
Stochastic Class-based Hard Example Mining for Deep Metric Learning

Yumin Suh1 Bohyung Han1 Wonsik Kim2 Kyoung Mu Lee1

1ECE & ASRI, Seoul National University, Korea 2Samsung Research, Samsung Electronics

{n12345, bhhan, kyoungmu}@snu.ac.kr wonsik16.kim@samsung.com

Abstract

Performance of deep metric learning depends heavily

on the capability of mining hard negative examples dur-

ing training. However, many metric learning algorithms of-

ten require intractable computational cost due to frequent

feature computations and nearest neighbor searches in a

large-scale dataset. As a result, existing approaches often

suffer from trade-off between training speed and predic-

tion accuracy. To alleviate this limitation, we propose a

stochastic hard negative mining method. Our key idea is

to adopt class signatures that keep track of feature embed-

ding online with minor additional cost during training, and

identify hard negative example candidates using the signa-

tures. Given an anchor instance, our algorithm first selects

a few hard negative classes based on the class-to-sample

distances and then performs a refined search in an instance-

level only from the selected classes. As most of the classes

are discarded at the first step, it is much more efficient than

exhaustive search while effectively mining a large number

of hard examples. Our experiment shows that the proposed

technique improves image retrieval accuracy substantially;

it achieves the state-of-the-art performance on the several

standard benchmark datasets.

1. Introduction

Deep metric learning is a fundamental problem appli-

cable to various tasks in computer vision including image

retrieval [14, 23, 24, 6, 35], person re-identification [38, 7],

face recognition [20, 30], and many others. The goal of deep

metric learning is to approximate a feature embedding func-

tion that maps data—images in our domain—onto a com-

mon feature space. After learning, visually similar images

are supposed to be clustered while the ones with heteroge-

neous contents are expected to be located apart from each

other. To meet this requirement, one can consider a triplet

loss [20], which is defined on all the triplets of images in

the training set. The triplet loss penalizes the cases that the

distances between the images in the same classes are larger

than the ones between images with different labels.

Batch Constructor
Step1:
Class-level stochastic mining
Step2:
Instance-level stochastic mining

Feature
Extractor

Class
Signatures

Trainable
Parameters

Loss

Figure 1. Overview of the training procedure with our stochastic

hard example mining

A critical drawback of the triplet loss is the high com-

putational cost in identifying hard negative examples for

training, which is partly because embedding functions are

changing throughout training procedure and one needs to

search for the new triplets violating the desired constraints

in each iteration [23, 6, 30, 21, 3, 39]. A naı̈ve implementa-

tion of a metric learning algorithm based on triplet loss re-

quires a forward propagation of the whole training dataset

through feature extractor and distance computation between

every pair of examples in each iteration, which is computa-

tionally infeasible in a large-scale datasets.

Existing approaches have explored two directions to re-

duce computational overhead while maintaining accuracy.

One is to search for hard negative examples only within in-

dividual mini-batches [20, 7] constructed by random sam-

pling; this strategy requires a large mini-batch size, e.g., a

few thousands in case of [20], to ensure to have a sufficient

number of hard examples. The other is to exploit a fixed ap-

proximate global structure of dataset by using precomputed

features [18, 6]. However, this approach is problematic be-

cause the representation of each example changes during

training procedure and, consequently, the global structure is

updated as well.

We propose a stochastic hard example mining technique

to tackle the limitations in the existing approaches. Specif-

17251

ically, we identify the nearest neighbor classes from a set

of stochastically sampled instances in an anchor class, and

draw hard examples from the classes only. Our key idea

is to use class signatures during training, which track the

change of the embedding function, and update the hard neg-

ative classes based on them during training. Assuming the

instance-level feature embeddings have small distances to

their class representatives, a sample-to-sample distance is

approximated by a sample-to-class distance while circum-

venting the need to compute a distance between every pair

of samples per iteration. The class signatures are updated at

every iteration in an efficient way. Since the idea is much

more efficient than exhaustive search, it allows us to change

embedding functions adaptively and update image represen-

tations in every iteration.

According to our experiment, the proposed hard exam-

ple mining technique improves accuracy in image retrieval

tasks compared to several baseline methods on the stan-

dard benchmark datasets including CARS-196 [10], CUB-

200-2011 [29], In-shop retrieval [11] and Stanford online

products [25]. In addition, by adopting a cross-channel cor-

relation technique [4] to further enhance the representa-

tion power, our method achieves the state-of-the-art perfor-

mance in the standard datasets.

2. Related Works

Hard example mining is a popular technique to speed up

convergence and enhance the discriminative power of the

learned embeddings in deep metric learning [20, 7, 2, 23].

To reduce the computational overhead to identify hard ex-

amples, existing works have explored two directions: an ex-

act search within each minibatch [20, 7, 19] and an approx-

imate search from the whole dataset. In this paper, we fo-

cus on exploiting the class membership information to mine

hard negatives from the whole dataset efficiently.

