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Abstract

Building on progress in feature representations for im-

age retrieval, image-based localization has seen a surge of

research interest. Image-based localization has the advan-

tage of being inexpensive and efficient, often avoiding the

use of 3D metric maps altogether. That said, the need to

maintain a large amount of reference images as an effec-

tive support of localization in a scene, nonetheless calls for

them to be organized in a map structure of some kind.

The problem of localization often arises as part of a navi-

gation process. We are, therefore, interested in summarizing

the reference images as a set of landmarks, which meet the

requirements for image-based navigation. A contribution

of this paper is to formulate such a set of requirements for

the two sub-tasks involved: compact map construction and

accurate self localization. These requirements are then ex-

ploited for compact map representation and accurate self-

localization, using the framework of a network flow prob-

lem. During this process, we formulate the map construc-

tion and self-localization problems as convex quadratic and

second-order cone programs, respectively. We evaluate our

methods on publicly available indoor and outdoor datasets,

where they outperform existing methods significantly1.

1. Introduction

Vision-based navigation is one of the key components

of robotics, self-driving cars and many mobile applica-

tions. It is tackled either by using a 3D map representa-

tion such as in Structure-from-Motion (SfM) based meth-

ods [11, 17, 23, 22, 29, 7] and Simultaneous Localiza-

tion and Mapping (SLAM) methods [20, 8, 6, 5, 10] or

by using a map purely represented with geo-tagged im-

ages [3, 24, 4, 12]. In contrast to SfM and SLAM-based

1Code: https://github.com/janinethoma/

methods, localization by image retrieval (or simply image-

based localization) is inexpensive, with a simple map repre-

sentation, which also scales better in larger spaces [3, 23].

The problem of image-based localization is posed as the

matching of one or more query images taken at unknown

locations to a set of reference images captured at known

locations in a map. Recent developments in learning im-

age feature representations for object and place recogni-

tion [16, 24, 4, 3] have made image retrieval a viable method

for localization. Despite the increased interest, image-based

navigation methods are largely error-prone due to match-

ing inaccuracies [1]. Some existing methods address this

by learning better feature representations for place recog-

nition [3, 24, 4, 12]. Nonetheless, errors in matches cannot

be avoided in realistic settings with changes in illumination,

camera pose and dynamic objects [1]. Methods that directly

regress poses [26, 14, 13] naturally run into similar prob-

lems. We argue that, in addition to feature representation,

the success of localization in navigation is determined by

several other key factors. In particular, current methods do

not adequately address the problem of map representation.

Many methods use a large (or even complete) reference

image set in order to localize a given query image [4, 12, 1].

Although a large reference set has a higher chance of a sim-

ilar (in pose and illumination) reference and query image

pair to exist, it not only leads to higher memory require-

ments but may also become sub-optimal for the matching

process. Another important neglected aspect in image based

localization is the order of query image sequences, which is

the key to the success of visual SLAM methods. Unlike

SLAM, localization by retrieval often works with a much

sparser sequence of query images. Exploiting information

from such interleaved image sequences is very challenging.

In this context, [19] localizes a sequence of query images

by assuming a linear change of features over time. How-

ever, this assumption is rather naive, since it fails as soon as

some objects appear (or disappear) in images. As a conse-
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quence, we are interested in answering the question of what

are the desired criteria of a good map representation for im-

age retrieval-based navigation? And how can we benefit

from such a representation during image localization?

In this paper, we address the task of navigation on a map

where there exist geometric relationships between images

or landmarks. Given visual features of images and image

locations of the reference set, we identify three key prob-

lems: map construction by image selection, path planning,

and localization using a history of image matches for multi-

ple images. In particular, we provide new methods for map

construction and matching multiple images to the reference

images of the map. We present the construction and repre-

sentation of the map as image landmark selection from a se-

quence of images using the principles of optimal transport.

