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Abstract

The vulnerability of machine learning systems to adver-

sarial attacks questions their usage in many applications.

In this paper, we propose a randomized diversification as a

defense strategy. We introduce a multi-channel architecture

in a gray-box scenario, which assumes that the architecture

of the classifier and the training data set are known to the

attacker. The attacker does not only have access to a se-

cret key and to the internal states of the system at the test

time. The defender processes an input in multiple chan-

nels. Each channel introduces its own randomization in

a special transform domain based on a secret key shared

between the training and testing stages. Such a transform

based randomization with a shared key preserves the gra-

dients in key-defined sub-spaces for the defender but it pre-

vents gradient back propagation and the creation of vari-

ous bypass systems for the attacker. An additional benefit of

multi-channel randomization is the aggregation that fuses

soft-outputs from all channels, thus increasing the reliabil-

ity of the final score. The sharing of a secret key creates an

information advantage to the defender. Experimental evalu-

ation demonstrates an increased robustness of the proposed

method to a number of known state-of-the-art attacks.

1. Introduction

Besides remarkable and impressive achievements, many

machine learning systems are vulnerable to adversarial at-

tacks [6]. The adversarial attacks attempt at tricking a de-

cision of a classifier by introducing bounded and invisible

perturbations to a chosen target image. This weakness seri-

ously questions the usage of the machine learning in many

security- and trust-sensitive domains.

Many researchers have proposed various defense strate-

gies and countermeasures to defeat adversarial attacks.

However, the growing number of defenses naturally stimu-

lates the invention of new and even more universal attacks.

∗S. Voloshynovskiy is a corresponding author. The research was sup-

ported by the SNF project No. 200021 182063.
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Figure 1: Setup under investigation: the attacker knows the

labeled training data set X and the system architecture but

he does not have access to secret key k of the defender

shared between the training and testing.

An overview and classification of the most efficient attacks

and defenses are given in [15, 10].

In this paper, we consider a ”game” between the de-

fender and the attacker according to the diagram presented

in Figure 1.

The defender has access to the classifier φθ and the train-

ing data set X. The defender shares a secret key k between

training and testing. The classifier outputs a soft-max vector

y of length M , where M corresponds to the total number

of classes, and each yc, 1 ≤ c ≤ M is treated as a proba-

bility that a given input x belongs to a class c. The trained

classifier φθ is used during testing.

The attacker in the white-box scenario has full knowl-

edge about the classifier architecture, defense mechanisms,

training data and, quite often, can access the trained param-

eters of the classifier. In the gray-box scenario, considered

in this paper, the attacker knows the architecture of the clas-

sifier, the general defense mechanism and has access to the

same training data X [3, 15]. Using the above available

knowledge, the attacker can generate a non-targeted or tar-

geted, with respect to a specified class c′, adversarial pertur-

bation wc′ . The attacker produces an adversarial example

by adding this perturbation to the target host sample x as
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Figure 2: Generalized diagram of the proposed multi-channel classifier.

x′ = x +wc′ . The adversarial example is presented to the

classifier at test time in an attempt to trick the classifier φθ

decision.

Without pretending to be exhaustive in our overview, we

group existing defense strategies into three major groups:

1. Non key-based defenses: This group includes the ma-

jority of state-of-the-art defense mechanisms based on

detection and rejection, adversarial retraining, filtering

and regeneration, etc. [10]. Besides the broad diversity

of these methods, a common feature and the main dis-

advantage of these approaches is an absence of ”cryp-

tographic” elements, like for example a secret key, that

would allow to create an information advantage of the

defender over the attacker.

2. Defense via randomization and obfuscation: The

defense mechanisms of this group are mainly based on

the ideas of randomization avoiding the reproducible

and repeatable use of parameters of the trained system.

This includes gradient masking [1] and introducing an

ambiguity via different types of key-free randomiza-

tion. The example of such randomization can be noise

addition at different levels of the system [14], injection

of different types of randomization like, for example,

random image resizing or padding [13] or randomized

lossy compression [5], etc.

