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Abstract

We present a convex relaxation for the multi-graph

matching problem. Our formulation allows for partial pair-

wise matchings, guarantees cycle consistency, and our ob-

jective incorporates both linear and quadratic costs. More-

over, we also present an extension to higher-order costs.

In order to solve the convex relaxation we employ a mes-

sage passing algorithm that optimizes the dual problem.

We experimentally compare our algorithm on established

benchmark problems from computer vision, as well as on

large problems from biological image analysis, the size of

which exceed previously investigated multi-graph matching

instances.

1. Introduction

Finding correspondences between images or shapes is

a long-standing problem in computer vision and computer

graphics research. Such problems are of high relevance for

various applications, among them tracking, segmentation or

shape modelling. However, many formulations of the corre-

spondence problem, such as the well-known quadratic as-

signment problem (QAP), are known to be NP-hard. Most

correspondence problems can be interpreted as an instance

of the graph matching problem, where the objective is to

establish correspondences between the nodes of two given

graphs, such that the edges of both graphs are matched con-

sistently. The multi-graph matching (MGM) problem gen-

eralizes graph matching to simultaneously establishing cor-

respondences between more than two graphs. For multiple

matchings, the notion of cycle consistency arises: assume

that Xpq is the assignment matrix between graph p and q.

The condition XprXrq = Xpq ∀p, q, r is called cycle con-

sistency, see Figure 1 for an illustration.

Multi-matching problems are, among others, relevant

for multi-view reconstruction, tracking of objects in videos

or shape collection alignment. Generally, computing cor-

respondences via multi-graph matching results in higher-
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Figure 1. Illustration of cycle consistency in multi-graph match-

ing (best viewed in color). Each graph A, B, C comprises three

nodes (green, blue, purple) and three edges (white lines). The true

correspondence is indicated by the node colour and node labels 1,

2, 3. Matchings between pairs of graphs are shown by coloured

lines (A↔B in yellow, A↔C in gray, and B↔C in blue). Wrong

matchings are indicated by dashed lines. The multi-matching

A1↔B2↔C2↔A2 is not cycle consistent.

quality solutions in comparison to matches computed by a

series of graph matching problems only. The reason is that

spurious matches introduced by noise in the data can be cor-

rected, since each correspondence between two graphs de-

pends on other matches via cycle consistency.

While matching problems between two graphs are well-

studied and have received attention since more than fifty

years [6, 18, 28, 20, 9, 36, 35, 48, 30, 26, 12, 1, 16, 11, 4, 46,

49, 14, 21, 2, 19], the multi-graph matching problem is less

well-studied and hence offers great potential for improve-

ments, both on the theoretical and practical side. In this

work we propose a novel multi-graph matching approach

that has the following main contributions:
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Contributions. In contrast to most prior work, our

approach is based on a principled and theoretically well-

grounded convex optimization approach that (i) jointly op-

timizes a general quadratic multi-graph matching objective

while considering cycle consistency constraints, (ii) pro-

vides primal/dual gaps w.r.t. a strong relaxation, (iii) is in-

dependent of the initialization, (iv) is scalable to large-scale

problems due to the use of state-of-the-art message pass-

ing techniques, and (v) can be easily extended to the multi-

hypergraph matching problem. To our knowledge, there ex-

ists no solver in the literature that combines these desirable

characteristics.

2. Related work

We review relevant algorithmic prior work for the graph

matching and the multi-graph matching problem below.

Graph-matching. The simplest version of graph match-

ing is the linear assignment problem (LAP) that can be

solved in polynomial time with the Hungarian [24] or Auc-

tion [6] algorithm. For quadratic costs, the graph matching

problem is also known as the quadratic assignment prob-

lem (QAP) [18]. It is considered to be one of the prac-

tically most difficult NP-hard problems [28]. Therefore,

many heuristics and approximative algorithms have been

proposed, among them algorithms based on Lagrangian re-

laxation [36, 47, 35], semidefinite programming [30, 16],

and other techniques from convex optimization [12, 1, 11,

4]. Apart from that, primal heuristics have been pro-

posed that are based on spectral techniques [20, 9], path-

following [46, 49, 14], loopy belief propagation [2], and

ADMM [19]. For survey papers that give an overview of

techniques used in the combinatorial optimization commu-

nity we refer to [28, 21]. Higher-order variants of graph

matching, known as hypergraph matching, have also been

considered, e.g. in [25, 10].