For that purpose we introduce rules that direct how images

should be selected for the map representation and derive the

costs accordingly. We model the rules as a problem of com-

puting flow from source images to target images given the

image geometric locations and the visual features and solve

it using Quadratic Programming (QP). Our second contri-

bution is about the localization of multiple query images on

the map, where we model the problem as bipartite graph

matching. We solve the localization by computing a flow

between the landmark images as the sources and the query

images as the targets in the bipartite graph, using Second

Order Cone Programming (SOCP). We evaluate both land-

mark image selection and localization on publicly available

indoor and outdoor datasets, and show that we significantly

outperform the state-of-the-art.

2. Related Work

We briefly describe some relevant works on map-based

localization by image retrieval. We do not discuss the al-

ternative approach of navigation based on a pre-built 3D

map using SfM or SLAM [11, 17, 23, 7, 22, 29]. Although

both map-building and navigation play important roles in

localization by image retrieval, most research interests have

been directed towards learning better features [3, 24, 4, 12].

Nonetheless, some progress has been made on modeling

the map and matching. In particular, [15] perform map-

building by uniformly sampling video streams for images

and improve matching by interpreting the map as a Hidden

Markov Model. However, they do not model the temporal

relation of input images in the matching process. Moreover

the uniform sampling for map-building may not be the opti-

mal approach. [28] model the query image sequence to map

sequence matching as a directed graph problem where the

temporal continuity is exploited. A similar strategy is also

pursued by [19]. However, previous works do not fully con-

sider the context of the navigation process when tackling the

problems of map-building, localization and path planning.

In the following sections, we define the preliminaries for

modeling these problems using the theory of optimal trans-

port and solve the problems based on the rules we develop.

3. Preliminaries

Let us consider a graph G = (V,E) with a set of vertices

V = {vi} and a set of directed edges E = {eij}i/=j . For the

edge eij ∈ E , we define the flow capacity and the flow cost

rate uij , cij ∈ R+, respectively. Let yij ∈ [0, uij] be the flow

for eij ∈ E , such that the flow of an edge is non-negative and

cannot exceed its capacity. For each vertex vi ∈ V , we define

the total outgoing flow y
i
= ∑eij

yij and the total incoming

flow yi = ∑eji
yji, such that the net flow is yi = y

i
− yi

and the absolute flow is ŷi = y
i
+ yi. We consider two sets

S,T ⊂ V for source and target vertices respectively, such

that S ∩ T = ∅. For each source vertex vi ∈ S , we are given

the net outgoing flow si ∈ R+. Similarly, ti ∈ R+ is the given

net incoming flow of target vertex vi ∈ T . For the remaining

vertices, we apply the rule of conservation of flows: the sum

of the flows entering a vertex must equal the sum of the

flows exiting a vertex. We also ensure that the flow between

the sources and targets are conserved by imposing the flow

constraint ∑vi∈S si = ∑vi∈T ti. Now, we wish to transport

the source flows {si} to the target flows {ti}, with minimal

transportation cost, by solving the following optimization

problem.

min
yij

∑
eij∈E

cijyij ,

s.t. 0 ≤ yij ≤ uij , ∀eij ∈ E

yi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

si ∀vi ∈ S
−ti ∀vi ∈ T
0 ∀vi ∈ V ∖ (S ∪ T )

(1)

The problem of (1) is convex and can be solved using

Linear Programming (LP). There exist various off-the-self

solvers [2, 25] that offer very efficient LP solutions.

4. Image-based Navigation

We rely only on images and the scene topology for

all three sub-tasks of navigation—map representation, path

planning, and self localization. During these processes, vi-

sual features of images and their locations on the topolog-

ical map are considered. In the following, we provide the

exact problem setup addressed in this paper, followed by

our solutions for each of the three sub-tasks.