The main disadvantage of this group of defense strate-

gies consists in the fact that the attacker can bypass the

defense blocks or take this ambiguity into account dur-

ing the generation of the adversarial perturbations [1].

Additionally, the classification accuracy is degraded

since the classifier is only trained on average for dif-

ferent sets of randomization parameters unless special

ensembling or aggregation is properly applied to com-

pensate this loss. However, even in this case the mis-

match between the training and testing stages can only

ensure the performance on average whereas one is in-

terested to have the guaranteed performance for each

realization of randomized parameters. Unfortunately,

this is not achievable without the common secret shar-

ing between the training and testing.

3. Key-based defenses: The third group generalizes the

defense mechanisms, which include a randomization

explicitly based on a secret key that is shared between

training and testing stages. For example, one can men-

tion the use of random projections [11], the random

feature sampling [4] and the key-based transformation

[10], etc.

Nevertheless, the main disadvantage of the known

methods in this group consists of the loss of perfor-

mance due to the reduction of useful data that should

be compensated by a proper diversification and corre-

sponding aggregation.

In this paper, we target further extension of the key-based

defense strategies based on the cryptographic principles to

create an information advantage of the defender over the at-

tacker yet maximally preserving the information in the clas-

sification system. The generalized diagram of the proposed

system is shown in Figure 2. It has two levels of randomiza-

tion, each of which can be based on unique secret keys. An

additional robustification is achieved via the aggregation of

the soft outputs of the multi-channel classifiers trained for

their own randomizations. As it will be shown throughout
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the paper, usage of multi-channel architecture diminishes

the efficiency of attacks.

The main contribution of this paper is twofold:

• A new multi-channel classification architecture with

defense strategy against gray-box attacks based on the

cryptographic principle.

• An investigation of the efficiency of the proposed ap-

proach on three standard data sets for several classes

of well-known adversarial attacks.

The remainder of this paper is organized as follows: Sec-

tion 2 introduces a new multi-channel classification archi-

tecture. Section 3 provides an extension of the defense strat-

egy based on the data independent permutation proposed in

[10] to multi-channel architecture. The efficient key-based

data independent transformation is investigated in Section

4. The filtering by a hard-thresholding in the secret domain

is analyzed in Section 5. Section 6 concludes the paper.

2. Multi-channel classification algorithm

A multi-channel classifier, which forms the core of the

proposed architecture, is shown in Figure 2. It consists of

four main building blocks:

1. Pre-processing of the input data in a transform do-

main via a mapping Wj , 1 ≤ j ≤ J . In general,

the transform Wj can be any linear mapper. For ex-

ample it can be a random projection or belong to the

family of orthonormal transformations (WjW
T
j = I)

like DFT (discrete Fourier transform), DCT (discrete

cosines transform), DWT (discrete wavelet transform),

etc. Moreover, Wj can also be a learnable transform.

However, it should be pointed out that from the point

of view of the robustness to adversarial attacks, the

data independent transform Wj is of interest to avoid

key-leakage from the training data. Furthermore, Wj

can be based on a secret key kj .

2. Data independent processing Pji, 1 ≤ i ≤ I presents

the second level of randomization and serves as a de-

fense against gradient back propagation to the direct

domain.

One can envision several cases. As shown in Figure

3a, Pji ∈ {0, 1}l×n, l < n, presents a lossy sam-

pling of the input signal of length n, as considered

in [4]. In Figure 3b, Pji ∈ {0, 1}n×n is a lossless

permutation, similar to [10]. Finally, in Figure 3c,

Pji ∈ {−1, 0,+1}n×n corresponds to sub-block sign

flipping. The yellow color highlights the key defined

region of key-based sign flipping. This operation is

reversible and thus lossless for an authorized party.

Moreover, to make the data independent processing ir-

reversible for the attacker, it is preferable to use a Pji

based on secret key kji.