Our algorithm can be considered as an extension of the

message passing techniques proposed in [47, 35] from the

graph matching problem to the more difficult multi-graph

matching problem.

Multi-graph matching. Various techniques have been

applied for solving multi-graph matching problems. The

method [32] holds a tensor that represents all pairwise

matchings simultaneously. This way, cycle consistency is

satisfied, but their approach is not scalable. A fast algo-

rithm for MGM based on clustering was proposed in [37],

where, however, only linear costs are considered.

In [44], the authors alternatingly optimize the individ-

ual graph matching problems and enforce cycle consis-

tency repeatedly to obtain progressively better MGM so-

lutions. The work [38] proposes a smooth nonconvex rank-

constrained formulation of the multi-matching problem and

utilize block coordinate descent on the resulting problem.

Other approaches include extensions of random walk based

methods [29], factorized graph matching [49] or matrix fac-

torization [45]. The authors of [43] propose to alternat-

ingly use existing graph matching solvers such that ulti-

mately cycle consistency is achieved. The work [42, 41]

also use existing graph matching solvers and gradually ex-

tend the problem by adding cycle consistency constraints

until a feasible multi-graph matching is obtained. However,

the works [43, 42, 41] do not use an overall optimization

formulation.

In [16, 4], the authors consider a convex relaxation for

MGM based on semidefinite programming. While the

approach [16] relies on a variable lifting that makes the

problem computationally expensive, the approach in [4] is

lifting-free but only discussed for the case of full matchings.

Another line of works split the solution of the MGM

problem into two steps: solving the individual pairwise

graph matching problems first, and enforcing cycle consis-

tency as post-processing. The works [27, 7, 50, 31, 22,

5] assume they are given individual matchings and then

postprocess them via matrix factorization to obtain cycle-

consistent matchings, which they call permutation synchro-

nization. Similarly, in [3] the authors improve given match-

ings, but they do not obtain cycle-consistent matchings.

Organization. Section 3 contains our overall multi-

graph matching approach. In Section 3.1 we formally

state the MGM problem, in Section 3.2 we describe the

general Lagrange decomposition framework for linear pro-

gramming (LP) relaxations, and in Section 3.3 we present

the MGM problem decomposition within this framework.

To obtain a scalable solver for the resulting LP we pro-

pose to use message passing, where we describe the mes-

sages in Section 3.4, and the solver itself in Section 3.5.

Since cycle consistency is enforced through a cubic num-

ber of constraints, in Section 3.6 we propose a dual cutting

plane algorithm to include only the required constraints in a

working set. We discuss extensions to the multi-hypergraph

matching problem in Section 3.7. Finally, in Section 4 we

experimentally evaluate our solver on problems from com-

puter vision and biomedical image analysis. We provide ad-

ditional details in Appendix A. Code and datasets are avail-

able from https://github.com/LPMP/LPMP.

3. Lagrangian MGM relaxation

In this section we will first present the multi-graph

matching problem with quadratic costs. Next, we review

the Lagrange decomposition framework [34] and show how

it can be applied to decompose the MGM into efficiently

solvable subproblems. We also review the message pass-

ing algorithm from [34] for general decompositions and de-

tail how our MGM decomposition can be optimized by this

method. Last, we describe a dual cutting plane algorithm

for cycle consistency constraints.

Since the problem decomposition is complex, the nota-
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tion necessary to describe it is so as well. To aid the reader

we consistently use symbols for indices which refer to the

same type of object. The used index variables are sum-

marised in Table 1.