4.1. Problem Setup

We consider a map M ⊂ R
2 and a set of images I =

{Ii}ni=1 with their location coordinates X = {xi ∈ M}ni=1
and visual features F = {fi}ni=1. Using this information,

we construct a graph G = (V,E) where the set of vertices

V = {vi} represent images Ii, i = 1, . . . , n and the set of
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directed edges E = {eij}i/=j represent pairwise relations be-

tween images Ii and Ij . Efficient navigation demands a

compact representation of G, supporting path planning and

the self-localization of image sequences.

4.2. Map Representation

For a given set of vertices V = {vi}ni=1, we wish to sum-

marize them as a set of landmarks V ′ = {v′i}
m
i=1 such that

V ′ ⊂ V . To do so, we first define the following measure,

kx = argmin
i=1,...,m

d(x, v′i), (2)

where d(x, vi) is the distance measure between x and xi of

the vertex vi. Here, kx is the index of the vertex in V ′ which

is geometrically closest to the point x. While summarizing

the landmarks, we consider the following four rules.

Rule 4.1 (Geometric Representation) Landmarks must

be well distributed geometrically, i.e. the selected land-

marks must minimize the following,

min
V ′

max
x∈M

d(x, v′kx
). (3)

Rule 4.2 (Visual Representation) Landmarks must be

useful for localizing images using their visual features.

More precisely, all images must have a small feature

distance to the geometrically closest landmark, i.e. for the

feature distance d(fi, fj), landmarks must also respect,

min
V ′

max
{x,f}∈V

d(f, f′kx
). (4)

Rule 4.3 (Navigation Assurance) Landmarks must sup-

port navigation from any source to to any target location,

using only visual features. In other words, the next land-

mark along the path must not only be close, it must also

be distinct from the current one, to avoid confusion, i.e. if

P = {v′l}
q

l=1 ⊂ V
′ is the ordered sequence of landmarks

along a path, two consecutive landmarks must be within the

distance α such that,

d(x′l, x
′
l+1) ≤ α, ∀x

′
l ∈ P , (5)

and their visual features must be distinct such that,

max
V ′

min
f′
l
,f′
l+1
∈P ′

d(f′l , f
′
l+1). (6)

This ensures that the navigation process can find the next

landmark without getting confused with the previous one.

Rule 4.4 (Map Compactness) The number of landmarks

must be small, i.e. ∣V ′∣ ≤ N , for maximally N landmarks.

Landmark summarization for image-based navigation is a

multi-objective problem which favours the above four rules.

4.3. Path Planning

The task of path planning is to choose an ordered set of

landmarks that help to travel from a given source to a target

location along the shortest path using only the landmark im-

ages. Since the rules of map representation already ensure

a good set of landmarks, the task of path planning simply

becomes a problem of finding the shortest path along the

selected landmarks. Such a path can be found using exist-

ing methods such as Dijkstra’s algorithm.

4.4. Self Localization

Given a sequence of images and landmarks along a path,

the task of self-localization is equivalent to finding the most

consistent match. We assume that an ordered sequence of

images Ip = {Il}ql=1, captured along a path are given. We

wish to localize these images by matching them to land-

marks V ′. We formulate self-localization as a graph match-

ing problem between P = {pl}ql=1 representing Ip and

V ′ = {v′i}mi=1. Let B ∶ l → l′ be a map that generates the

desired matching pairs {pl, v′l′}
q

l=1 of sequence images and

landmark images. For the purpose of self-localization, we

want the matching process to favor the following two rules.

Rule 4.5 (Visual Matching) The visual distance between

matched pairs must be minimized, i.e. if {fl, f′l′} are the

visual features coming from the pair {pl, v′l′}, the mapping

corresponding to the best matching is found as

min
B

∑
l

d(fl, f′l′). (7)

Rule 4.6 (Geometric Matching) Neighbours of pl must be

matched to the neighbours of v′l′ or v′l′ ∈ V
′ itself. i.e.

v′l′−1, v
′
l′+1 ∈N(v

′
l′) ∪ v

′
l′ , ∀pl ∈ P . (8)

5. Map Construction using Network Flow

To represent the map using only images, we define the

graph G = {V,E}, as discussed in the previous section and

as visualized in Fig. 1. Any edge eij ∈ E represents the

relationship between Ii and Ij , using the flow capacity uij

and cost rate cij defined as,

uij = λxd(xi, xj) and cij = λf /d(fi, fj), (9)

for weights λx and λf associated to geometric and visual

measures. Recall that d(xi, xj) and d(fi, fj) respectively

are the geometric and visual distances between images Ii
and Ij . Here, we first define the landmark selection process

for map representation, in the context of network flow.