There are several approaches that approximate distances

between instances by class-level distances to reduce the

computational cost for hard example mining. Their com-

mon strategy is to identify the neighboring classes with a

low computational cost and construct a minibatch based

only on the classes [19, 30, 32]. The underlying assump-

tion is that the neighboring classes are likely to contain hard

negative examples.

To this end, early works used the precomputed embed-

dings to find the neighboring classes and fixed them dur-

ing the training. However, this approach suffers from poor

embedding quality and results in inefficient mining per-

formance since the embedding space is gradually updated

during the training. To figure out this issue, the neighbor-

ing class adaptation has been explored [23, 21, 18, 5, 22].

Among the techniques in this category, a naiv̈e approach is

to use an embedding of a random sample to represent its

class label [23, 21]. The representation quality can be im-

proved by using the average embedding of the examples in

a class [18, 5]. However, it requires high computational cost

because it repetitively feed forward the whole training sam-

ples through the network for adaptation. Also, since they

commonly use coarse class-level approximation, they of-

ten fail to identify the hardest examples, especially when

intra-class variation is large. Smirov et al. [22] attempt to

mitigate this problem by constructing a minibatch with the

hardest examples among the members in the mined hard

positive and negative classes. However, they employ pre-

computed features to detect the hardest examples with each

class, which is inaccurate due to embedding space updates.

We circumvent the abovementioned problems by intro-

ducing class signatures, which track the changes of embed-

ding space with minor additional cost. Specifically, our al-

gorithm first selects a few hard negative classes based on

the class-to-instance distances and then performs a refined

search in an instance-level only from the selected classes.

As most of the classes are discarded at the first stage, it

is more efficient than exhaustive search while effectively

mining a large number of hard examples. The methods pro-

posed by Movshovitz-Attias et al. [14] and Wen et al. [34]

are related to ours in a sense that class representatives are

jointly trained with the feature extractor. However, their

goal is to formulate new losses using the class representa-

tives whereas we use them for hard negative mining.

Recently, a few generation-based approaches have been

proposed to train hard example generators to avoid costly

mining process [1, 3, 39]. For a given anchor instance, they

generate a fake example that looks similar to the anchor

class but belongs to a negative class selected randomly. Al-

though they attempt to generate hard examples in the ran-

domly selected classes, their impact may not be significant

if the selected classes can be trivially differentiated.

3. Proposed Method

3.1. Overview

Our goal is to obtain an optimal feature extractor that

maps an image I to a vector x by deep metric learning.

The desired condition of the learned function is to make dis-

tances between the representations of similar images small

while locating dissimilar ones apart from each other. The

notion of similarity between two images is typically defined

by their semantic information, which is often derived from

whether their class labels are same or not. A pair of images

with the same label are considered to be positive while a

pair with different labels are called negative.

Given a triplet of samples, τ = [xa,xp,xn] ∈ T , which

consists of an anchor xa and a positive sample xp with la-

bel ya, and a negative sample xn with label yn, the triplet

loss penalizes the case that the distance from an anchor to a

positive sample is not sufficiently smaller than the distance

7252

to a negative one, which is formally given by

ℓT (τ) = max(0, d(xa,xp)− d(xa,xn) +m), (1)

LT (X) =
1

∑

τ∈T ω(τ)

∑

τ∈T

ω(τ)ℓT (τ), (2)

where d(xi,xj) = ‖xi − xj‖
2, m is the margin for the

difference between the distances from xa to xp and xn, and

ω(τ) denotes an importance of triplet τ . When every triplet

has a same weight, i.e., w(τ) = 1, Eq. (2) becomes identical

to the conventional triplet loss, which is given by

LT (X) =
1

|T |

∑

τ∈T

ℓT (τ). (3)

Based on the observation that weighing more on the semi-

hard triplets enhances the performance [7], we use follow-

ing binary weight for ω(τ) in Eq.(2) for all the experiments:

ω(τ) =

{

1, if ℓT (τ) > 0

0, otherwise
. (4)

In our experiments, the weighting scheme in Eq. (4) con-

sistently improves the accuracy with respect to the baseline

triplet loss based on the uniform weights.

To facilitate deep metric learning based on triplet loss,

each minibatch should contain many hard triplet examples

while diversifying examples over iterations to avoid overfit-

ting. Our main idea is to learn and use the class signature

vectors, which represent individual classes in a discrimina-

tive manner, to reduce the computational overhead for hard

triplet search. Intuitively, if two classes are located closely

in an embedding space, the instances in a class are likely

to be hard negatives with respect to the other. For the pur-

pose, we first search for the nearest neighbor classes from

an anchor class, which is based on the distances from sam-

ples in the anchor class to the rest of classes. Then, we seek

for the nearest neighbors in an instance-level, only among

the examples in the identified nearest neighbor classes. We

perform both class- and instance-level search stochastically

to increase sample diversity within a minibatch.

3.2. Neighbor Class Mining by Class Signatures

Given an anchor class, we aim to find the nearest neigh-

bor classes based on their signatures, denoted by W =
{w1,w2, · · ·w|Y|}, which are optimized by making the sig-

nature of each class coherent to the embeddings of its mem-

bers while maximizing the discriminativeness between the

class signatures.

