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Abstract

In conventional domain adaptation, a critical assump-

tion is that there exists a fully labeled domain (source)

that contains the same label space as another unlabeled

or scarcely labeled domain (target). However, in the real

world, there often exist application scenarios in which both

domains are partially labeled and not all classes are shared

between these two domains. Thus, it is meaningful to let

partially labeled domains learn from each other to clas-

sify all the unlabeled samples in each domain under an

open-set setting. We consider this problem as weakly super-

vised open-set domain adaptation. To address this practical

setting, we propose the Collaborative Distribution Align-

ment (CDA) method, which performs knowledge transfer

bilaterally and works collaboratively to classify unlabeled

data and identify outlier samples. Extensive experiments

on the Office benchmark and an application on person re-

identification show that our method achieves state-of-the-

art performance.

1. Introduction

We have recently seen state-of-the-art performances in

many computer vision applications, mostly with deep learn-

ing. Nevertheless, most of that impressive progress strongly

depends on a large collection of labeled data. However,

in real-world applications, labeled data are often scarce or

sometimes even unobtainable. A straightforward solution is

to utilize off-the-shelf labeled datasets (e.g., ImageNet [6]).

However, datasets collected in different scenarios could be

in different data domains due to differences in many aspects

(e.g., background, light and sensor resolution). Therefore,

there is a strong demand to align the two domains and lever-
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Figure 1. An illustration of weakly supervised open-set domain

adaptation for domain collaboration. In each domain, there are

some labeled and unlabeled samples. The frame colors represent

the class of each item, while the unknown-class items have black

frames. Without domain collaboration, the blue-framed item in

Domain B cannot be classified properly because there are no la-

beled blue-framed data in its own domain. This is the same for the

green-framed item in Domain A. (Best viewed in color)

age labeled data from the source domain to train a classifier

that is applicable in the target domain. This approach is

termed domain adaptation [33].

In conventional domain adaptation, the label spaces of

the source and target domains are identical. However, such

a setting may be restricted in applications. Recently in [2],

open-set domain adaptation was proposed, where there ex-

ist samples in the target domain that do not belong to any

class in the source domain, and vice versa. These samples

cannot be represented by any class in the known label space,

and they are therefore aggregated to an additional unknown

class. One of our main goals is to detect these unknown-

class samples in the target domain and in the meantime still

classify the remaining known-class samples.

Moreover, in real applications, there often exists a large

number of partially labeled datasets, where we cannot al-

ways find an off-the-shelf source dataset. Therefore, in the

absence of an ideally large source domain, it is meaning-
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(a) Closed-set (b) Open-set (c) Weakly Supervised Open-set

Figure 2. (a) closed-set domain adaptation, which assumes that the source and target domains contain the same set of interested classes

(orange), and the two domains are either fully labeled (pure color), or unlabeled (with shade). (b) open-set domain adaptation [2], which

allows both domains to contain unknown-class images (yellow). (c) weakly supervised open-set domain adaptation, in which both domains

are scarcely labeled, with unknown-class images included. (Best viewed in color)

ful to perform domain adaptation collaboratively between

these partially labeled domains. Hence, we consider the

open-set domain adaptation together with the partially la-

beled datasets, which we call weakly supervised open-set

domain adaptation. The differences between our setting

and the existing ones are illustrated in Figure 2.

The weakly supervised open-set domain adaptation is

practical whenever research or commercial groups need to

collaborate by sharing datasets. This situation often hap-

pens when two groups each collected a large dataset in re-

lated areas, but each of them has only annotated a subset

of all the item classes of interest (see Figure 1). To fully

label the collected datasets, the groups need to share their

datasets and let them learn from each other, which exactly

fits our proposed setting, while traditional domain adapta-

tion settings are not applicable.

Moreover, the proposed setting is practical when collect-

ing a large source domain is unrealistic. This is often the

case in real applications, as it is difficult to find large la-

beled data for items that only appear in specific tasks, which

makes existing domain adaptation methods not applicable.

For example, in person re-identification (see Section 4.2), it

is impossible to find off-the-shelf labeled datasets for per-

son identities captured by a certain camera view. Under

this situation, one can let partially labeled datasets collected

in different circumstances (e.g., data collected by different

camera views) help label each other, for which our proposed

setting is very suitable.

A key challenge of solving the weakly supervised open-

set domain adaptation problem is how to perform domain

adaptation when there only exists a small quantity of la-

beled data in both domains. To address this challenge, we

propose to align two domains in a collaborative fashion. By

implementing a novel dual mapping method, i.e., learning

domain-specific feature transformations for each domain,

we iteratively map the feature spaces of two domains DA

and DB onto a shared latent space. To alleviate the ef-

fect of the unknown class, during the dual mapping opti-

mization, we simultaneously maximize the margin between

known-class and unknown-class samples, along with mini-

mizing feature distribution discrepancy and intraclass varia-

tion. Therefore, we are able to obtain more robust unknown

detection under the open-set setting. In addition, to enrich

the discriminant ability, we propose to enlarge the label set

by making pseudo-label predictions for the unlabeled sam-

ples, which are further selected by information entropy and

used in dual-mapping optimization. After the domains are

aligned in the shared latent space, we finally learn a classi-

fier with labeled data from both domains. We call the above

process that covers all the main challenges the Collabora-

tive Distribution Alignment (CDA) method. Figure 3 shows

an overview of our method.