Table 1. Notational conventions

symbol meaning

j, k subproblem

s, t vector and matrix indices

p, q, r index of pairwise GM problems

i, ℓ temporary indices for sums

{·}[pq] matching from p to q, p < q

{·}
[pq]

matching from q to p, p < q
d number of graphs

mp number of nodes in graph p

3.1. Problem formulation

We phrase the problem of multi-graph matching as

jointly solving pairwise graph matching problems between

all pairs of graphs under additional cycle consistency con-

straints. Although our approach is applicable to consid-

ering subsets of pairwise graph matchings, for notational

convenience we phrase the MGM problem as the match-

ing of all possible pairs of graphs. We assume that the

cost for matching the p-th graph and the q-th graph, where

p, q ∈ [d] := {1, . . . , d} for d being the total number of

graphs, is given by (x[pq])⊤W [pq]x[pq], so that the MGM

problem reads

min
{X[pq]∈Pmpmq}

∑

p,q∈[d]

(x[pq])⊤W [pq]x[pq] (1)

s.t. X [pq]X [qr] ≤ X [pr] , (2)

where we define x[pq] := vec(X [pq]) and the set of m × n
(partial) permutation matrices Pmn is defined as

Pmn = {X ∈ {0,1}m×n : X1n≤1m, X⊤1m≤1n} . (3)

Note that we write all indices that refer to pairs (or triplets)

of graphs in the MGM problem in brackets, e.g. W [pq].

Proposition 1. Let (X [pq])p,q∈[d] be a set of partial match-

ings. Then constraints (2) cut off all non-cycle-consistent

elements.

We give a minimal example showing when constraints 2

are active in Example 1 in the Appendix.

3.2. Lagrange decomposition

We will solve Problem (1) in a Lagrange decomposi-

tion framework. To this end we recapitulate the framework

in [34], where the class of Integer Relaxed Pairwise Sepa-

rable Linear Programs (IRPS-LP) is defined. IRPS-LPs are

a special case of dual decomposition [13].

Definition 1 (IRPS-LP [34]). Let N ∈ N and let G =
(V,E) be a graph with V = {1, . . . , N}. For every j ∈ V,

let dj ∈ N, let Y j ⊆ {0, 1}dj , and let θj ∈ R
dj . Let Λ :=

conv(Y 1) × · · · × conv(Y N ). For every {j, k} = e ∈ E,

let me ∈ N, Aj,k ∈ {0, 1}me×dj and Ak,j ∈ {0, 1}me×dk

such that

∀x ∈ Y j : Aj,kx ∈ {0, 1}me , and (4)

∀x ∈ Y k : Ak,jx ∈ {0, 1}me . (5)

Then, the LP written below is called integer relaxed pair-

wise separable w.r.t. the graph G.

min
µ∈Λ

∑

j∈V

〈θj , µj〉 (6)

subject to ∀{j, k} ∈ E : Aj,kµj = Ak,jµk . (7)

Here, G = (V,E) define a general problem decomposi-

tion graph relevant for IRPS-LP that shall not be confused

with the graphs that we aim to match. Every j ∈ V defines

a subproblem, and every edge jk ∈ E defines a dependency

of subproblems. Def. 1 is more specific than a general La-

grange decomposition, since, firstly, the subproblems are

assumed to be binary, and secondly, the linear constraints

(7) that describe the dependence of subproblems are defined

by 01-matrices that map 01-vectors to 01-vectors. IRPS-

LPs are amenable to efficient optimization by the message

passing framework of [34].

In what follows, we will refer to subproblems j ∈ V by

the distinctive names we give to the free variables xj ∈ Y j

they optimize over. It will be clear from context when we

use subproblem variables xj to refer to the subproblem j.

3.3. Multi­graph matching decomposition

We will propose a decomposition of Problem (1) as

IRPS-LP. In Fig. 2 we illustrate the subproblem decom-

position. Our decomposition consists of three types of

subproblems: (i) matching subproblems that account for

matching nodes from one graph to the other, (ii) quadratic

cost subproblems that account for matching edges from one

graph to another, and (iii) cycle consistency subproblems

that constrain matchings from three distinct graphs to be

valid multi-matchings. In what follows, we will use the fol-

lowing notation rule: Let a pairwise graph matching prob-

lem between graphs p and q be given, where w.l.o.g. p < q.

There are two matching directions, with which we will as-

sociate two sets of variables: Given nodes (resp. edges) in

p, match to nodes (resp. edges) in q. We write variables

related to this forward direction as {·}[pq], where the re-

spective variable is inserted in place of {·}. For the reverse

direction, i.e. matching from q to p, we distinguish variables

by writing them as {·}
[pq]

.