Pji =
1 0 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · ·
0 0 0 · · · 1 0

n

l

l < n

(a) randomized sampling

Pji =

1 0 0 · · · 0 0
0 0 1 · · · 0 0

· · · · · · · · · · · ·

0 0 0 · · · 1 0

n

n

(b) randomized permutation

Pji =

1 0 0 ... .. ... 0 0 0

... ... .. .. ... ... ...

n

n

0 ... -1 0 0 ... ... 0

0 1 0 ... .. ... 0 0 0

0 ... 0 1 0 ... ... 0

0 ... 0 0 -1 ... ... 0

0 0 0 ... .. ... 0 0 1

0 0 0 ... .. ... 0 1 0

... ... .. .. ... ... ...

(c) randomized sign flipping in the

sub-block defined in orange

Figure 3: Randomized transformation Pji, 1 ≤ j ≤ J, 1 ≤
i ≤ I examples. All transforms are key-based.

3. Classification block can be represented by any family

of classifiers. However, if the classifier is designed

for classification of data in the direct domain then it

is preferable that it is preceded by W
−1

j .

4. Aggregation block can be represented by any operation

ranging from a simple summation to learnable opera-

tors adapted to the data or to a particular adversarial

attack.

As it can be seen from Figure 2, the chain of the first 3

blocks can be organized in a parallel multi-channel struc-

ture that is followed by one or several aggregation blocks.

The final decision about the class is made based on the ag-

gregated result. The rejection option can be also naturally

envisioned.

The training of the described algorithm can be repre-

sented as:

(ϑ̂, {θ̂ji}) = argmin
ϑ,{θji}

T∑

t=1

J∑

j=1

Ij∑

i=1

L(yt, Aϑ(φθji
(f(xt)))),

(1)

with:

f(xt) = W
−1

j PjiWjxt,

where L is a classification loss, yt is a vectorized class label

of the sample xt, Aϑ corresponds to the aggregation oper-

ator with parameters ϑ, φθji
is the ith classifier of the jth

channel, θ denotes the parameters of the classifier, T equals

to the number of training samples, J is the total number

of channels and Ij equals to the number of classifiers per

channel that we will keep fixed and equals to I .

The attacker might discover the secret keys kj and/or

kji or make the full system end-to-end differentiable using

the Backward Pass Differentiable Approximation technique

proposed in [1] or via replacing the key-based blocks by
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the bypass mappers. To avoid such a possibility, we restrict

the access of the attacker to the internal results within the

block B. This assumption corresponds to our definition of

the gray-box setup.

In the proposed system, we will consider several prac-

tical simplifications leading to information and complexity

advantages for the defender over the attacker:

• The defender training can be performed per channel in-

dependently until the aggregation block. At the same,

the attacker should train and back propagate the gradi-

ents in all channels simultaneously or at least to guar-

antee the majority of wrong scores after aggregation.

• The blocks of data independent processing Pji aim at

preventing gradient back propagation into the direct

domain but the classifier training is adapted to a par-

ticular Pji in each channel.

• It will be shown further by the numerical results that

the usage of the multi-channel architecture with the

following aggregation stabilizes the results’ deviation

due to the use of randomizing or lossy transformations

Pji, if such are used.

• The right choice of the aggregation operator Aϑ pro-

vides an additional degree of freedom and increases

the security of the system through the possibility to

adapt to specific types of attacks.

• Moreover, the overall security level considerably in-

creases due to the independent randomization in each

channel. The main advantage of the multi-channel sys-

tem consists in the fact that each channel can have an

adjustable amount of randomness, that allows to obtain

the required level of defense against the attacks. In

a one-channel system the amount of randomness can

be either insufficient to prevent the attacks or too high

which leads to classification accuracy loss. Therefore,

having a channel-wise distributed randomness is more

flexible and efficient for the above trade-off.

The described generalized multi-channel architecture

provides a variety of choices for the transform operators W

and data independent processing Pji. In Section 3, we will

consider a variant with multiple Pji in the form of the con-

sidered permutation in the direct domain Wj = I. In Sec-

tion 4, we will investigate a sign flipping operator Pji for

the common DCT operator W. Section 5 will be dedicated

to the investigation of a denoising version of Pji based on

hard-thresholding in a secret sub-space of the DCT domain

Wj .