The contributions of our paper are as follows:

1. We proposed the weakly supervised open-set domain

adaptation, which allows partially labeled domains to

be fully annotated by learning from each other. This

setting extends domain adaptation to the scenarios

where an ideal source domain is absent.

2. We proposed a collaborative learning method to ad-

dress the proposed problem, which is well designed to

handle the challenges introduced by both weakly su-

pervised and open-set settings.

3. We evaluated our method on the standard domain

adaptation benchmark Office and a real-world person

re-identification application and showed its effective-

ness.

2. Related Works

Conventional Domain Adaptation. Domain adaptation is

an important research area in machine learning. The core

task of standard domain adaptation is to transfer discrim-

inative knowledge from one fully labeled source domain

to a scarcely labeled or unlabeled target domain [33]. A

large number of methods have been proposed to solve this

problem. A main stream of these works is to align the fea-

ture distributions of different domains onto a latent space.

Along these lines, TCA [32] and JDA [28] were proposed

to explicitly align marginal or joint distributions, while sev-

eral models further extended the distribution alignment with

structural consistency or geometrical discrepancy [16, 47].

Several recent works also introduced dataset shift losses

to train deep networks that learn domain-invariant features
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Figure 3. An overview of our approach. In (a), labeled samples from different classes are filled with corresponding colors, while the gray

samples are unlabeled. The shape of each sample indicates its ground-truth class. Specifically, the diamond-shaped samples represent the

unknown-class samples. Note that the unknown-class samples are those that cannot be represented in the known label space, while the

unlabeled samples are those without label information. Therefore, an unknown-class sample can be either labeled or unlabeled. In (b),

we assign pseudo-labels (represented by frame colors) for some unlabeled samples, while excluding the remaining uncertain samples as

outliers. In (c), we learn a set of domain-specific mappings that transform samples onto a latent domain, where domain discrepancy is

reduced, same-class samples are aggregated, and separations between unknown and known class samples are formed. We then use the

transformed features to update pseudo-labels in (b) and iterate between (b) and (c) until convergence. Finally, in the latent space shown in

(d), we use a base classifier to annotate all the unlabeled samples, which we expect to be predicted as one of the known classes (red, green,

and blue), or as an unknown-class sample (yellow). (Best viewed in color)

[26, 29, 30, 42]. Another stream of work focuses on learn-

ing a subspace where both domains have a shared represen-

tation. SA [9] was proposed to align the PCA subspace,

while CORAL [39] utilizes second-order statistics to min-

imize domain shift. Manifold learning was also conducted

to find a geodesic path from the source to target domain

[11, 13]. More recently, various generative adversarial mod-

els have been proposed [7, 17, 36, 41], in which feature ex-

tractors are trained to generate features for target samples

that are not discriminated from the source samples. Al-

though these methods are state-of-the-art for conventional

domain adaptation tasks, none of them can directly tackle

the weakly supervised open-set domain adaptation problem.

On one hand, many of these methods require a fully labeled

domain as a source, which does not exist in our setting. On

the other hand, all of them are designed for the setting where

the label spaces are identical, while in our setting, the label

spaces of the two domains are overlapping but not identi-

cal. Thus, the performances of these methods are hindered

by the unknown-class samples in each domain. In contrast,

our proposed method is well designed for scarcely labeled

domain pairs under the open-set setting.

Open-set Setting. In real-word application, the unknown

impostors, which cannot be represented by any class in the

label space of known classes, could significantly influence

the overall performance. This problem has been receiving

attention in the field of open-set object recognition [23, 37].

A typical solution is the OSVM [18], in which impostors

are detected by estimating the inclusion probability. In the

context of person re-identification, Zheng et al. proposed to

explicitly learn a separation between a group of nontarget

and target people [51]. Recently, Busto and Gall proposed

the open-set setting for domain adaptation [2]. Their solu-

tion is to iteratively associate target samples with potential

labels and map samples from the source domain to target

domain, in which the unknown class is regarded as a nor-

mal class. More recently, the proposed OpenBP [36] adver-

sarially learns a decision boundary for the unknown class.

In contrast to these methods, we explicitly construct large

margins between the known and unknown class samples

and in the meantime ensure that the unknown-class sam-

ples are not aligned between domains. Therefore, we can

detect unknown-class samples more robustly.