Matching subproblems. As the matching subproblems

are analogous for all pairwise GM problems p, q, we fix p, q
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Figure 2. Overview of the subproblem decomposition and their couplings for a triplet of pairwise GM problems [pq], [pr], [qr], along with

the [pqr] cycle consistency constraint (best viewed in color). The rounded rectangles correspond to (some of) the nodes of V in Def. 1, and

the coloured lines correspond to (some of) the edges of E, respectively.

and omit the superscripts p, q for the sake of an easier ex-

planation (e.g. we use X instead of X [pq]). We write the

(mp×mq)-dimensional partial matching matrix X in terms

of matrix rows and columns as

X =







X1,∗

...

Xmp,∗






=

[

X∗,1 . . . X∗,mq

]

. (8)

For every row with index s ∈ [mp] of X
we define a subproblem with feasible set

Y
s
= {x ∈ {0, 1}mq : 〈x,1〉 ≤ 1}, and for every col-

umn with index t ∈ [mq] we define a factor with feasible

set Y t = {x ∈ {0, 1}mp : 〈x,1〉 ≤ 1}. It follows that

X ∈ Pmpmq
is equivalent to (9) in conjunction with (10):

(Xs,∗)
⊤ ∈ Y

s
for s ∈ [mp], and (9)

X∗,t ∈ Y t for t ∈ [mq] . (10)

We add each row and column of X as a subproblem to V,

so that we have one mq-dimensional variable xs ∈ Y
s

for

each [s] ∈ mp, and one mp-dimensional variable xt ∈ Y t

for each [t] ∈ mq . In order to ensure that the variables

{xs}, {xt} form a valid X ∈ Pmpmq
, they are coupled via

the equality constraints







(x1)⊤

...

(xmp)⊤






=

[

x1 . . . xmq
]

. (11)

The constraints (11) correspond to constraints (6) between

Y
s

and Y t, as they can be expressed as

As,txs = At,sxt . (12)

Quadratic cost subproblems. Again, as the quadratic

costs for all pairwise GM problems p, q are analogous,

we fix p, q and omit the superscripts p, q for the sake of

an easier explanation. In order to linearize the quadratic

cost x⊤Wx from (1), where x ∈ R
mpmq and W ∈

R
mpmq×mpmq , we first observe that

x⊤Wx =







x1

...

xmq







⊤ 





W (11) · · · W (1mq)

...
. . .

...

W (mq1) · · · W (mqmq)













x1

...

xmq






,

(13)

where xs ∈ Y s for s ∈ [mq] and W (st) ∈ R
mp×mp ,

=

mq
∑

s,t=1

(xs)⊤W (st)xt . (14)

The blockwise decomposition in equation (14) defines

unary and pairwise potentials similarly as in a Markov Ran-

dom Field (MRF) as follows: Each diagonal element in

block W (ss) for s ∈ [mq] defines a unary cost θs =
0.5· diag(W (ss)), so that we can write the cost function

0.5·(xs)⊤W (ss)xs for each unary s-factor (s ∈ [mq]) as

〈xs, θs〉 (the factor 0.5 accounts for the decomposition in

variables {·} and {·}).

For each non-diagonal block W (st) with s, t ∈ [mq], s <
t we define a pairwise factor with feasible set Y st = {x ∈
{0, 1}mp×mp : 1⊤x1 = 1}. We connect unary variables

xs ∈ Y s and xt ∈ Y t with pairwise variable xst ∈ Y st via

constraints as follows:

As,stxs = Ast,s vec(xst) ⇔ xs = xst
1

At,stxt = Ast,t~(xst) ⇔ xt = (xst)⊤1
(15)
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The pairwise costs are θst = 0.5·(W (st) + (W (ts))⊤),
so that we can write the quadratic cost function

0.5·((xs)⊤W (st)xt + (xt)⊤W (ts)xs) in terms of each pair-

wise st-factor (s, t ∈ [mq], s < t) as the linear term

〈xst, θst〉. Analoguously, we define the costs for the vari-

ables xs, xt, xst, s, t ∈ [mp]. Note that this construction

corresponds to the local polytope [39].

Cycle consistency subproblems. Since the cycle con-

sistency subproblems couple the individual pairwise graph

matching problems, in this paragraph we cannot drop the

superscripts p, q, r, so that we e.g. write X [pq] instead of

X , and x[pq],s ∈ Y [pq],s instead of xs ∈ Y s.