Definition 5.1 (Landmarks) Graph vertices with absolute

flow greater than a given flow threshold τ are the desired

landmarks. i.e. the landmarks are, V ′ = {vi ∶ ŷi ≥ τ}.
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Figure 1. Visualization of Graph G = {V,E} for map construction

with sources si ∈ S , targets ti ∈ T , anchor points ai ∈ A, and

remaining image vertices vi ∈ V .

In the following, we make use of (9) within the formulation

of (1), with additional constraints, in order to obtain land-

marks that favour rules 4.1–4.4. We also provide the reason

behind our choice of cost rate and capacity expressed in (9).

5.1. Geometric Representation

The geometric representation Rule 4.1 is indeed the well

known k-Center Problem, which in itself is NP-hard. How-

ever, there exist simple greedy approximation algorithms of

O(n) complexity that solve the k-Center Problem with an

approximation factor of 2. We use a similar approach to

choose a set of anchor points A ⊂M by solving,

min
A

∣A∣ s.t. d(x,A) ≤ r/2,∀x ∈M (10)

for radius r and point-to-set distance d(x,A). Note that the

distance is constrained by r/2 to compensate the approxi-

mation factor of 2. Using the obtained set of anchor points,

we impose the following constraint on the absolute flow to

favour the geometric representation Rule 4.1,

∑
vi∈N(a)

ŷi ≥ tg, ∀a ∈ A. (11)

for neighbourhood flow threshold tg and neighbouring ver-

ticesN(a) ⊂ V of the anchor point a within a radius r. The

constraint in (11) ensures flow around every anchor point,

thus encouraging the landmarks to be well distributed. In

fact, one can alternatively maximize tg to guarantee the

feasibility of the network flow problem, by adding a term

−λgtg to the original cost of (1) for a constant weight λg .

5.2. Visual Representation

The rule of visual representation demands no image to

be visually too far from its geometrically closest landmark.

Therefore, all nodes with distinct visual features in a local

neighbourhood must have significant absolute flow. We en-

sure such flow by introducing the flow sensitivity ρij for

every edge eij ∈ E . The flow sensitivity controls the cost

rate as flow approaches capacity, such that the new cost rate

is given by,

bij = cij +
yijρij

1 − yij/uij

, (12)

for base cost rate cij and sensitivity ρij . We define the sen-

sitivity using the feature distribution around a vertex as fol-

lows,

ρij = 1 −
d(fi, fj)

∑k∈N(xi) d(fi, fk)
. (13)

The sensitivity encourages the flow to spread before the

maximum capacity of the cheapest edge is used. This is

particularly important when a diverse set of visual features

is clustered together geometrically. In such cases, the risk is

that the flow primarily passes though only one vertex thus

selecting only one landmark, since both incoming and out-

going edges offer low cost and sufficient capacity. This vi-

olates the visual representation rule. In such circumstances,

sensitivity encourages the flow to spread around such that

more than one landmark is selected favouring Rule 4.2.

Note that the sensitivity is high for higher feature diversity.