For a given instance x with label yx, a sample-to-class

similarity function S(wc,x) should be large if the label of

Figure 2. A 2D embedding example of class signatures and indi-

vidual instances for the MNIST dataset. Circles and arrows denote

instances and class signatures, respectively, which are given by our

model. Class labels are color-coded.

x is c, and small otherwise. Hence, to find the nearest neigh-

bor classes based on the sample-to-class similarity, we de-

fine the following loss function:

LC(W ,X) = −
1

N

∑

x∈X

log (P (x;W)) (5)

= −
1

N

∑

x∈X

log

(

exp(S(wyx
,x))

∑

c exp(S(wc))

)

= −
1

N

∑

x∈X

log

(

exp(cos θyx
)

∑

c exp(cos θc)

)

, (6)

where θc = ∠(wc,x). It can also be interpreted as the log

likelihood of x with respect to class yx. Note that we use a

ℓ2-normalized feature vector x, following the common trick

to increase accuracy [38, 17, 31]. By constraining the class

signatures to have a unit norm, i.e., ‖wc‖2 = 1 for all c’s,

we can use cosine similarity measure to compare the repre-

sentations of instances and class signatures. Ideally, θc = 0
if c = yx and θc = π/2 otherwise. Figure 2 illustrates a dis-

tribution of the instances and their class signatures trained

on the MNIST dataset.

Given W , we can approximate the similarity between

two samples, x and x′ with labels y and y′, respectively,

by the corresponding class-to-class similarity and class-to-

sample similarity as

S(x,x′) ≈ S(x,wy′) ≈ S(wy,wy′), (7)

where S(·, ·) is a similarity between two vectors. Fig-

ure 3 shows the average sample-to-sample distance between

classes with respect to the rank of their class-to-class dis-

tances in In-shop retrieval and SOP datasets. It illustrates

that the expected sample-to-sample distance tends to in-

crease as the class-to-class distance does. This result implies

that the nearest classes obtained based on class-to-class dis-

tances are of reasonably good quality and also supports that

our class-level approximation for hard example mining is

effective.

7253

Figure 3. The average sample-to-sample distance between classes

with respect to the rank of their class-to-class distances in In-

shop retrieval and SOP dataset, averaged over 100 random anchor

classes. This result shows that expected sample-to-sample distance

is proportional to the corresponding class-to-class distance.

Iteration1 2000

Cl
as

s i
nd

ex
Cl

as
s i

nd
ex

(a)

(b)

Figure 4. For a given anchor class ca, the diversity of chosen nega-

tive classes in each minibatch are illustrated in the In-shop retrieval

dataset. The x-axis and y-axis correspond to the training iteration

and class index, respectively. The highlighted cells denote the se-

lected classes. It shows that the selected classes in a minibatch are

diverse over the iteration in the stochastic hard example mining

(b) while mostly fixed in the deterministic class-level mining in

Algorithm 1 (a).

3.3. Batch Construction

We now discuss how to construct minibatches and facil-

itate training using the identified hard examples.

3.3.1 Baseline protocol [38]

We adopt the approach in Zhao et al. [38] as the base-

line batch construction protocol. At each iteration, it con-

structs a minibatch by first randomly sampling K classes

and then randomly sampling η images from each of the

classes, which makes the minibatch size M = Kη. The

loss is given by every possible triples composable from a

minibatch. This approach is popularly used [38, 23, 7] due

to its simplicity and performance. Note that [23] is a special

case when K = M/2 and η = 2.

3.3.2 Improving baseline by hard class mining

We increase the expected number of hard triplets in each

minibatch compared to the baseline protocol by composing

each minibatch with the instances randomly sampled from

an anchor class and its (K − 1)-nearest classes. Formally,

given an anchor class ca at each iteration, its (K−1)-nearest

classes N are identified by the following optimization:

argmax
N⊂Y

∑

c∈N

S(wc,wca) (8)

subject to ca /∈ N and |N | = K − 1,

where Y is a set of class labels. Once the nearest classes

are selected, η instances are randomly sampled from each

of the classes, which constructs a minibatch B. Algorithm 1

describes the detailed procedure.

A drawback of this approach is that the variation of

sample-to-sample distances within a class becomes large

when its intra-class variation is large. As a result, the class

similarity measured by class signatures has too much error

to approximate the similarity of instances belonging to the

classes. A more serious issue is the limited diversity of the

sampled hard negative classes in the naı̈ve approach. As il-

lustrated in Figure 4(a), given an anchor class ca, only a few

hard negative classes are sampled repeatedly over iterations

while most of them fail to be selected. It implies that only a

limited number of negative classes are used for training for

each anchor class. To alleviate these limitations, we propose

a stochastic hard example mining approach.