Let now the triplet of matchings X [pq], X [qr] and X [pr]

be given. The element-wise matrix inequality X [pq]X [qr] ≤
X [pr] comprises mpmr scalar inequalities. Let us consider

the scalar inequality at position (s, t) ∈ [mp]× [mr], which

reads

X
[pq]
s,∗ X

[qr]
∗,t =

∑

i∈[mq ]

X
[pq]
s,i X

[qr]
i,t ≤ X

[pr]
st . (16)

Accordingly, we define the feasible set

Y [pqr],st = {x[pqr],st = (a, b, c) ∈ {0, 1}mq×mq×1 :

〈a, b〉 ≤ c} . (17)

For any p, q, r, s, t, the matching constraints Aj,kµj =
Ak,jµk from (7) translate into

(i) x[pq],s = a for x[pq],s ∈ Y
[pq],s

from (9)

(ii) x[qr],t = b for x[qr],t ∈ Y [qr],t from (10)

(iii) x
[pr],s
t = c for x

[pr],s
t ∈ Y

[pr],s
from (9), and

(iv) x
[pr],t
s = c for x

[pr],t
s ∈ Y [pr],t from (10),

where x[pqr],st = (a, b, c) ∈ Y [pqr],st.

Note that here we explicitly indicate the indices of the

pairwise graph matching problems for the feasible sets in

(9) and (10), e.g. we write Y
[pq],s

to denote Y
s

in (9) for

given p, q.

Remark 2. Only one of the constraints (iii) and (iv) is

necessary. We include both in our formulation, since con-

straints will translate into Lagrangian variables and for our

algorithm it will be advantageous to have this overcomplete

representation since it leads to more frequent updates.

3.4. Messages

As already indicated above, instead of directly solving

the primal problem (6), we solve its dual. Specifically,

we consider the space of reparametrized cost functions θ
that are equivalent to θ, where we require that for every

primal µ admissible to (6) it holds that 〈µ, θ〉 = 〈µ, θ〉.

Such reparametrizated cost functions can be obtained as fol-

lows: For any two dependent subproblems {j, k} = e ∈ E

with associated constraint matrices Aj,k ∈ {0, 1}me×dj ,

Ak,j ∈ {0, 1}me×dk (see Def. 1), we can change the costs

θj and θk by an arbitrary vector ∆ ∈ R
me according to the

update rules

θ̂j := θj + (Aj,k)⊤∆ (18)

θ̂k := θk − (Ak,j)⊤∆ . (19)

We refer to any update of θ according to the rules (18)–(19)

as message passing. Message passing does not change the

cost of any primal feasible solution, as

〈θ̂j , µj〉+ 〈θ̂k, µk〉

= 〈θj + (Aj,k)⊤∆, µj〉+ 〈θk − (Ak,j)⊤∆, µk〉 (20)

= 〈θj , µj〉+ 〈θk, µk〉+ 〈∆, Aj,kµj −Ak,jµk〉 (21)

(7)
= 〈θj , µj〉+ 〈θk, µk〉 . (22)

Message passing does, however, change the dual lower

bound L(θ) to (6) given by

L(θ) :=
∑

j∈V

min
x∈Y j

〈θj , x〉 . (23)

The maximum of L(θ) over all costs obtainable by mes-

sage passing is equal to the minimum of (6), by linear pro-

gramming duality. We seek to alter the costs θ by means of

message passing so as to maximize the lower bound L(θ).
Elementary message updates. We call a message up-

date elementary, if it acts on a pair of factors {j, k} ∈ E and

reparametrizes factors j and k by a message ∆ as in (18)

and (19). An elementary message is required to mono-

tonically decreases the lower bound L(θ), and addition-

ally is maximal w.r.t. a partial order, as described in [34].

Since in our case all elementary messages can be mechan-

ically derived by following [34], we give the correspond-

ing updates between the matching/quadratic/cycle consis-

tency subproblem factors in Table 2. We denote the message

computation by ∆ = msg(j, k) and the reparametrization

by repam(∆, j, k). Our overall algorithm will proceed by

passing a series of reweighted elementary messages.