Multi-task Learning. Our collaborative distribution align-

ment is a bilateral transfer, which is related to multi-task

learning [48]. Through multi-task learning, tasks collabo-

rate by sharing parameters [21, 27, 31] or features [5, 22],

while in our method, domain collaboration is achieved by

directly sharing data. Further, one may simply tackle

the weakly supervised open-set domain adaptation problem

with two tasks, each of which aims at training an indepen-

dent classifier for a single domain. However, as illustrated

in Figure 1, without the sharing of cross-domain data, many

samples cannot be properly labeled. On the other hand, if

we train a single classifier with shared data, the problem

degenerates to single-task learning.

3. Collaborative Distribution Alignment

3.1. Approach Overview

To address the weakly supervised open-set domain adap-

tation problem, we aim to learn a shared latent space in

which samples from different domains are well aligned.

Suppose that we have two different domains DA and DB,

both of which have partially labeled samples. Let {Di =
Li

⋃

Ui}i=A,B , where Li = {(xj
i , y

j
i )}

li
j=1

denotes the la-

beled set with sample x
j
i ∈ R

d and label y
j
i , and Ui =

{(xj
i )}

li+ui

j=li+1
is the unlabeled portion with unlabeled sam-
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ples. Here, x is the d-dimensional feature representation of

each image sample, while li and ui represent the sizes of

Li and Ui, respectively. In practice, we have li << ui.

Given a set Ci in labeled portion Li, which includes |Ci|−1
known classes and an additional unknown class that gathers

instances from all the classes that cannot be found in the

known label space, our goal is to label each sample in Ui

with a known class or detect it as an unknown-class sample.

From Figure 3(a), we can see that some samples in UA

do not belong to CA but to CB . For example, there are un-

labeled square samples in Domain A, but no labeled square

sample exists in this domain. Merely using LA, we cannot

properly label these samples. We then leverage the total la-

beled set L, which consists of the labeled set LA and LB

with the classes CL = CA
⋃

CB, to label all the samples in

UA and UB as one of the classes in CL. However, due to

domain shift between DA and DB, directly using L would

cause significant performance degeneration [33]. To solve

this problem under our proposed setting, we focused on the

following two most important features of our setting, which

have not been well studied before:

1) Under the weakly supervised setting, we need to trans-

fer knowledge bilaterally. Thus, for the first time, we in-

troduce dual mapping (learning dual domain-specific map-

pings) into the domain adaptation area. Dual mapping can

better exploit domain-specific information and align both

domains onto the shared latent space (see Table 4).

2) Under the open-set setting, there could be a large num-

ber of unknown-class samples. To avoid confusing these

samples with known-class ones, we are the first in domain

adaptation to explicitly form large margins between known-

class and unknown-class samples (Eq.3).

In general, our method works as follows. In each iter-

ation, we first assign pseudo-labels to a subset of samples

in UA and UB. Then, we use the estimated pseudo-labels

as well as the labeled set L to learn optimized values W ′
A

and W ′
B . Next, DAW

′
A and DBW

′
B are1 used to update the

pseudo-labels, and a new iteration starts. This circle contin-

ues until it converges. After the termination, any base clas-

sifiers (SVM, k-NN) can be trained on LAWA and LBWB

and predict labels for UAWA and UBWB . We expect that

the domain shift has been largely alleviated by performing

this iterative optimization. The whole process is shown in

Figure 3 and detailed in the following sections.

3.2. Pseudo-Label Assignment

Label Prediction. In the real world, there are usually much

fewer labeled samples than unlabeled ones. With the scarce

labeled samples, we are not able to robustly perform the

subsequent optimization of WA and WB . Therefore, to en-

large the label information set, we propose to first estimate

the pseudo-labels of samples from UA and UB . This can

1
DAW ′

A
means that each sample in DA will be projected by W ′

A
.

be easily done by applying base classifiers trained on L to

predict labels of UA and UB . This base classifier can be

either k-NN, standard or variants of SVM, or neural net-

works. In our method, we simply utilize the standard lin-

ear SVM (LSVM) with probability estimation in the libsvm

package [4] due to its wide use in domain adaptation works

[2, 24, 39, 45].

Outlier Detection. However, due to domain discrepancy,

some of the pseudo-labels are assigned uncertainly, and

therefore, false estimation would result. We need to elim-

inate those uncertain labels from the optimization step in

order to avoid iterative propagation of false estimations. As

we have gained probability distribution estimations for each

sample from LSVM, we propose to leverage information

entropy H to estimate the certainty of the prediction for

each sample. A higher H means that the probability dis-

tribution is more sparse, indicating that this prediction is

more likely to be false. Therefore, we tend to only use sam-

ples with relatively low information entropy in the mapping

step. Let xi be the ith sample and C be the total number of

classes, and Yij is the probability of xi belonging to class j,

given by LSVM. The information entropy of this prediction

is denoted as

H(xi) = −
C
∑

j=1

Yij log(Yij). (1)

Then, if H(xi) ≥ γ, we mark xi as an outlier that will not

be used for dual mapping; otherwise, xi will be used. Here,

γ is an auto-adaptive threshold, which is set to the mean

value of H over all the samples. In the next iteration, all the

unlabeled samples will be regarded equally again. Please

note that unknown-class samples that are not close to any of

the labeled samples would more likely be detected by this

process for their low confidence.