3. Classification with multi-channel permuta-

tions in the direct domain

The simplest case of randomized diversification can be

constructed for the direct domain with the permutation of

input pixels. In fact, the algorithm proposed in [10] reflects
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Figure 4: Classification via multi-channel permutations in

the direct domain.

this idea for a single channel. However, despite the reported

efficiency of the proposed defense strategy, a single channel

architecture is subject to a drop in classification accuracy,

even for the original, i.e., non-adversarial, data.

Therefore, this paper investigates the performance of a

permutation-based defense in a multi-channel setting.

3.1. Problem formulation

The generalized diagram of the corresponding extended

multi-channel approach is illustrated in Figure 4. The per-

mutation in the direct domain implies that Wj = I with

J = 1 and I permutation channels. Therefore, each chan-

nel 1 ≤ i ≤ I has only one data independent permutation

block Pi represented by a lossless permutation of the input

signal x ∈ R
n×n×m in the direct domain, where n corre-

sponds to the size of the input image and m is the number

of the channels (colors) in this image. Thus, the permuta-

tion matrix Pi is a matrix of size n × n, generated from a

secret key ki, whose entries are all zeros except for a single

element of each row, which is equal to one. In addition, as

illustrated in Figure 3b, all non-zero entries are located in

different columns. For our experiments, we assume that Pi

is the same for each input image color channel but it can be

a different one in the general case to increase the security of

the system. As an aggregation operator A, we use a sum-

mation for the sake of simplicity and interpretability. The

aggregated result represents a M -dimensional vector y of

real non-negative values, where M equals to the number of

classes and each entry yc is treated as a probability that a

given input x belongs to the class c.

Under the above assumptions, the optimization problem

(2) reduces to 1:

{θ̂i} = argmin
{θi}

T∑

t=1

I∑

i=1

L(yt, A(φθi
(Pixt))). (2)

3.2. Numerical results

To reveal the impact of multi-channel processing, we

compare our results with an identical single channel system

1https://github.com/taranO/defending-adversarial-attacks-by-RD
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Data type
I

1 5 10 15 20 25

MNIST: original classifier error is 1%

Original 2.83 1.73 1.37 1.43 1.57 1.4

CW ℓ2 8.85 4.56 3.82 3.53 3.55 3.51

CW ℓ0 13.87 5.98 4.98 4.69 4.47 4.4

CW ℓ∞ 11.67 4.72 4.03 3.87 3.59 3.69

Fasion-MNIST: original classifier error is 7.5%

Original 11.40 9.4 9.27 9.2 9.23 9.2

CW ℓ2 12.16 10.15 9.78 9.41 9.49 9.4

CW ℓ0 13.45 10.15 9.62 9.56 9.82 9.63

CW ℓ∞ 11.99 9.72 9.69 9.24 9.26 9.32

CIFAR: original classifier error is 21%

Original 47.03 41.47 40.2 39.8 39.2 39

CW ℓ2 47.76 41.82 39.83 39.59 39.4 39.04

CW ℓ0 48.39 42.27 40.87 39.73 39.85 39.76

CW ℓ∞ 47.41 42.12 40.53 39.58 39.62 39.21

Table 1: Classification error (%) on the first 1000 test sam-

ples for I-channel system with the direct domain permuta-

tion.

reported in [10]. For each classifier φθi
we use exactly the

same architecture as mentioned in Table 2 in [10]2. More-

over, taking into account that the generation of adversar-

ial examples is quite a slow process, as well as in [10], we

verify our approach on the first 1000 test samples of the

MNIST [8] and Fashion-MNIST [12] data sets. Addition-

ally, we investigate the CIFAR-10 data set [7].

The obtained results are given in Table 1. For all data

sets, a single channel set up with I = 1 corresponds to the

results of the approach proposed in [10] and CW denotes

the attacks proposed by Carlity and Wagner in [2].