3.5. Message passing algorithm

Algorithm 1 shows a forward pass of the general mes-

sage passing algorithm for IRPS-LP. It proceeds by sequen-

tially visiting a subset of subproblems in a given order. For

each visited factor j it first receives elementary message up-

dates from a subset of neighboring subproblems R→j . Sec-

ond, it sends messages to another set of neighboring sub-

problems S→j via scaled elementary message passing up-

dates with weights ω→j . In the backward pass, we reverse
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j ∈ V k ∈ V ∆ = msg(j, k)

matching/matching

xs ∈ Y
s

xt ∈ Y t θ
s
(xs

t )− min
x∈Y

s
\{xs

t}
θ
s
(x)

xt ∈ Y t xs ∈ Y
s

θt(xt
s)− min

x∈Y t\{xt
s}

θt(x)

matching/quadratic

xs ∈ Y s xst ∈ Y st θs − min
x∈Y s

θs(x)

xst ∈ Y st xs ∈ Y s min→ θst

xst ∈ Y st xt ∈ Y t min↓ θ
st

xs ∈ Y
s

xst ∈ Y
st

θ
s
− min

x∈Y
s
θ
s
(x)

xst ∈ Y
st

xs ∈ Y
s

min→ θ
st

xst ∈ Y
st

xt ∈ Y
t

min↓ θ
st

matching/cycle consistency

x[pq],s ∈ Y
[pq],s

(a, b, c) ∈ Y [pqr],st θ
[pq],s

− min
x∈Y

[pq],s
θ
[pq],s

(x)

x[qr],t ∈ Y [qr],t (a, b, c) ∈ Y [pqr],st θ[qr],t − min
x∈Y [qr],t

θ[qr],t(x)

x[pr],s ∈ Y
[pr],s

(a, b, c) ∈ Y [pqr],st θ
[pr],s

(x
[pr],s
t )− min

x∈Y
[pr],s

\{x
[pr],s
t }

θ
[pr],s

(x)

x[pr],t ∈ Y [pr],t (a, b, c) ∈ Y [pqr],st θ[pr],t(x
[pr],t
s )− min

x∈Y [pr],t\{x
[pr],t
s }

θ[pr],t(x)

(a, b, c) ∈ Y [pqr],st x[pq],s ∈ Y
[pq],s

(min (ai, ai + bi + c,minj 6=i{ai + bj})−min (0, c,minj{bj}))i=1,...,mq

(a, b, c) ∈ Y [pqr],st x[qr],t ∈ Y [qr],t (min (bi, ai + bi + c,minj 6=i{ai + bj})−min (0, c,mini{ai}))j=1,...,mp

(a, b, c) ∈ Y [pqr],st x[pr],s ∈ Y
[pr],s

min (z, z +mini{ai + bi})−min (0,mini{ai},minj{bj},mini 6=j{ai + bj})

(a, b, c) ∈ Y [pqr],st x[pr],t ∈ Y [pr],t min (z, z +mini{ai + bi})−min (0,mini{ai},minj{bj},mini 6=j{ai + bj})

Table 2. Elementary message updates. Notation min→ A denotes row-wise minimum of matrix A, while min↓(A) denotes column-wise

minimum of A.

the order of visited factors so that in Alg. 1 we replace

(R→, S→, ω→) by (R←, S←, ω←).
For notational convenience below, we define Nj := {k :

{j, k} ∈ E} as the neighbours of the j-th subproblem in the

subproblem graph (V,E).
For solving the MGM formulation above with Algo-

rithm 1, we specify the free parameters as follows:

• Vupdate corresponds to all matching subproblems.

• Order on Vupdate: We order the graph matching

subproblems (1) lexicographically w.r.t. indices p, q ∈
[d]. For a given graph matching problem between p
and q we order the associated matching subproblems

by first considering the column matching subproblems

x[pq],1, . . . , x[pq],mq followed by the row matching subprob-

lems x[pq],1, . . . , x[pq],mp . Moreover, we define

• R→j :=

{

Nj\{x
[pq],st : s < t}, j = x[pq],t ,

Nj\{x
[pq],st : s < t}, j = x[pq],t , and

• S→j :=

{

Nj\{x
[pq],st : s > t}, j = x[pq],t ,

Nj\{x
[pq],st : s > t}, j = x[pq],t , and

• ω→j := 1
#{S→

j
} .