3.3. Dual Mapping Under Open-set Condition

We intend to perform the dual mapping process by learn-

ing WA,WB ∈ R
d×d for DA and DB, respectively. It is ex-

pected that WA and WB are able to map DA and DB onto a

shared latent space. By learning these domain-specific ma-

trices, we can better exploit domain-specific information for

the two domains. This is different from most domain adap-

tation methods that only learn a single transform to transfer

samples between domains [2, 28, 32, 39]. In Section 4.3, we

have also empirically found that learning domain-specific

transformation is more flexible for solving the weakly su-

pervised open-set domain adaptation, as both domains play

equal roles in this problem.

Known-Unknown Class Separation. Under the open-set

setting, a main task is to detect and separate the unknown-

class samples [2]. If there is no robust separation between

known and unknown class samples, the overlapping of the
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known and unknown class samples would probably cause

the problem of labelling a known-class sample as an un-

known impostor, or vice versa. This significantly degen-

erates the overall performance. To solve this problem, we

propose to encourage each known-class sample to be closer

to its class center than to any of the unknown-class samples

by a large margin.

To begin, we first compute the distances of each known-

unknown sample pair in the transformed space. For each

known-class sample x in domain D ∈ {A, B}, we find its

nearest unknown-class neighbor xu, which is the unknown-

class sample with the smallest distance from x. We formally

define this distance as fu(x) = ‖xWD − xuWD′‖
2

F , where

D′ is the domain that xu belongs to. Similarly, we define

the distance between x and its class center xc
D as fc(x) =

‖(x− xc
D)WD‖

2

F . We hope that for every x, we have

fc(x) + 1 < fu(x), (2)

where 1 is the margin parameter that sets the scale of WA

and WB [43]. We define CK as the set of all the known

classes and Xc
D as the sample set of class c in domain D.

Then, the loss function for unknown separation in domain

D can be defined as

UD =
∑

c∈CK ,xi∈Xc

D

[

1 + fc(x
i)− fu(x

i)
]

+
,

(3)

where the term [x]+ = max{x, 0} is the standard hinge

loss, which allows us to only penalize the unknown im-

postors that are inside the safety margin of x and xc
D. For

unknown-class samples that are far enough, the hinge loss

becomes 0 and does not contribute to UD. The total un-

known separation loss of DA and DB is defined as

U =
1

2
(UA + UB). (4)

Aligning Known-class Samples between Domains. Un-

der the open-set setting, aligning all samples between two

domains is unnecessary because the purpose of dual map-

ping is to align all the known-class samples to gain a better

classification performance while dragging all the unknown-

class samples away from the known ones to make a clear

separation.

To this end, we discard all the unknown class samples in

the distribution alignment process for domain adaptation.

To measure the domain discrepancy, we adopt the maxi-

mum mean discrepancy (MMD) [1], which is a widely used

nonparametric domain discrepancy measurement in domain

adaptation works [26, 28, 32, 42].

More specifically, the marginal distribution distance be-

tween the transformed domains can be computed by

DistM =
1

2
‖PAWA − PBWB‖

2

F , (5)

where PD = 1

nk

D

∑nk

D

i=1
xi
D is the mean of known samples

in domain D, and nk
D denotes the number of those sam-

ples. Similarly, the distance between conditional distribu-

tions DistC can be measured by the sum of the distances

between the corresponding known class centers in both do-

mains. That is defined as

DistC =
1

2

∑

c∈CK

‖P c
AWA − P c

BWB‖
2

F , (6)

where P c
D = 1

nc

D

∑nc

D

i=1
x
c,i
D is the mean of class c samples,

and x
c,i
D is the ith sample of class c in domain D. The label

of each sample is either provided by the dataset or assigned

by pseudo-label prediction.

By minimizing DistM and DistC , the discrepancies

between both marginal and conditional distributions of

known-class samples in DA and DB are reduced, while the

unknown-class samples will not be improperly aligned.

Aggregating Same-class Samples. To facilitate the center-

based separation between known and unknown class sam-

ples (Eq.4) as well as the alignment between known class

samples based on MMD (Eq.6), we propose to explicitly

aggregate all the samples to their class centers.