3.3.3 Stochastic hard example mining

Instead of relying only on class signatures to find nearest

neighbor classes, we employ the distances computed be-

tween a set of instances in the anchor class and the class

signatures of the rest of the classes. At every iteration, we

first randomly select an anchor class and a subset of exam-

ples from it; given an anchor class ca, we construct Bca ,

which is a subset of minibatch B, with η examples ran-

domly sampled from the class. Then, we search for a pool

of nearest neighbor classes based on instance-to-class dis-

tances between the anchor instances in Bca and the set of

class signaturesW\{ca}. The nearest neighbor samples are

finally identified by collecting the sampled instances within

this pool. The use of instance-to-class distances is effective

to cope with the classes with a large intra-class variation

7254

Algorithm 1 Improved baseline with class-level mining

Parameters K, η

1: for t = 1 : T do

2: Random sample anchor class ca from Y
3: B ← Sample η instances from {x|yx = ca}
4: Get N of size (K − 1) by Eq. (8)

5: for c ∈ N do

6: Bc ← Sample η instances from {x|yx = c}
7: B ← B ∪ Bc
8: end for

9: Perform one iteration of training to minimize the

loss Eq. (12) using minibatch B
10: end for

and helpful to diversify the identified nearest classes. In ad-

dition, the refined instance-level search only from the se-

lected classes reduces the computational cost.

For a formal description, let us first define a similarity

Sg(·, ·) between a set of vectors U and a vector v ∈ V ,

which is given by

Sg(U ,v) ≡ max
u∈U

S(u,v), (9)

where U and V are sets of vectors.

We first search for nearest neighbor classes from an an-

chor class based on distances from samples in the anchor

class to the signatures of the rest of classes, which is given

by

Pc = argmax
V′⊂W\{wca

}

∑

v∈V′

Sg(Bca ,v) (10)

subject to |V ′| = α(K − 1),

where W denotes a set of class signatures and α(≥ 1) is

chosen randomly at each iteration, for sample diversifica-

tion. In a nutshell, Pc consists of top α(K − 1) negative

class signatures, which have largest similarities Sg from the

set of sampled anchor instances, Bca . We use Pc as class

candidates for the refined search, thereby reducing the num-

ber of candidate instances. For a given Pc, to diversify the

training examples, we randomly sample (K−1)η instances

among the instance pool, Ps by

Ps = argmax
V′⊂{x|yx=c,c∈Pc}

∑

v∈V′

Sg(Bca ,v) (11)

subject to |V ′| = β(K − 1)η,

where β(≥ 1) is to increase the number of candidates for

the final selection of examples to be included in a minibatch.

In a nutshell, Ps consists of top β(K − 1)η samples from

the class set Pc, which have largest similarities Sg from the

set of sampled anchor instances, Bca . Note that each mini-

batch contains Kη instances, which include the elements in

Algorithm 2 Training with stochastic hard example mining

Parameters K, η

1: for t = 1 : T do

2: Random sample α(≥ 1)
3: Random sample an anchor class ca
4: Bca ← Sample η instances from {x|yx = ca}
5: B ← Bca
6: Get a class pool Pc using Eq. (10).

7: Get a instance pool Ps using Pc and Eq. (11).

8: Ba ← Random sample (K − 1)η elements from Ps

9: B ← B ∪ Ba
10: Perform one iteration of training to minimize the

loss Eq. (12) using minibatch B
11: end for

Bca and the subsampled instances from the nearest neighbor

classes. Algorithm 2 summarizes the overall training pro-

cess.

Figure 4(b) illustrates the diversity of the selected nega-

tive classes over iterations. Compared with Figure 4(a), the

proposed stochastic hard example mining strategy allows to

identify more diverse classes over iterations and learns the

model more efficiently.

3.3.4 Computation efficiency

Suppose that there are n samples in each of |Y| classes.

The naı̈ve approach to find hard negative examples would

require to scan the whole dataset, which requires |Y|n for-

ward passes of the network in total for feature extraction.

In contrast, our algorithm reduces the computational cost

for feature extraction by first identifying a small set of near-

est classes based on the learned class signatures and then

searching for the nearest instances only within the set. Con-

sequently, the proposed method extracts features only from

cn samples, where c is a number of the candidate nearest

classes. Note that one needs to repetitively recompute fea-

tures during training due to gradual update of embedding

space. Since the feature extraction dominates the computa-

tion time, our approach still has the advantage over the naı̈ve

one despite the potentially large value of n.

3.4. Loss

We jointly train the parameters of feature extractor and

the class signaturesW to minimize both triplet loss and the

class signature loss. We hope that joint learning of triplet

and classification loss improves the accuracy of both tasks

as reported in [6, 40]. The loss function is formally given by

L(W ,X) = LT (X) + LC(W,X), (12)

where LT (·) and LC(·, ·) denote the triplet and the class

signature loss, respectively. Note that the gradient from the

7255

class signature loss is back-propagated all the way down to

the feature extractor.

3.5. Feature Extractor

Our baseline feature extractor is almost identical to the

original version [6, 14] based on Inception v1 [27] except

that it has a batch normalization layer after the last average

pooling layer.