We define R←j := S→j and S←j := R→j , i.e. we swap the

“<” by “>” and vice versa for R→j and S→j .

Algorithm 1: Forward pass of message passing for

IRPS-LP

1 for j ∈ Vupdate ⊂ V in ascending order do

2 Receive messages:

3 for k ∈ R→j ⊂ {k ∈ V : {j, k} ∈ E} do

4 ∆ = msg(k, j);
5 repam(∆, k, j);

6 end

7 Send messages:

8 for k ∈ S→j ⊂ {k ∈ V : {j, k} ∈ E} do

9 ∆k = msg(j, k);
10 end

11 for k ∈ S→j ⊂ {k ∈ V : {j, k} ∈ E} do

12 repam(ω→j,k ·∆k, k, j);

13 end

14 end

3.6. Cutting planes for cycle consistency

There are O(m2d3), m = maxp∈[d]{mp}, cycle consis-

tency subproblems, namely one for each triplet of graphs
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p, q, r ∈ [d] and each pair of nodes s ∈ [mp], t ∈ [mr].
Hence, it is not practical to add all of them at once. Since

many of them will not be necessary to achieve the LP-

optimum, we pursue a cutting plane approach in which we

only add those cycle consistency subproblems that are guar-

anteed to increase the dual lower bound L(θ). Specifically,

we begin the optimization without any cycle consistency

subproblems. When no progress occurs or after some num-

ber of iterations, we start adding cycle consistency subprob-

lems. To this end, we first enumerate all graph matching

triplets {p, q, r}, p, q, r ∈ [d]. For each triplet we enumer-

ate all associated cycle consistency subproblems x[pqr],st

and test how much the dual lower bound would increase if

we add x[pqr],st. We record the increase and add the K best

cycle consistency subproblems, where K is a fixed number

of subproblems to add. The guaranteed increase of the dual

lower bound from addition of subproblem x[pqr],st can be

computed with Algorithm 2, see Appendix A.

3.7. Multi­hypergraph matching

Our framework can easily be extended to the hy-

pergraph matching case. For the third-order case, we

have 3-tensors W ′[pq] instead of a matrices W [pq] in (1).

In other words, we have a multi-linear symmetric form

W ′
[pq] ∈ R

mpmq×mpmq×mpmq instead of a matrix W [pq] ∈
R

mpmq×mpmq as in (1). To account for this higher order

cost formulation we introduce third-order cost subproblems

and connect them to quadratic subproblems, exactly as done

for MRFs, see [40, 17]. While the hypergraph matching for-

mulation could be used to optimize over a more complicated

cost formulation, we use it to tighten our LP-relaxation, as

done for MRFs [40]. This is equivalent to having third-order

cost subproblems in the Lagrange decomposition with zero

cost. Since adding all possible third-order cost subproblems

would be computationally prohibitive, we employ the cut-

ting plane approach proposed in [33] which uses reductions

to max-cut problems to find violated cycle inequalities. The

found cycles are subsequently triangulated to yield third-

order subproblems in our formulation.

3.8. Runtime

The runtime per iteration for the basic relaxation is lin-

ear in the number of non-zero entries #{ij : Wij 6= 0} and

the number of triplet constraints, since the respective oper-

ations in Table 2 can be computed in corresponding time.

When we additionally tighten our problem, the correspond-

ing message passing operations can be naively performed in

time O(m3
p) for p ∈ [d] and each third-order cost subprob-

lem. More efficient message passing operations for zero-

cost third-order subproblems are described in [23], where

an expected running time of O(m2
p log(mp)) is given.

4. Experiments

In this section we provide an experimental evaluation of

our algorithm, for which we consider two variants:

MP: Our message passing Algorithm 1 with the cycle

consistency cutting plane routine from Section 3.6. We ob-

tain a primal solution from the dual solution using permu-

tation synchronization [27] applied on the dual costs after

they have been rounded based on solving an LAP.

MP-T: As the MP-algorithm above, but with additional

tightening as described in Section 3.7.