In detail, we define xc
D as the estimated center of class

c in domain D and Xc
D as the sample set of class c with

size nc
D. Then, the aggregation loss function GD can be

expressed by

GD =
∑

c∈CL

1

nc
D

∑

xi∈Xc

D

∥

∥(xi − xc
D)WD

∥

∥

2

F
. (7)

Overall, the total loss G of DA and DB is then defined as

G =
1

2
(GA +GB). (8)

Objective Function. With all the components discussed

above, our method can be formed now. To configure the

strength of each component, we introduce balancing param-

eters λM , λG, and λU for marginal distribution alignment,

center aggregation and known-unknown class separation,

respectively. We define the total loss function as

f = DistC + λMDistM + λGG+ λUU. (9)

Then, our objective function can be concluded as follows:

(W ∗
A,W

∗
B) = argmin

WA,WB

f(DA,DB,WA,WB). (10)

Details of the optimization process are given in the sup-

plementary material due to lack of space.
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4. Experiments

4.1. Office Dataset

The Office dataset [35] is a standard benchmark for do-

main adaptation evaluation [2, 26, 39, 36] and consists of

three real-word object domains: Amazon (A), Webcam (W)

and DSLR (D). In total, it has 4,652 images with 31 classes.

We construct three dual collaboration tasks: A ↔ W, A ↔
D and W ↔ D, where ↔ denotes the collaboration relation

between two domains. Similar to [2], we extract the fea-

tures using ResNet-50 [14] pretrained on ImageNet [6]. For

parameters, we set λM = 10, λG = 1 and λU = 0.1.

Protocol. We randomly selected 15 classes as the known

classes, and the remaining classes are set as one unknown

class, i.e., there are 16 classes in total. Both domains con-

tain all 16 classes, while only a subset of them have labeled

samples. Specifically, we randomly selected 10 known

classes to form the labeled known-class set for each domain,

with the constraint that 5 classes are shared between them.

Similar to [2], for each domain, we randomly took 3 sam-

ples from each class in the labeled known-class set and 9

samples from the unknown class, as labeled samples, and

set all the remaining as unlabeled. We expect each unla-

beled sample to be correctly labeled either as one of the 15

known classes or the unknown class. The above is repeated

5 times, and the mean accuracy and standard deviation of

each method are reported.

Compared Methods. We first compared the proposed CDA

with two open-set domain adaptation methods, ATI [2] and

OpenBP [36]. The conventional unsupervised domain adap-

tation methods, including TCA [32], GFK [11], CORAL

[39], JAN [30] and PADA [3], are compared as well. Since

our method learns dual projections, to undertake a fair com-

parison, for methods that require a single labeled domain

(ATI, OpenBP, JAN, and PADA), we apply them by two

steps: given LA as the source and DB as the unlabeled tar-

get, we learn to transform LA to DB, and label UB with LA

and LB. Then, we learn to label UA in a symmetrical way.

For other methods, we simply transform DA to DB.

Since there are a small number of labeled samples in

the target domain for semi-supervised domain adaptation,

we also compared two semi-supervised methods, namely

MMDT [15] and ATI-semi [2]. We test these methods in a

way similar to methods such as ATI and JAN, except the tar-

get domain in each symmetry step here is semi-supervised.

In addition, we compared multi-task learning methods

since our method benefits from the collaborative transfer be-

tween two domains, which is related to multi-task learning.

For comparison, we report the results of CLMT [5], AMTL

[21], and MRN [27]. By following [5, 21], every task in

CLMT and AMTL is set as a one-vs-all binary classifica-

tion problem. For MRN, we denote two tasks as learning

classifiers on DA and DB, separately.

The results of the above methods are obtained by linear

SVM and trained and tested on transformed features, ex-

cept for CLMT and AMTL, which directly learn classifiers.

As baselines, we report results of the LSVM trained with

non-adaptation data L, which we call NA. We also report

another baseline called NA-avg, which is the average accu-

racy of training and testing a LSVM for each domain inde-

pendently. Moreover, we have also undertaken a compari-

son with methods in [9, 10, 26, 28, 40, 47, 42], the results

of which are less competitive and are thus only included in

the supplementary material for sake of space.

Methods A ↔ W A ↔ D W ↔ D AVG.
NA-avg 62.2 ± 3.19 61.0 ± 3.05 66.3 ± 1.72 63.12

NA 72.6 ± 2.04 69.4 ± 2.22 84.2 ± 3.89 75.40
TCA [32] 73.3 ± 1.67 70.6 ± 1.99 83.5 ± 3.96 75.80
GFK [11] 56.9 ± 2.89 55.7 ± 1.46 70.9 ± 4.85 61.17

CORAL [39] 69.9 ± 4.41 67.7 ± 3.13 83.7 ± 3.65 73.77
JAN [30] 63.8 ± 1.27 65.5 ± 0.76 74.7 ± 1.41 68.00
PADA [3] 60.3 ± 1.09 60.2 ± 0.98 70.9 ± 1.88 63.80