Our feature extractor improves the baseline by introduc-

ing the second-order pooling [4, 26, 13]. The second order

pooling actually exploits cross-channel correlation, which

turns out to be useful to improve several computer vision

tasks including classification [4, 13]. For an input feature

map G ∈ R
w×h×c, the second-order pooling is defined by

Pooling(G) =
1

hw

∑

xy

vec(gxy ⊗ gxy), (13)

where gxy is a feature vector in G at position (x, y), ⊗
is the outer-product operator and vec(·) denotes the vec-

torization of an input. We adopt a technique called Ten-

sor Sketch [16, 4] to reduce the computational overhead re-

quired for handling outer-product in Eq. (13). Refer to [16]

for the details. We found that simply increasing the image

resolution increases the accuracy by better exploiting the

spatial information. To enlarge the resolution of the input

feature map to the second-order pooling layer, we drop the

layers from Inception v1 5a block. More specifically, we

use the network from the input to the Inception v1 4e block,

followed by a 1× 1 convolution (512-dim) and a batch nor-

malization layer to extract the feature map G. Then, the

second-order pooling is performed over the extracted fea-

ture map followed by ℓ2-normalization.

3.6. Image Retrieval

We perform image retrieval based on the similarity be-

tween the representations of a pair of images. The triplet

loss is employed to learn the representation, which incor-

porates stochastic hard negative mining to facilitate train-

ing. The similarity between a pair of images is conceptually

given by

sim(G,G′) =
1

hw

∑

xyx′y′

〈

gxy,g
′
x′y′

〉2
, (14)

where G and G′ are the feature maps of two images. Note

that each term is non-negative and thus any local descriptor

gxy with non-zero strength increases the image similarity.

In our experiments, this implicitly enforced the local fea-

tures located at the background regions to have small ℓ2-

norm to avoid an adversarial effect.

Table 1 shows that the model using cross-channel corre-

lation consistently improves accuracy from the baseline. In

addition, accuracy increases as the input resolution grows

Table 1. R@1 (%) in CARS-196 and CUB-200-2011 dataset for

different feature extractors input resolutions

Method 224× 224 336× 336

CARS-196
Inception v1 83.6 89.7

Channel-correlation 86.9 91.3

CUB-200-2011
Inception v1 55.1 60.9

Channel-correlation 58.1 65.2

from 224×224 to 336×336. Compared to the baseline, this

change does not increase the number of parameters while

taking about 2.25 times more computation in FLOPs.

4. Experiments

This section describes our setting for experiment and re-

ports the performance of our algorithm compared to exist-

ing methods.

4.1. Datasets

The proposed approach is tested on the following stan-

dard benchmark datasets for image retrieval. We do not use

ground-truth bounding box annotations in all experiments.

CARS-196 [10] This dataset consists of 16, 183 images in

196 different classes of cars. We used the first 98 classes for

training (8, 052 images) and the rest of classes for testing

(8, 131 images), following the setting in [25].

CUB-200-2011 [29] This dataset is based on the images

of 200 different bird species. We used the first 100 classes

for training (5, 864 images) and the other 100 classes for

testing (5, 924 images), following the previous work [25].

In-shop retrieval [11] This dataset has 54, 642 images in

11, 735 classes of clothing items. We used 3, 997 classes for

training (25, 882 images) and another 3, 985 classes for test-

ing (28, 760 images), which follows the previous work [11].

In the test set, 14, 218 images are used as queries and the

remaining 12, 612 images are used as the database for re-

trieval.

Stanford onilne products (SOP) [25] This is a large-

scale dataset with 120, 053 product images of 22, 634
classes. Training split is composed of 59, 551 images in

11, 318 classes while 11, 316 classes with 60, 499 images

are used for testing.

4.2. Implementation Details

We describe the details of our implementation including

data augmentation, hyperparameter setting, and optimiza-

tion method.

Data augmentation During the training, we resize an in-

put image to 256× 256 and perform standard random crops

to 224× 224 with random horizontal flipping for data aug-

mentation. For the testing, we first resize input images to

256× 256 and then crop the center to 224× 224.

7256

Hyperparameters We set the batch size to 60 (M = 60).

Given the batch size, we choose η = 10 for the small

datasets (CARS-196 and CUB-200-2011), which has 60 to

80 samples per class, and η = 5 for the larger datasets (In-

shop retrieval and Stanford Online Products), which only

has 5 to 7 examples per class. In Algorithm 2, α is ran-

domly chosen from {3, 4, 5} at each iteration with β = 5
for CARS-196 and CUB-200-2011, and from {15, 20, 25}
with β = 1 for In-shop retrieval and SOP.

Optimization We use Adam [9] for optimization. The ini-

tial learning rate and weight decay are set to 1 × 10−4 and

5 × 10−4, respectively. The learning rate is exponentially

decayed to 1× 10−7 from epoch 200 to 400.

4.3. Evaluation Metrics

We employ the Recall@K (R@K) metric for evaluation.

For each sample, K nearest neighbors are retrieved from the

remaining test set. If retrieved images include at least one

sample from the same class, it is considered to be correct.

The Recall@K metric measures the number of correct sam-

ple over entire sample. For the distance measure, Euclidean

distance is used, which is equivalent to the cosine distance

in our case, because the feature are ℓ2-normalized.