On the other hand, if there is only one distinct visual fea-

ture in a neighbourhood, the flow sensitivity of the edge to

that vertex is very low. Using (12) and (13), the new cost

corresponding to any edge eij ∈ E can be expressed as,

yijbij = yijcij + zij , with zij ≥
y2ijρij

1 − yij/uij

, (14)

where the inequality is a rotated cone constraint,

(uij − yij)(zij/(ρijuij)) ≥ y2ij . (15)

5.3. Navigation Assurance

The formulation of network flow ensures that all flow

must transfer from source to sink vertices. Therefore, the

network flow problem is already tuned for the navigation

task. While encouraging the flow to make bigger geomet-

ric jumps, by keeping the capacity directly proportional to

the geometric distance (using (9)), we ensure that all jumps

are smaller than the navigation radius α by constructing the

graph such that,

d(xi, xj) ≤ α, ∀eij ∈ E . (16)

Furthermore, we minimize the flow between two vertices

with similar features, by keeping the cost rate inversely pro-

portional to the feature distance (using (9)). This encour-

ages the selection of distinct consecutive features along the

flow path, thus favouring the objective of (6). The construc-

tion of a locally connected graph and our choice of cost rate

and capacity support the navigation assurance Rule 4.3.
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5.4. Map Compactness

Given a threshold τ on the absolute flow, for a ver-

tex to qualify as a landmark, we determine a set of land-

marks V ′ = {vi ∶ ŷi ≥ τ} by controlling source and target

flows {si} and {ti}. Starting from the input/output flow

YG = ∑∈S si = ∑∈T ti, we gradually increase YG to gen-

erate new landmarks as long as the flow problem remains

feasible and ∣V ′∣ ≤ N , for a given upper bound on the num-

ber of landmarks N . In this process, the most important

landmarks are generated in the beginning. Therefore, one

can further control the compactness by choosing the desired

number of initial landmarks.

5.5. Map Construction Algorithm

In the following, we present the flow formulation which

builds the core of our landmark selection method and sum-

marize our graph representation to map construction pro-

cess in the form of a landmark selection algorithm.

Result 5.2 Given a graph G = {V,E} with cost rate, ca-

pacity, and sensitivity {cij , uij , ρij} for each edge eij ∈ E ,

a set of anchor points A, source and target vertices S and

T , and a neighbourhood flow threshold tg , the flows {yij}
required for map reconstruction can be obtained by solving

the following network flow problem.

min
yij ,zij

∑
eij∈E

(cijyij + zij),

s.t. (uij − yij)(zij/(ρijuij)) ≥ y2ij , ∀eij ∈ E ,

0 ≤ yij ≤ uij , ∀eij ∈ E ,

∑
vi∈N(a)

ŷi ≥ tg, ∀a ∈ A,

yi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

si, ∀vi ∈ S,
−ti, ∀vi ∈ T ,
0, ∀vi ∈ V ∖ (S ∪ T ).

(17)

The flow problem of (17) is convex and can be solved

optimally using Quadratic Programming (QP). In Algo-

rithm 1, we summarize the complete process of obtaining

landmarks, starting from images with features and loca-

tions. Note that the flow problem needs to be solved multi-

ple times to obtain the desired compactness, as discussed in

Section 5.4. This can be done either by gradually increas-

ing the input/output flow YG (as discussed earlier), or by

performing a bisection search on the parameter YG .

6. Network Flow for Self Localization

We formulate the self localization of an ordered se-

quence of images P with respect to landmarks V ′ as a bi-

partite graph matching problem. For this task, we construct

Algorithm 1 V ′ = selectLandmarks(I, F , X ,M, S , T )

1. Construct G = {V,E} using I, F and X (ref. Sec 4.1/(16)).

2. Compute capacity uij and rate cij for all eij ∈ E , using (9).

3. Select anchor points A ⊂M, by solving (10) for k-centers.

4. Compute the flow sensitivity ρij for all eij ∈ E , using (13).

5. Solve the flow problem (17) for sources S and targets T .

6. Derive ŷi for all vi ∈ V from yij . Return, V ′ = {vi ∶ ŷi ≥ τ}.
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′
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x
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Figure 2. Bipartite graph Gb with source s and target t.