4.1. Synthetic MGM problems

Using the experimental protocol from the authors

of [41], we generate four different configurations of

synthetic MGM problems (complete, density,

deform, outlier), where for each of them we con-

sider the number of graphs d to vary from 4 to 16. For

details on the problem generation we refer to [41]. We com-

pare our MP/MP-T algorithms to RRWM [8], composition-

based affinity optimisation (CAO) [41], MatchOpt (mOpt)

[44], permutation synchronisation (mSync) [27], and the

recent state-of-the-art DS* method [4]. The results are

shown in Fig. 3. Our MP-T approach performs similar

to DS* on the complete and density instances, and

much better compared to the other methods. Note that in

contrast to DS*, our approach explicitly considers outliers,

and as such our methodology is particularly well-suited in

setups with a large portion of outliers (see outlier case).

Apart from complete, where MP is already tight, the

tightening (Section 3.7) significantly improves the results,

as can be seen when comparing MP with MP-T. We believe

it is an advantage of our method that it can be extended

to optimizing tighter LP-relaxations, while this would be

difficult to do in more ad-hoc approaches [8, 42, 44, 4, 27].

4.2. CMU House & Hotel

In this experiment we consider the CMU house and

hotel sequences, which are image sequences that come

with annotated ground truth. In order to obtain challenging

MGM problems, we consider a setting where 40% of the

points are outliers (the total number of points is 10 per im-

age). For this, we have followed the protocol of [41], where

further details are described. We consider the same set of

MGM algorithms as in Section 4.1. The results of this ex-

periment are shown in Fig. 4. In both datasets, our method

(MP-T) achieves a significantly higher precision compared

to all other methods, while also achieving a better recall.

This again confirms the robustness of our approach.

4.3. C. elegans

Here we consider the large-scale worms dataset of [15].

The goal is to find corresponding nuclei of C. elegans, a fa-

mous model organism in biology. The dataset contains 30
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Figure 3. Results on synthetic data (best viewed in color). Note that in the first column (complete) the methods DS*, MP and MP-T

achieve a perfect matching in all cases.
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Figure 4. Results on CMU house and hotelmulti-graph match-

ing problems (best viewed in color). Refer to Fig. 3 for the legend.

three-dimensional microscopy images of individual worms

and segmentations of their nuclei, where each 3D image de-

picts one worm that has 558 nuclei. As such, the result-

ing nuclei matching problems are among the largest graph

matching instances ever investigated in the literature (see

[35]; note that the pairwise problems we establish for this

work differ slightly from the worm matching problems of

[35] in that they are 30·29/2 worm-to-worm matching prob-

lems, as opposed to 30 atlas-to-worm matching problems).

We derive a range of MGM problems by selecting subsets

of worms of varying cardinality. The results are summa-

rized in Table 3. It can be seen that with successively larger

numbers of graphs the precision and recall are improved.

We would like to stress that the largest instances have 36

million optimization variables and methods [8, 42, 44, 4]

do not scale well enough. Method [27] does not allow for

quadratic costs, hence we cannot report competing algorith-

mic results for this dataset.

d 2 4 5 6 7 8 9 10

W 0.8M 4M 8M 12M 17M 22M 29M 36M

time 3 20 35 50 90 110 130 165

prec. .71 .70 .73 .73 .75 .76 .78 .79

recall .41 .41 .42 .41 .42 .42 .43 .43

Table 3. Quantitative results for the worms dataset solved

with [35] for d = 2 and MP for the multi-graph case d > 2. We

give the number of non-zero entries #{ij : Wij 6= 0}, the time in

minutes for solving and obtained precision and recall.

5. Conclusion

We have presented a principled and theoretically well-

grounded convex relaxation for the multi-graph matching

problem based on a Lagrange decomposition. We have

phrased MGM as simultaneously solving pairwise graph

matching problems that communicate with each other based

on cycle consistency constraints. Our proposed formula-

tion is general as it can handle linear, quadratic, and higher-

order matching costs, while at the same time considering

cycle consistency constraints. Due to the convex formula-

tion it is independent of the initialization, and due to the

duality principle we obtain primal/dual gaps that can serve

as optimality certificates. Moreover, we have demonstrated

that by using additional higher-order terms one can obtain

a tighter relaxation. In order to computationally solve the

dual problem, we use an efficient algorithm based on mes-

sage passing. In our experiments we considered standard

computer vision benchmark problems, as well as problems

from biomedical image analysis. The experimental results

demonstrate the merits of our approach.
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