As one can note from Table 1, increasing the number

of channels leads to a decrease of the classification error. In

the case of the MNIST data set, our multi-channel algorithm

allows to reduce the error on the original non-attacked data

in 2 times, from 2.8% to 1.4%. For the attacked data, the

classification error decreases 2.5 times from almost 9-14%

to 3.5-4.5%. In case of the Fashion-MNIST data set, one

can observe a similar dynamic, namely, the classification

error decreases from 11.5-13.5% to 9-9.5. For the CIFAR-

10 data set using the multi-channel architecture allows to

reduce the error from 47-48% to only about 39.5%. The

CIFAR-10 natural images are more complex in compari-

son to the MNIST and Fasion-MNIST and the introduced

permutation destroys local correlations. This has a direct

impact on classifier performance.

2The Python code for generating adversarial examples is available at

https://github.com/carlini/nn robust attacks

P
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(a) coordinate domain

k

P DCT−1DCT

(b) DCT domain

Figure 5: Global permutation in the coordinate domain (a)

and DCT based encoding using key-based sign flipping (b).

4. Classification with multi-channel sign per-

mutation in the DCT domain

The results obtained in Section 3 for the CIFAR-10 data

set show a high sensitivity to the gradient perturbations that

degrade the performance of the classifier. In this Section we

investigate the other data independent processing functions

Pji based on a secret key kji preserving the gradient in a

special way that is more suitable for the classification of

complex natural images. We will consider a general scheme

for demonstrative purposes to justify that the permutations

should be localized rather than global.

4.1. Global permutation

We will consider sign flipping in the DCT domain as a

basis for the multi-channel randomization. For the visual

comparison of the effect of global permutation in the coor-

dinate domain versus global sign flipping in the DCT do-

main, we show an example in Figure 5. From this Figure

one can note that the permutation in the coordinate domain

disturbs the local correlation in the image that will impact

the local gradients. In turn, this might impact the train-

ing of modern classifiers that are mostly based on gradient

techniques. At the same time, preservation of the gradi-

ents makes the data more vulnerable to adversarial attacks.

Keeping this in mind, we can conclude that the global DCT

sign permutation also ”randomizes” the images but, in con-

trast to the permutation in direct domain, it keeps the local

correlation.

To answer the question whether the preservation of local

correlation at the randomization can help preserve the loss

of the gradients, we investigate the global DCT sign permu-

tation for the classification architecture shown in Figure 4

with Wj is DCT and Pi ∈ {−1, 1}n×n. It should be noted

that the transform Wj is fixed for all channels. Therefore,

the secrecy part consists in the key-based flipping of DCT

coefficients’ signs.

In the experimental results we obtained the classification

accuracy to be very close to the results represented in Ta-

ble 1. For the sake of space, we do not present this table

in the paper. Nevertheless, we can conclude that the global

sign permutation in the DCT domain does not improve the

previous situation with the global permutation in direct do-

main.
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Figure 6: Local randomization in the DCT sub-bands by

key-based sign flipping.

4.2. Local permutation

Taking into account the above observation, we investi-

gate the behaviour of the local DCT sign permutations, i.e.,

we will use a global DCT transform but will flip the signs

only for the selected number of coefficients as shown in Fig-

ure 6c.

The general idea, illustrated in Figure 6, consists in the

fact that the DCT domain can be split into overlapping or

non-overlapping sub-bands of different size. In our case, for

the simplicity and interpretability, we split the DCT domain

into 4 sub-bands, namely, (1) top left that represents the low

frequencies of the image, (2) vertical, (3) horizontal and (4)

diagonal sub-bands. After that we apply the DCT sign flip-

ping as randomization in each sub-band keeping all other

sub-bands unchanged and apply the inverse DCT transform.

The corresponding illustrative examples are shown in Fig-

ures 6c - 6e. Finally, we apply the DCT sign permutation

in 3 sub-bands. The corresponding result is shown in Fig-

ure 6f. It is easy to see that local DCT sign flipping applied

in one individual sub-band creates a specific oriented dis-

tortion due to the specificity of chosen sub-bands but pre-

serves the local image content quite well. The simultaneous

permutation of 3 sub-bands creates more degradation which

might be undesirable and can have a negative influence on

the classification accuracy.

