

JPEG compression from the range of [10, 30] and [15, 35],
respectively. For motion blur, we followed the method of

random trajectories generation of [3]. To generate several

levels of motion blur, we randomly sampled the max length

of trajectories from [10, 80]; see [3, 17] for the details. As

a result, the training and test set contain 50, 000 and 5, 000
patches, respectively. We additionally created four sets of

images with a single distortion type, each of which consists

of 1, 000 patches with the same size. We used the same

procedure of randomly choosing the degradation levels for

each distortion type. Note that we do not use the four single-

distortion-type datasets for training.

4.4.2 Baseline Methods

We consider two baseline methods for comparison, which

are obtained by invalidating some parts of the attention

mechanism in our method. One is to remove the attention

layer from the operation-wise attention layer. In each layer,

the parallel outputs from its operation layer are simply con-

catenated in the channel dimension and inputted into the
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Table 3. Effects of the proposed attention mechanism. Comparison with two baseline methods (w/o attention and fixed attention) on test

sets of the new dataset we created. Each model is trained on a single set of images with combined distortions and evaluated on different

sets of images with combined or single-type distortion.

Test set Mix Raindrop Blur Noise JPEG

Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

w/o attention 23.24 0.7342 26.93 0.8393 21.74 0.7546 29.88 0.8771 29.09 0.8565
fixed attention 23.37 0.7345 26.83 0.8433 21.99 0.7590 30.58 0.8907 29.20 0.8609

Ours 24.71 0.7933 28.24 0.8764 23.66 0.8211 31.93 0.9102 30.07 0.8779

Input

Ours

Ground

truth

Mix Raindrop Blur Noise JPEG

Figure 6. Examples of restored images by our method from distorted images with a different type of distortion. The model is trained on a

single set of images with combined distortions.

1 × 1 convolution layer. Others are kept the same as in the

original network. In other words, we set all the attention

weights to 1 in the proposed network. We refer to this con-

figuration as “ w/o attention”.

The other is to remove the attention layer but employ

constant attention weights on the operations. The attention

weights no longer depend on the input signal. We determine

them together with the convolutional kernel weights by gra-

dient descent. More rigorously, we alternately update the

kernel weights and attention weights as in [24], a method

proposed as differentiable neural architecture search. These

attention weights are shared in the group of k layers; we set

k = 4 in the experiments as in the proposed method. We re-

fer to this model as “ fixed attention” in what follows. These

two models along with the proposed model are trained on

the dataset with combined distortions and then evaluated on

each of the aforementioned datasets.

4.4.3 Results

The quantitative results are shown in Table 3. It is ob-

served that the proposed method works much better than

the two baselines on all distortion types in terms of PSNR

and SSIM values. This confirms the effectiveness of the at-

tention mechanism in the proposed method. We show sev-

eral examples of images restored by the proposed method

in Fig.6. It can be seen that not only images with combined

distortions but those with a single type of distortion (i.e.,

raindrops, blur, noise, JPEG compression artifacts) are re-

covered fairly accurately.

4.5. Analysis of Operation­wise Attention Weights

To analyze how the proposed operation-wise attention

mechanism works, we visualize statistics of the attention

weights of all the layers for the images with a single type of

distortion. Figure 7 shows the mean and variance of the at-

tention weights over the four single-distortion datasets, i.e.,

raindrops, blur, noise, and JPEG artifacts. Each row and

column indicates one of the forty operation-wise attention

layers and one of eight operations employed in each layer,

respectively.

We can make the following observations from the map

of mean attention weights (Fig. 7, left): i) 1×1 convolution

tends to be more attended than the others throughout the

layers; and ii) convolution with larger-size filters, such as

5×5 and 7×7, tend to be less attended. It can be seen from

the variance map (Fig. 7, right) that iii) attention weights

have higher variances for middle layers than for other lay-

ers, indicating the tendency that the middle layers more of-

ten change the selection of operations than other layers.

Figure 8 shows the absolute differences between the

mean attention weights over each of four single-distortion

datasets and the mean attention weights over all the four

datasets. It is observed that the attention weights differ de-
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Figure 7. Mean and variance of attention weights over the input

images with a single type of distortion, i.e., raindrop, blur, noise,

JPEG artifacts.

pending on the distortion type of the input images. This

indicates that the proposed attention mechanism does select

operations depending on the distortion type(s) of the input

image. It is also seen that the map for raindrop and that for

blur are considerably different from each other and the other

two, whereas those for noise and JPEG are mostly simi-

lar, although there are some differences in the lower lay-

ers. This implies the (dis)similarity among the tasks dealing

with these four types of distortion.

4.6. Performance on novel strengths of distortion

To test our method on a wider range of distortions, we

evaluate its performance on novel strengths of distortion

that have not been learned. Specifically, we created a train-

ing set by randomly sampling the standard deviations of

Gaussian noise and the quality of JPEG compression from

[0, 20] and [60, 100], respectively and sampling the max

length of trajectories for motion blur from [10, 40]. We then

apply trained models to a test set with a different range of

distortion parameters; the test set is created by sampling the

standard deviations of Gaussian noise, the quality of JPEG

compression, and the max trajectory length from [20, 40],
[15, 60], and [40, 80], respectively. We used the same image

set used in the ablation study for the base image set. The

results are shown in Table 4, which shows that our method

outperforms the baseline method by a large margin.
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Figure 8. Visualization of mean attention weights for four dis-

tortion types. Each element indicates the difference between the

mean attention weights over each distortion-type images and those

over all the images (the left map of Fig.7).

Table 4. Performance on novel strengths of distortion.

Metric PSNR SSIM

DnCNN [50] 18.94 0.3594
Ours 23.07 0.6795

5. Conclusion

In this paper, we have presented a simple network archi-

tecture, named operation-wise attention mechanism, for the

task of restoring images having combined distortions with

unknown mixture ratios and strengths. It enables to attend

on multiple operations performed in a layer depending on

input signals. We have proposed a layer with this atten-

tion mechanism, which can be stacked to build a deep net-

work. The network is differentiable and can be trained in

an end-to-end fashion using gradient descent. The experi-

mental results show that the proposed method works better

than the previous methods on the tasks of image restoration

with combined distortions, proving the effectiveness of the

proposed method.
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