ATI [2] 70.4 ± 4.15 65.9 ± 1.80 81.7 ± 4.74 72.67
OpenBP [36] 62.6 ± 4.11 62.9 ± 1.71 67.9 ± 2.31 64.47
ATI-semi [2] 73.4 ± 2.28 72.0 ± 2.87 77.8 ± 3.40 74.72
MMDT [15] 72.6 ± 2.15 69.4 ± 2.19 84.4 ± 3.99 75.47
AMTL [21] 50.2 ± 1.45 48.8 ± 0.90 62.1 ± 2.17 53.70
CLMT [5] 50.3 ± 1.47 50.0 ± 0.77 61.7 ± 1.23 54.00
MRN [27] 62.2 ± 3.38 62.4 ± 2.44 77.4 ± 3.43 67.33

CDA 77.1 ± 1.35 75.2 ± 1.63 88.1 ± 2.45 80.13

Table 1. Comparing state-of-the-art methods on Office. The 1st/2nd

best results are indicated in red/blue.

Comparison Results. The results are shown in Table 1. We

can observe that our proposed CDA method outperforms all

the other methods in the three tasks. For example, CDA

respectively surpasses the best alternative TCA by 3.8%,

4.6% and 4.6% in A↔W, A↔D and W↔D, respectively.

Further, CDA exceeds TCA by 4.33% (80.13%-75.80%) on

average. The reasons may be as follows. (1) Unlike closed-

set methods (such as TCA) that align distributions over all

the samples, our CDA is well designed to only align feature

distributions of the known classes. By doing so, we avoid

a negative transfer caused by aligning distributions of the

unknown class, the samples of which may actually come

from different classes with inherently different features. (2)

CDA learns more discriminative features by minimizing in-

traclass variation and explicitly separating known and un-

known class samples, while most other methods only focus

on learning domain-invariant features. (3) CDA simultane-

ously exploits unlabeled information in both domains, while

other methods that require a fully labeled source domain

(such as ATI) only use unlabeled data in a single domain in

each symmetry step.

Additionally, our method outperformed semi-supervised

domain adaptation methods. This could be because we

simultaneously utilize unlabeled data from both domains,

while these methods use them separately. Moreover, CDA

largely exceeds multi-task learning methods, which occurs

mainly because (1) CDA aligns both domains, but AMTL

and CLMT ignore the domain discrepancy in training sam-

ples and because (2) CDA merges incomplete label spaces

of LA and LB to form a complete one, while in MRN, these

label spaces are separated.
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Method
1 ↔ 2 2 ↔ 3 3 ↔ 4 4 ↔ 5 5 ↔ 6 6 ↔ 7 7 ↔ 8 8 ↔ 1 AVG.

r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5
NA-avg 43.6 55.3 29.6 38.2 50.1 54.8 69.2 95.2 38.2 54.4 33.5 42.4 22.0 40.3 76.7 95.4 45.4 59.5

NA 59.3 75.1 41.4 53.2 64.4 78.8 74.1 98.9 49.0 67.1 51.9 65.4 27.6 49.6 78.3 98.9 55.7 73.4
TCA [32] 58.6 74.7 41.0 53.7 64.3 79.0 75.3 98.9 48.6 67.3 51.5 65.3 27.2 49.8 78.3 98.9 55.6 73.5
GFK [11] 59.1 75.1 41.5 53.5 64.5 79.0 75.3 99.0 49.0 67.4 51.9 65.5 27.7 50.3 78.5 98.9 55.9 73.6

CORAL [39] 58.9 75.8 41.6 54.2 64.2 78.4 74.5 98.8 47.7 66.3 51.5 64.6 26.5 48.6 78.4 98.8 55.4 73.2
JAN [30] 24.0 43.7 34.4 64.4 21.4 38.6 75.5 90.2 30.2 60.0 27.7 52.4 44.6 72.1 81.7 92.5 42.4 64.2
PADA [3] 14.0 30.7 39.4 62.2 22.1 35.3 75.4 89.0 30.1 57.4 27.2 50.4 47.4 70.9 77.6 91.1 41.6 60.9

ATI [2] 58.6 74.0 40.6 49.5 65.4 79.2 36.1 78.0 47.9 63.6 52.4 65.6 24.6 42.7 28.2 84.4 44.2 67.1
OpenBP [36] 34.7 49.7 45.9 66.5 27.3 39.8 77.1 90.6 8.1 26.5 37.6 53.5 47.5 67.3 83.5 93.3 45.2 54.9

MRN [27] 26.2 46.5 19.2 32.8 34.0 49.6 74.9 94.4 25.9 49.9 24.4 43.1 19.9 50.2 53.6 85.1 34.8 56.5
ATI-semi [2] 53.4 71.8 55.6 71.8 56.5 76.8 39.7 88.9 55.3 69.3 57.6 76.9 46.7 65.6 30.6 86.3 49.4 75.9
MMDT [15] 36.0 51.1 35.7 51.5 57.5 73.2 74.2 98.9 29.2 53.2 22.0 39.5 19.1 43.5 76.5 98.6 42.9 62.3
LMNN [43] 59.4 78.1 42.5 59.1 61.8 74.1 84.7 96.3 53.3 72.2 50.8 66.1 33.5 60.8 90.2 97.7 59.5 75.5