4.4. Effect of the Stochastic Hard Example Mining

We evaluate the proposed stochastic hard example min-

ing method in aspect of the hardness.Figure 5 illustrates the

number of triplets with non-zero losses within the mini-

batch constructed in each iteration of training. Compared

to the random sampling [38] and class-level mining (Al-

gorithm 1), the proposed stochastic hard negative mining

strategy (Algorithm 2) is obviously more effective to find

desirable triplets that have non-zero losses.

To evaluate the effect of the proposed stochastic hard

class mining, we compare our method (Algorithm 2) with

baseline protocol [38], hard class mining (Algorithm 1), and

two variants of ours. Table 2 present the accuracies of all the

compared methods. It is known that training the feature ex-

tractor with joint loss of triplet and classification enhances

the accuracy from the baseline which uses only triplet loss.

To discriminate the effect of the hard sample mining and

the addition of loss (Eq. 5), we show both results, only with

mining (var2) and the full model. In var2, the class sig-

nature loss does not back-propagate to the feature extractor.

Another variant (var1) replaces the proposed class signature

with the class-wise average of features, extracted from the

Inception v1 pre-trained on the ImageNet dataset. Table 2

shows that the proposed method consistently improves the

accuracy compared to the random sampling baseline in all

the datasets. We reimplemented three existing mining meth-

ods [6, 21, 30] for comparison with the proposed algorithm.

For fair comparison, we used the same setting in the algo-

Figure 5. Comparison of the number of triplets with non-zero loss

in a minbatch during training.

rithms except for the mining strategies, where the feature

extractor is trained by the triplet loss without the signature

loss. As shown in Table 2, the proposed approach (var2)

achieves the best accuracy in general among the compared

methods.

4.5. Comparison with the Existing Methods

We compare our method to the state-of-the-art meth-

ods in Table.3-6. Since the backbone network architec-

ture affects the retrieval accuracy, we show the architec-

ture in the parenthesis. When compared to the existing

hard sample mining method, SmartMining [6], ours achieve

higher accuracy. Note that they provided the result only on

small datasets. We also report the accuracy of proposed

mining method applied to the channel-correlation model

with higher input image resolution of 336× 336 (Channel-

correlation). In every dataset, our method outperforms

the previous state-of-the-art with comparable compuational

cost.

5. Conclusion

We proposed a stochastic hard negative example mining

method for triplet loss. Unlike existing works, our method

tracks the change of neighbor relations between classes in

during training with minor additional cost. Based on the

relations, it identifies hard examples through a coarse-to-

fine search and stochastically samples hard examples from

a pool of candidates to diversify the examples used for train-

ing. Experimental results show that our method consistently

improves the baseline.

Acknowledgement This work was partially supported by

Samsung Resaearch and the Visual Turing Test project

(IITP-2017-0-01780) from the Ministry of Science and ICT

of Korea.

References

[1] Shuo Chen, Chen Gong, Jian Yang, Xiang Li, Yang Wei, and

Jun Li. Adversarial metric learning. In IJCAI, 2018. 2

7257

Table 2. Recall@K (%) comparison with the baselines

CARS-196 CUB-200-2011 In-shop retrieval Stanford online products

K 1 2 4 8 1 2 4 8 1 10 20 30 1 10 102 103

SmartMining [6] (reproduced) 72.7 82.2 88.4 92.7 50.2 62.5 73.3 82.7 − − − − − − − −
Doppelganger [21] (reproduced) 80.7 87.7 92.5 95.2 55.0 67.0 77.3 85.8 87.7 96.9 97.9 98.3 68.3 83.8 92.5 97.5

HowToTrain100k [30] (reproduced) 78.9 86.5 91.6 95.0 53.4 65.2 75.7 83.8 87.0 96.5 97.5 98.0 69.2 83.7 82.0 97.0

Inception v1

Baseline [38] 78.2 86.0 90.9 94.2 52.4 64.4 74.9 84.2 86.4 96.5 97.9 98.4 67.8 84.0 93.2 97.9
Class Mining (Alg. 1) 81.3 87.8 92.6 95.6 52.9 64.8 75.6 84.1 88.0 96.7 97.8 98.3 70.6 84.9 93.1 97.7
Stochastic Mining (Alg. 2, var1) 81.3 88.3 92.3 95.5 54.1 66.3 76.7 84.8 87.3 96.3 97.4 97.9 68.7 82.4 90.8 96.2
Stochastic Mining (Alg. 2, var2) 82.5 89.2 93.4 96.2 55.1 66.4 76.2 84.8 88.9 97.2 98.2 98.6 72.1 85.9 93.3 97.6
Stochastic Mining (Alg. 2) 83.4 89.9 93.9 96.5 56.0 68.3 78.2 86.3 90.7 97.8 98.5 98.8 75.2 87.5 93.7 97.4