To investigate the behaviour of the local DCT sign per-

mutations we use the multi-channel architecture shown

in Figure 7. It is a three-channel model with I sub-

channels. As a Wj we use a standard DCT transform. The

sub-channels’ data independent processing blocks Pji ∈
{−1, 0, 1}n×n are based on the individual secret keys kji
and are represented by the matrices that allow to change

the elements’ signs only in the sub-band of interest, like il-

lustrated in Figure 3c. In general case, the sub-bands can be

overlapping or non-overlapping and have different positions

and sizes. As discussed, we use only 3 non-overlapping

sub-bands of equal size as illustrated in Figure 6a. The ar-

chitecture of the classifiers φθji
is identical to the ones used

in Section 2. As an aggregation operator we use a simple
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Figure 7: Classification with local DCT sign permutations.

summation.

The corresponding optimization problem becomes:

{θ̂ji} = argmin
{θji}

T∑

t=1

3∑

j=1

I∑

i=1

L(yt, A(φθji
(Pjixt))). (3)

4.3. Numerical results

The results obtained for the architecture proposed in Fig-

ure 7 are shown in Table 2. The column ”Classical” corre-

sponds to the results of the one-channel classical classifier

for the original non-permuted data, that is referred to as the

classical scenario.

It should be pointed out that in the previous experiments

we observed a drop in the classification accuracy even for

the original non-attacked data. In the proposed scheme with

the 12 and 15 sub-channels, the obtained classification er-

ror on the adversarial examples corresponds to those of the

original data and, in some cases, is ever lower. For example,

we obtained a 2 times decrease in the classification error on

the MNIST for the original data in comparison to the clas-

sical architecture.

The CIFAR-10 data set presents a particular interest for

us as a data set with natural images. For CW ℓ2 and CW

ℓ∞ attacks the classification error is the same as in the case

of the classical scenario on the original data. This demon-

strates that the proposed method does not cause a degrada-

tion in performance due to the introduced defense mecha-

nism. In case of CW ℓ0 attack there is only about 2% of

successful attacks.

In the case of the Fashion-MNIST data set, the obtained

results are better than the results for the permutation in

the direct domain given in Table 1. For the original non-

attacked data the classical scenario accuracy is achieved.
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Data type Classical
J · I

3 6 9 12 15

MNIST

Original 1 0.5 0.5 0.5 0.5 0.5

CW ℓ2 100 6.28 5.34 4.66 4.44 4.73

CW ℓ0 100 19.3 18.48 17.6 16.7 17.42

CW ℓ∞ 99.99 2.81 2.37 2.22 2.12 2.06

Fashion-MNIST

Original 7.5 8.1 7.4 7.6 7.2 7.4

CW ℓ2 100 9.27 8.67 8.87 8.62 8.62

CW ℓ0 100 10.62 9.99 10.13 9.87 9.86

CW ℓ∞ 99.9 9.2 8.41 8.66 8.47 8.49

CIFAR-10

Original 21 21.2 19.6 19.5 18.6 19.2

CW ℓ2 100 22.42 21.3 21.04 20.79 20.92

CW ℓ0 100 25.72 24.52 23.84 23.43 23.28

CW ℓ∞ 100 22.8 21.39 21.21 20.81 20.92

Table 2: Classification error (%) on the first 1000 test sam-

ples for the DCT domain with the local sign flipping in 3

sub-bands (J = 3).

For the attacked data the classification error exceeds the

level of those on the original data only with 1-2%.