a complete bipartite graph Gb = {V ′, P ,Ep} with directed

edges eil ∈ Ep from v′i ∈ V ′ to pl ∈ P . In addition, we

introduce auxiliary source and target vertices s and t, re-

spectively. The source s is connected to all the vertices

v′i ∈ V with directed edges esi ∈ Ev . Similarly, directed

edges elt ∈ Et connect pl ∈ P to t. Using Gb, s and t, we

represent the flow network using the graph G = {V,E} with

V = s∪V ′∪P∪t and E = Ev∪Ep∪Et, as shown in Fig. 2. In

this section, we solve the bipartite graph matching problem

using the network flow formulation of (1), with additional

constraints to obtain matches that respect Rules 4.5 and 4.6.

6.1. Visual Matching

To obtain visually similar matches, we define the flow

cost rate between any landmark and a query image using

the visual distance between them. On the other hand, no

cost is added for the flow from source to landmarks and

from query images to target. Furthermore, we introduce a

robust loss for feature matching such that the cost rate is

defined as,

cij = h (d(fi, fj)) ,∀eij ∈ Ep; cij = 0,∀eij ∈ E ∖ Ep, (18)

where h(.) is the Huber loss function. To ensure that an im-

age cannot be matched to more than one landmark, we limit

the maximum absolute flow at every query image to one.

This translates to the the following capacity constraints,

uij = q,∀eij ∈ Ev;uij = 1,∀eij ∈ E ∖ Ev. (19)

We allow many query images to be matched to one land-

mark, by setting the source to landmark capacity higher than

one. Additionally, (19) also ensures the matching of every

query image.
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6.2. Geometric Matching

Recall that we are given only the visual features of the

query images, along with the visual features and geometric

locations of the landmarks. In this regard, our task is to infer

the geometric location of the query images. To do so, for a

given flow between the landmarks and the query images, we

first define the location of the query images as follows,

xl = ∑
vi∈V ′

xiyil for pl ∈ P . (20)

Note that the absolute flow of every query image is

∑i yil = 1. Therefore, (20) guarantees that the query im-

age lies within the convex polytope defined by landmark

locations. Now, the geometric matching rule of 4.6 for nav-

igation radius r and sequential query image pair {pl, pl+1}
can be expressed as the following quadratic constraint,

XXXXXXXXXXX
∑

vi∈V ′
xiyi(l+1) − ∑

vi∈V ′
xiyil

XXXXXXXXXXX
≤ r,∀pl, pl+1 ∈ P . (21)

6.3. Self Localization Algorithm

We perform self localization by performing bipartite

graph matching, using network flow. In the following, we

first present the proposed network flow formulation for self

localization, as one of our results. Subsequently, we sum-

marize our self localization method as an algorithm.

Result 6.1 Consider a graph G = {V,E} constructed us-

ing vertices P = {pl}ql=1 (representing a sequence of im-

ages Ip) and landmarks V ′ = {v′i}mi=1 at locations {xi}mi=1
(as shown in Fig. 2), with cost rate cij and capacity uij de-

fined using (18)–(19). Given navigation radius r and source

and target vertices {s, t}, the flows {yij} required for self

localization can be obtained by solving the following flow

problem.

min
yij

∑
eij∈E

cijyij ,

0 ≤ yij ≤ uij , ∀eij ∈ E ,
ys = q, yt = −q, yi = 0, ∀vi ∈ V ∖ (s ∪ t),
XXXXXXXXXXX
∑

vi∈V ′
xiyi(l+1) − ∑

vi∈V ′
xiyil

XXXXXXXXXXX
≤ r,∀pl, pl+1 ∈ P .

(22)

The flow problem of (22) is convex and can be solved opti-

mally using Second Order Cone Programming (SOCP). We

use the solution of SOCP in (20) to obtain the location xl of

query image Il represented by vertex pl ∈ P . The proposed

localization method is summarized in Algorithm 2.