KISSME [20] 55.2 68.6 49.2 71.0 63.1 75.3 86.0 94.9 57.6 74.5 55.3 71.6 45.8 71.6 22.0 56.7 54.3 73.0
XQDA [25] 55.6 68.9 49.1 71.0 63.1 75.3 86.0 94.9 57.6 74.5 55.3 71.6 45.8 71.6 48.2 86.0 57.6 76.7
DLLR [19] 59.2 75.0 41.3 52.9 64.1 78.1 72.9 98.7 48.7 66.9 51.8 64.5 27.9 49.6 78.5 99.0 55.6 73.1
SPGAN [7] 41.6 59.9 31.3 47.5 44.7 58.6 69.6 97.7 41.4 61.0 43.3 59.6 22.8 46.3 74.1 98.0 48.7 69.6

CDA 64.6 80.4 62.4 88.1 67.9 84.9 76.0 98.9 61.5 82.1 59.6 78.1 67.2 83.8 85.6 98.5 68.1 86.9

Table 2. Comparing CMC accuracies with state-of-the-art methods on DukeMTMC-reID (%).

4.2. Person Re-identification (re-id) Application

A natural practical example of our proposed setting can

be the person re-identification (re-id) problem [12], which is

widely and deeply researched in computer vision for visual

surveillance [7, 8, 46, 51]. Re-id aims to match people’s im-

ages across nonoverlapping camera views. Currently, train-

ing state-of-the-art re-id models requires a large number of

cross-camera labeled images [20, 25, 43], but it is very ex-

pensive to manually label (pairwise) people images across

cameras views. Further, as mentioned before, we cannot

find an off-the-shelf source domain for these people. Thus,

it is meaningful to annotate images in each camera pair

by performing domain adaptation collaboratively between

these camera views. Moreover, it is hard to guarantee that

people appearing in one camera view would also appear in

another view. This problem introduces the open-set setting.

Therefore, to show the practicality of the proposed setting

and the effectiveness of CDA, we conduct an experiment on

a real-world re-id application in this subsection.

DukeMTMC-reID [34] is a popular re-id benchmark

[7, 8, 38, 44]. It consists of person images from 8 nonover-

lapping camera views. The DukeMTMC-reID dataset is a

genuine open-set re-id dataset, since for each camera pair,

there are a number of identities that only appear in one view

and thus lack an image to match in another view. For exam-

ple, in camera pair 1 ↔ 2, there are 105 identities unique to

camera 1 and 84 identities unique to camera 2. For evalu-

ation, we conducted our experiments on the largest portion

gallery. We constructed 8 camera pairs for our experiment,

where each camera view appears twice, and extracted fea-

tures with ResNet-50 that was pretrained on Market-1501

[49] using the method in [50]. For parameters, we set

λM = 10, λG = 1, and λU = 1.

Protocol. For both camera views, we let the classes that

only appear in a single camera view belong to the unknown

class, while the shared classes are set as known classes.

To simulate the weakly supervised setting, in each camera

view, all the known classes exist, but only a subset of them

have labeled samples. We call the set of known classes that

have labeled samples the labeled known-class set. Suppose

there are N known classes. Then, for each camera view,

we randomly select 2N /3 known classes to form its labeled

known-class set, with the constraint that N /3 classes are

shared between these sets of both views. Then, for each

view, we randomly take 1 image as a labeled sample from

each class in its labeled known-class set. Additionally, N /4

samples from the unknown class are labeled as well. All the

rest are set as unlabeled. During testing, for each image in

the unlabeled set, we retrieve the matched persons from the

labeled set. Then, we use the cumulative match characteris-

tic (CMC) to measure the re-id matching performance.

Compared Methods. We first evaluated all the meth-

ods mentioned in Section 4.1, except AMTL and CLMT,

since they merely learn a classifier and are thus unsuit-

able for distance-based person re-id tasks. Moreover, we

include common re-id oriented methods (1)LMNN [43],

(2)KISSME [20], (3)XQDA [25], and (4) DLLR [19], as

well as the newly proposed SPGAN [7]. To test SPGAN,

for each pair, we use this model to transfer the image style

of each sample in the first view to the other view and then

evaluate on these transferred images. As baselines, we re-

port results of directly computing Euclidean distances on

the original space, namely, NA and NA-avg (similar to the

baselines used in Section 4.1).

Comparison Results. The results are shown in Table 2.