Table 3. Accuracy comparison on CARS-196

Method R@1 R@2 R@4 R@8
Lifted [25] (Inception v1) 53.0 66.7 76.0 84.3
Facility [24] (Inception v1) 58.1 70.6 80.3 87.8
SmartMining [6] (Inception v1) 64.7 76.2 84.2 90.2
N-pair [23] (Inception v1) 71.1 79.7 86.5 91.6
Angular [33] (Inception v1) 71.4 81.4 87.5 92.1
Proxy NCA [14] (Inception v1) 73.2 82.4 86.4 88.7
HDC [37] (Inception v1 + ensemble) 73.7 83.2 89.5 93.8
DAML [3] (Inception v1) 75.1 83.8 89.7 93.5
HTG [39] (Inception v1 + att) 76.5 84.7 90.4 94.0
Margin [35] (ResNet-50) 79.6 86.5 91.9 95.1
HTL [5] (BN-Inception) 81.4 88.0 92.7 95.7
DVML [12] (Inception v1) 82.0 88.4 93.3 96.3
A-Bier [15] (Inception v1 + ensemble) 82.0 89.0 93.2 96.1
ABE [8] (Inception v1 + ensemble) 85.2 90.5 93.9 96.1
DREML [36] (Inception v3 + ensemble) 84.2 89.4 93.2 95.5
DREML [36] (ResNet-18 + ensemble) 86.0 91.7 95.0 97.2
Vo et al. [28] (VGG16-BN) 87.8 92.7 95.6 97.5
Proposed (Inception v1) 83.4 89.9 93.9 96.5
Proposed (Channel-correlation) 91.7 95.3 97.3 98.4

Table 4. Accuracy comparison on CUB-200-2011

Method R@1 R@2 R@4 R@8
SmartMining [6] (Inception v1) 49.8 62.3 74.1 83.3
Proxy NCA [14] (Inception v1) 49.2 61.9 67.9 72.4
N-pair [23] (Inception v1) 51.9 64.3 74.9 83.2
DVML [12] (Inception v1) 52.7 65.1 75.5 84.3
DAML [3] (Inception v1) 52.7 65.4 75.5 84.3
HDC [37] (Inception v1 + ensemble) 53.6 65.7 77.0 85.6
Angular [33] (Inception v1) 54.7 66.3 76.0 83.9
HTL [5] (BN-Inception) 57.1 68.8 78.7 86.5
A-Bier [15] (Inception v1 + ensemble) 57.5 68.7 78.3 86.2
HTG [39] (Inception v1 + att) 59.5 71.8 81.3 88.2
ABE [8] (Inception v1 + ensemble) 60.6 71.5 79.8 87.4
Margin [35] (ResNet-50) 63.6 74.4 83.1 90.0
DREML [36] (inception v3 + ensemble) 58.9 69.6 78.4 85.6
DREML [36] (ResNet-18 + ensemble) 63.9 75.0 83.1 89.7
Vo [28] (VGG16-BN) 66.4 77.5 85.4 91.3
Proposed (Inception v1) 56.0 68.3 78.2 86.3
Proposed (Channel-correlation) 66.2 76.3 84.1 90.1

[2] Yin Cui, Feng Zhou, Yuanqing Lin, and Serge Belongie.

Fine-grained categorization and dataset bootstrapping using

deep metric learning with humans in the loop. In CVPR,

2016. 2

Table 5. Accuracy comparison on In-shop retrieval

Method R@1 R@10 R@20 R@30
HDC [37] (Inception v1 + ensemble) 62.1 84.9 89.0 91.2
DREML [36] (ResNet-18 + ensemble) 78.4 93.7 95.8 96.7
HTG [39] (Inception v1 + att) 80.3 93.9 95.8 96.6
HTL [5] (BN-Inception) 80.9 94.3 95.8 97.2
A-Bier [15] (Inception v1 + ensemble) 83.1 95.1 96.9 97.5
ABE [8] (Inception v1 + ensemble) 87.3 96.7 97.9 98.2
Proposed (Inception v1) 90.7 97.8 98.5 98.8
Proposed (Channel-correlation) 91.9 98.0 98.7 99.0

Table 6. Accuracy comparison on Stanford online products

Method R@1 R@10 R@102 R@103

N-pair [23] (Inception v1) 66.4 83.2 93.0 −
DAML [3] (Inception v1) 68.4 83.5 92.3 −
HDC [37] (Inception v1 + ensemble) 69.5 84.4 92.8 97.7
DVML [12] (Inception v1) 70.2 85.2 93.8 −
Margin [35] (ResNet-50) 72.7 86.2 93.8 98.0
Proxy NCA [14] (Inception v1) 73.7 − − −
A-Bier [15] (Inception v1 + ensemble) 74.2 86.9 94.0 97.8
HTL [5] (BN-Inception) 74.8 88.3 94.8 98.4
ABE [8] (Inception v1 + ensemble) 76.3 88.4 94.8 98.2
Vo et al. [28] (VGG16-BN) 74.8 88.3 95.2 98.5
Proposed (Inception v1) 75.2 87.5 93.7 97.4
Proposed (Channel-correlation) 77.6 89.1 94.7 −

[3] Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and

Jie Zhou. Deep adversarial metric learning. In CVPR, 2018.

1, 2, 8

[4] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell.