7. Experiments

We conduct experiments on two publicly available real

world datasets, COLD-Freiburg [21] and the Oxford Robot-

car [18] database. The following paragraphs describe how

Algorithm 2 L = selfLocalization(V ′, Ip)

1. Construct G = {V,E} using V ′ and Ip (ref. Fig. 2).

2. Compute rates {cij} and capacities {uij}, using (18)–(19).

3. Obtain flows {yij} by solving the flow problem (22).

4. Compute the location xl using (20). Return, L = {xl}
q

l=1
.

we obtain the location coordinates X , visual features F and

the edges E , as introduced in Section 4.1.

Location Coordinates. The COLD-Freiburg sequences

directly provide location coordinates X . For the Oxford

Robotcar dataset we use UTM coordinates, i.e. northing and

easting. We exclude any sequences with inaccurate or in-

complete GPS and INS trajectories. Given the large size of

the Oxford Robotcar dataset and the limitation in download

speed for public users, we limit ourselves to a randomly se-

lected subset of sequences and only look at roughly the first

1250m of each run.

Visual Features. We use two different types of image fea-

tures F = {fi}ni=1. The first type are VGG16 [24] based

off-the-shelf NetVLAD [4] features with PCA and whiten-

ing, where the VGG16 layers were pretrained on ImageNet

[9] and the NetVLAD weights are computed using 30’000

images from Pittsburgh 250k [27]. The second type of fea-

tures are simply the output of the last VGG16 fully con-

nected layer using the weights from [24]. The resulting fea-

ture vectors have length 4096 for NetVLAD and 1000 for

VGG16 FC3.

Edges. For the COLD-Freiburg dataset, we look at any con-

nection between images that are less than 2m apart. If the

connection does not intersect with any walls on the given

floor plan, we add it to E . For the Oxford Robotcar dataset,

we add a connection between two images to E if the distance

between the images is smaller than a threshold of 12m. To

avoid edges that cut corners, we use the geodesic distance.

7.1. Landmark Selection

We validate our map construction approach, introduced

in Section 5, on real world data. Starting from 4853 images

from the first 1.25km of a rainy Oxford Robotcar sequence

(2015-10-29 12:18:17), we build a reference summary V ′

with ∣V ′∣ = 250. For a total of five different setups, Fig. 3

shows the distribution of feature distance d(f, v′kx
) and ge-

ometric distance d(x, v′kx
) of the points in the original set V

to the geometrically nearest neighbour v′kx
(2) in the sum-

marized set V ′. First we study the baseline setup obtained

by sampling uniformly along the path of the captured ref-

erence sequence. Then we analyze our approach. To il-

lustrate the impact of anchors (Section 5.1) and sensitivity

(Section 5.2) on geometric and visual representation, we se-

lectively switch off these two constraints.

The results in Fig. 3 clearly show that a reference sum-

marized using network flow has better geometric and visual
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Figure 4. Left to right: Initial top-1 matches between a rainy uniformly sampled reference and an overcast query sequence of the Oxford

Robotcar dataset. Top-1 matches refined by applying our self localization algorithm. Matches obtained with our method and with SeqS-

LAM shown on the visual distance matrix. Localization accuracy for a given distance threshold for top-1 & top-5 localization without

sequence information, SeqSLAM and our localization method.

representation than a uniformly sampled baseline represen-

tation with the same number of images. We observe that

introducing anchors reduces the number of points with high

geometric distance and introducing sensitivity reduces the

number of points with high feature distance.