The situation with the MNIST data set is even more in-

teresting. First of all, we would like to point out that we

decrease in 2 times the classification error in comparison

to the classical scenario. However, for the CW ℓ0 the re-

sults are surprisingly worse. To investigate the reasons of

the performed degradation we visualize the adversarial ex-

amples. The results are shown in Table 3. It is easy to

see that, in general, the CW ℓ∞ noise manifests itself as a

background distortion and doesn’t affect considerably the

regions of useful information. The CW ℓ2 noise affects the

regions of interest but the intensity of the noise is much

lower than the intensity of the meaningful information. As

well as in CW ℓ2, the CW ℓ0 noise is concentrated in the

region near the edges but its intensity is as strong as the in-

formative image parts. Thus, it becomes evident why local

DCT sign permutation is not capable to withstand such kind

of noise. In general, such a strong noise is easy detectable

and the corresponding adversarial examples can be rejected

by many detection mechanisms, like for example an aux-

iliary ”detector” sub-network [9]. Moreover, as it can be

seen from the Fashion-MNIST examples, the influence of

such noise and successful attacks drastically decreases with

increasing image complexity. As it has been shown by the

CIFAR-10 results, the local DCT sign permutation produces

a high level of defense against such an attack for natural im-

ages.

Attack MNIST Fashion-MNIST

CW ℓ2

CW ℓ0

CW ℓ∞

Table 3: Adversarial examples.

5. Classification with multi-channel hard

thresholding in the sub-bands of the DCT

domain

As it can be seen from Figure 6, the local DCT sign

permutation creates sufficiently high image distortions. As

a simple strategy to avoid this effect, we investigate hard

thresholding of the DCT coefficients in the defined sub-

bands. In this case the matrix Pji contains zeros for the

coefficients of key-defined sub-bands. Alternatively, one

can consider this strategy as a random sampling as illus-

trated in Figure 3a, where one retains only the coefficients

used by the classifier. In this sense, the considered strategy

is close to the randomization in a single channel without the

aggregation considered in [4].

Note that the considered processing is a data indepen-

dent transform. The secret keys can be used for choosing

the sub-bands positions. Thus, the attacker can not predict

in advance, which DCT coefficients will be used or sup-

pressed.

For simplicity and to be comparable with the previously

obtained results, we use the multi-channel architecture that

is shown in Figure 7, the DCT sub-band division as illus-

trated in Figure 6a with fixed 3 sub-band sizes and posi-

tions. Instead of applying the sign permutation, the corre-

sponding DCT frequencies are set to zero and the result is

transformed back to the direct domain. The visualization of

the results of such a transformation is shown in Figure 8.

The resulting images are slightly blurry but less noisy than

in the case of the DCT sign permutation.

The obtained numerical results for the MNIST, Fashion-

MNIST and CIFAR-10 data sets are given in Table 4. In
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(a) original (b) sub-band V (c) sub-band H (d) sub-band D

Figure 8: Local zero filling in the DCT domain.

Original CW ℓ2 CW ℓ0 CW ℓ∞

MNIST 0.6 7.59 21.3 3.03

Fashion-MNIST 8.8 9.6 11.23 9.58

CIFAR 21.1 23.28 27.08 23.27

Table 4: Classification error (%) for the DCT based hard

thresholding over the first 1000 test samples (J = 3, I = 1).

general, the results are very close to the results of using the

DCT sign permutation represented in Table 2 with the num-

ber of classifiers equals to 3. For the original non-attacked

data the classification error is almost the same. In case of

the attacked data, the classification error is about 0.5-1 %

higher. This is related to the fact that the zero replacement

of DCT coefficients leads to a loss of information and, con-

sequently, to a decrease in classification accuracy.

Hence, replacing the DCT coefficients by zeros might

also serve as a defense strategy.

6. Conclusions

In this paper, we address a problem of protection against

adversarial attacks in classification systems. We propose the

randomized diversification mechanism as a defense strat-

egy in the multi-channel architecture with the aggregation

of classifiers’ scores. The randomized diversification is a

secret key-based randomization in a defined domain. The

goal of this randomization is to prevent the gradient back

propagation or use of bypass systems by the attacker. We

evaluate the efficiency of the proposed defense and the per-

formance of several variations of a new architecture on three

standard data sets against a number of known state-of-the-

art attacks. The numerical results demonstrate the robust-

ness of the proposed defense mechanism against adversarial

attacks and show that using the multi-channel architecture

with the following aggregation stabilizes the results and in-

creases the classification accuracy.

For the future work we aim at investigating the proposed

defense strategy against the gradient based sparse attacks

and non-gradient based attacks.
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