Compact bilinear pooling. In CVPR, 2016. 2, 6

[5] Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R.

Scott. Deep metric learning with hierarchical triplet loss. In

ECCV, 2018. 2, 8

[6] Ben Harwood, Vijay Kumar B G, Gustavo Carneiro, Ian

Reid, and Tom Drummond. Smart mining for deep metric

learning. In ICCV, 2017. 1, 5, 6, 7, 8

[7] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In

defense of the triplet loss for person re-identification.

arXiv:1703.07737, 2017. 1, 2, 3, 4

[8] Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee,

and Keunjoo Kwon. Attention-based ensemble for deep met-

ric learning. In ECCV, 2018. 8

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

7258

2014. 7

[10] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

ICCV Workshops, 2013. 2, 6

[11] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

Deepfashion: powering robust clothes recognition and re-

trieval with rich annotations. In ICCV Workshops, 2013. 2,

6

[12] Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie

Zhou. Deep variational metric learning. In ECCV, 2018. 8

[13] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and

Michael I. Jordan. Conditional adversarial domain adapta-

tion. In NeurIPS, 2018. 6

[14] Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Le-

ung, Sergey Ioffe, and Saurabh Singh. No fuss distance met-

ric learning using proxies. In ICCV, 2017. 1, 2, 6, 8

[15] Michael Opitz, Georg Waltner, Horst Possegger, and Horst

Bischof. Bier - boosting independent embeddings robustly.

In ICCV, 2017. 8

[16] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial

kernels via explicit feature maps. In SIGKDD, 2013. 6

[17] Rajeev Ranjan, Carlos D Castillo, and Rama Chellappa. L2-

constrained softmax loss for discriminative face verification.

arXiv:1703.09507, 2017. 3

[18] Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir

Bourdev. Metric learning with adaptive density discrimina-

tion. ICLR, 2016. 1, 2

[19] Ergys Ristani and Carlo Tomasi. Features for multi-target

multi-camera tracking and re-identification. In CVPR, 2018.

2

[20] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In CVPR, 2015. 1, 2

[21] Evgeny Smirnov, Aleksandr Melnikov, Sergey Novoselov,

Eugene Luckyanets, and Galina Lavrentyeva. Doppelganger

mining for face representation learning. In ICCVW, 2017. 1,

2, 7, 8

[22] Evgeny Smirnov, Aleksandr Melnikov, Andrei Oleinik,

Elizaveta Ivanova, Ilya Kalinovskiy, and E Lukyanets. Hard

example mining with auxiliary embeddings. In CVPR Work-

shop on Disguised Faces in the Wild, 2018. 2

[23] Kihyuk Sohn. Improved deep metric learning with multi-

class n-pair loss objective. In NIPS, 2016. 1, 2, 4, 8

[24] Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin

Murphy. Deep metric learning via facility location. CVPR,

2017. 1, 8

[25] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured feature

embedding. In CVPR, 2016. 2, 6, 8

[26] Yumin Suh, Jingdong Wang, Siyu Tang, Tao Mei, and Ky-

oung Mu Lee. Part-aligned bilinear representations for per-

son re-identification. In ECCV, 2018. 6

[27] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015. 6

[28] Nam Vo and James Hays. Generalization in metric learning:

Should the embedding layer be embedding layer? In WACV,

2018. 8

[29] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-

port CNS-TR-2011-001, California Institute of Technology,

2011. 2, 6

[30] Chong Wang, Xue Zhang, and Xipeng Lan. How to train

triplet networks with 100k identities? arXiv:1709.02940,

2017. 1, 2, 7, 8

[31] Feng Wang, Xiang Xiang, Jian Cheng, and Alan L Yuille.

Normface: l 2 hypersphere embedding for face verification.

arXiv:1704.06369, 2017. 3

[32] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,

Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learn-

ing fine-grained image similarity with deep ranking. In

CVPR, 2014. 2

[33] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing

Lin. Deep metric learning with angular loss. In ICCV, 2017.

8

[34] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A

discriminative feature learning approach for deep face recog-

nition. In ECCV, 2016. 2

[35] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and

Philipp Krahenbuhl. Sampling matters in deep embedding

learning. In ICCV, 2017. 1, 8

[36] Hong Xuan, Richard Souvenir, and Robert Pless. Deep

randomized ensembles for metric learning. arXiv preprint

arXiv:1808.04469, 2018. 8

[37] Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. Hard-aware

deeply cascaded embedding. In ICCV, 2017. 8

[38] Liming Zhao, Xi Li, Yueting Zhuang, and Jingdong Wang.

Deeply-learned part-aligned representations for person re-

identification. In ICCV, 2017. 1, 3, 4, 7, 8

[39] Yiru Zhao, Zhongming Jin, Guo jun Qi, Hongtao Lu, and

Xian sheng Hua. A principled approach to hard triplet gen-

eration via adversarial nets. In ECCV, 2018. 1, 2, 8

[40] Zhedong Zheng, Liang Zheng, and Yi Yang. A discrimi-

natively learned cnn embedding for person re-identification.

arXiv:1611.05666, 2016. 5

7259