Our method outperformed all the other methods in 6 of the

8 total tasks, for example, surpassing the best alternative

LMNN by 5.2%, 19.9%, 8.2%, and 33.7% at rank-1 on

1↔2, 2↔3, 5↔6 and 7↔8, respectively. The performance

margins over the other methods are larger still. On aver-

age, our method outperforms the most competitive methods

by 8.6% (68.1%-59.5%) and 10.2% (86.9%-76.7%) at rank-

1 and rank-5, respectively. It is obvious that CDA signifi-

cantly outperformed NA and NA-avg, while almost all the

compared methods at least once performed worse than the

baselines due to negative transfer.

Compared to typical methods for re-id, CDA achieves

better performance mainly because (1) CDA makes use of a

large number of unlabeled samples by pseudo-label assign-

ment, while LMNN, KISS and XQDA merely rely on la-
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Figure 4. Classification accuracy w.r.t. λM , λU , λG in (a), (b), and (c), respectively, where the dashed lines represent the best state-of-the-

art performances for each task. (d) illustrates the convergence of the proposed method.

beled samples, and (2) CDA explicitly separates known and

unknown-class samples, while the compared methods (such

as SPGAN) do not distinguish these two kinds of samples.

The superior performance of CDA in re-id further validates

the effectiveness of the proposed method.

4.3. Further Analysis of CDA

Effect of Each Component. Our loss function in Equa-

tion 9 involves four components: the marginal and condi-

tional distribution alignments (DistM , DistC), the intra-

class aggregation (G), and the unknown-class sample sep-

aration (U ). We empirically evaluated the importance of

each component. For each component, we report the per-

formance of the CDA model when each component is elim-

inated. The results are shown in Table 3. We can observe

that the accuracy of CDA would drop once we remove any

of the components. For example, on task 5↔6, the perfor-

mance decreased by 11.7%, 4.2%, 38.4% and 1.2% when

G, U , DistC , and DistM was removed, respectively.

Models A↔D A↔W W↔D 5↔6 7↔8
Missing G 70.0 73.5 84.7 49.8 51.6
Missing U 74.4 76.4 86.8 57.3 51.6

Missing DistC 64.9 70.3 79.4 23.1 11.2
Missing DistM 74.8 77.1 87.9 60.3 62.5

CDA 75.2 77.1 88.1 61.5 67.2

Table 3. Effect of components of Eq.9 (%)

Parameter Sensitivity. In this section, we evaluated the pa-

rameter sensitivity of our model. We run CDA with a large

range of parameters λM , λU and λG from 0 to 50. The

results of randomly chosen tasks are shown in Figure 4 on

the two datasets used in our experiments. As shown, there

should be a proper range for each parameter. Taking λU for

example, when λU is too large, we mainly learn to separate

known/unknown-class samples, making feature alignment

weaker; when it is too small, we are not able to adequately

separate known/unknown-class samples. Nevertheless, it

can be observed that the performance of CDA is robust for

λM ∈ [0.001, 10], λU ∈ [0.01, 1], and λG ∈ [0.5, 10].
Convergence. We empirically tested the convergence prop-

erty of CDA. The result in Figure 4 (d) shows that the accu-

racy increases and converges in approximately 5 iterations.

Effect of Outlier Detection. We detect and remove low-

confidence pseudo-labels by setting a threshold of informa-

tion entropy in Eq.1. To show the effectiveness of this pro-

cess, we compared CDA with the CDA without outlier de-

tection. As shown in the second and fourth rows of Table

4, all the tasks significantly benefit from this process, which

shows the importance of the outlier detection.

Models A↔D A↔W W↔D 5 ↔ 6 7 ↔ 8
no outlier 74.3 73.4 86.0 52.7 38.0

single mapping 70.2 69.8 81.1 56.5 33.9
CDA 75.2 77.1 88.1 61.5 67.2

Table 4. Effect of outlier detection and dual mapping (%)

Effect of Dual Mapping. To map each domain to the

shared latent space, we learn a different transformation ma-

trix for each domain. To compare this fashion with learning

a shared transform matrix for both domains, we conducted

CDA by learning the same transformation matrix for both

domains. The results shown in Table 4 demonstrate the ad-

vantage of dual mapping. This outcome is probably because

dual mapping enables learning more domain-specific infor-

mation for each domain during the adaptation process.

Other Experiments. We have also performed experiments

on the following aspects: (1) time complexity, (2) effect of

different pseudo-labelling methods, (3) effect of the number

of labeled samples in each domain and (4) effect of overlap-

ping rate of known label spaces between the two domains.

For the sake of space, descriptions and results of these ex-

periments are given in the supplementary material.

5. Conclusion

In this paper, we introduced the weakly supervised open-

set domain adaptation problem. This setting extends do-

main adaptation to the scenarios where an ideal source do-

main is absent, and we need to let partially labeled do-

mains learn from each other. To address this problem, we

propose a novel Collaborative Distribution Alignment ap-

proach. Compared to previous works, this study represents

the first attempt to enhance overall performance by domain

collaboration. Future works could be undertaken to detect

the unknown-class samples more effectively or to design an

adaptive neural network for end-to-end training.
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