7.2. Self­Localization

In this section, we illustrate the feasibility of our self lo-

calization algorithm. As a reference set, we take 600 images

from the same rainy Oxford Robotcar sequence (2015-10-

29 12:18:17) as in Section 7.1. We use uniform sampling as

the baseline for summarizing the reference set. As a query

sequence, we uniformly sample 125 images from an over-

cast Oxford Robotcar sequence (2015-02-13 09:16:26) us-

ing a step size of 20 images. The leftmost subplot in Fig. 4

illustrates the unrefined top-1 feature matches between the

query sequence images and the reference images. The sec-

ond subplot in Fig. 4 shows the top-1 feature matches after

applying our self localization algorithm. It is evident that

our approach greatly improves the localization for this ex-

ample by removing inconsistent matches. The third subplot

in Fig. 4 shows the visual distance matrix between query

sequence and reference set (ordered according to topology,

i.e. the originally driven route). It shows that matches do

not occur independently and that the neighbours of match-

ing images also have low feature distance. The true matches

(i.e. the matches with smallest geometric distance) are indi-

cated in black. In red, we plot the refined matches of our

self-localization algorithm. As a comparison, in green we

show the matches produced by SeqSLAM [19], the state of

the art for capitalizing on sequential information to improve

image matches. Finally, the rightmost subplot in Fig. 4 in-

dicates the percentage of correctly localized images for any

given distance threshold. As an example, for a tolerance of

80m, our method has an accuracy of 68.7%, while SeqS-

LAM reaches 60.9%.

7.3. Quantitative Evaluation

We provide quantitative evaluation on the COLD-

Freiburg and the Oxford Robotcar dataset. For both datasets

we randomly choose one reference and three query se-

quences. For the Oxford Robotcar dataset, the reference

is the rainy sequence from 2015-10-29 12:18:17. The query

sequences are taken in three different conditions: Sun and

clouds (2014-11-18 13:20:12), snow (2015-02-03 08:45:10)

and overcast (2015-02-13 09:16:26). From the COLD-

Freiburg dataset we use the second sunny sequence of the

extended part A as a reference. As query sequences, we

use the first sunny, cloudy and night sequences taken on the

extended part A.

Fig. 5 plots the percentage of correctly localized query

images for a given distance threshold for each of the six dif-

ferent query sequences. The number of images in the ref-

erence set are 415 for Oxford Robotcar and 50 for COLD-
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Figure 5. Accuracy vs. distance plot for three partial sequences from the Oxford Robotcar dataset and three full sequences from the COLD-

Freiburg dataset. Red and dark blue: Unrefined top-1 and top-10 matches on a uniformly summarized reference set. Black: SeqSLAM on

a uniformly summarized reference set. Purple: Our self-localization on a uniformly summarized reference set. Light blue: SeqSLAM on

our network flow based map. Green: Our method, with network flow based map construction and self localization.

Freiburg. The results in 5 show that, by incorporating se-

quential information, SeqSLAM clearly outperforms the

unrefined top-1 localization on a uniformly summarized ref-

erence set. However, the top-1 accuracy achieved by our

map building algorithm in combination with our self local-

ization is even higher. For some distance thresholds, the

top-1 accuracy of our method even beats the unrefined top-

10 reference. The benefit of our method is especially pro-

nounced for the more challenging Oxford Robotcar dataset.

While our method shows significant improvement on all

sequences presented in Fig. 5, it fails on sequences with

non-distinctive image features, such as the outdoor night

sequences in the Oxford Robotcar dataset. This is shown

in Fig. 6. It can be observed, that for these sequences, the

baseline method using SeqSLAM also fails. Fig. 7 shows

three examples of query images which are correctly local-

ized by our method while SeqSLAM fails. The reference

sets and query sequences are the same as the ones used for

Fig. 5. The images in Fig. 7 were matched using NetVLAD

features.

8. Conclusion

In this paper we have formulated a set of requirements

for map building and self localization in the context of

image-based navigation. Based on these requirements, we

proposed a method to perform map building by selecting the

most suitable images for navigation. To improve self local-

ization we proposed a method that can use multiple query

images. We modeled both the methods using network flow

and solved them using convex quadratic and second-order

cone programs, respectively. Our experiments on challeng-

ing real world datasets show that our approach significantly

outperforms existing methods.
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Figure 6. Failure cases on Oxford Robotcar night (2014-12-16

18:44:24) and night, rain (2014-12-17 18:18:43) sequences. For
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