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Abstract

Real world applications of stereo depth estimation re-

quire models that are robust to dynamic variations in the

environment. Even though deep learning based stereo meth-

ods are successful, they often fail to generalize to unseen

variations in the environment, making them less suitable for

practical applications such as autonomous driving. In this

work, we introduce a “learning-to-adapt” framework that

enables deep stereo methods to continuously adapt to new

target domains in an unsupervised manner. Specifically,

our approach incorporates the adaptation procedure into

the learning objective to obtain a base set of parameters

that are better suited for unsupervised online adaptation.

To further improve the quality of the adaptation, we learn

a confidence measure that effectively masks the errors in-

troduced during the unsupervised adaptation. We evaluate

our method on synthetic and real-world stereo datasets and

our experiments evidence that learning-to-adapt is, indeed

beneficial for online adaptation on vastly different domains.

1. Introduction

Stereo correspondence estimation is one of the standard

methods for predicting the depth of a scene. State-of-the-

art algorithms treat stereo as a supervised learning problem

and employ deep convolutional neural networks (CNNs)

to directly predict the disparity values [15]. However, the

inability of deep stereo methods to generalize to new do-

mains [21, 29] presents a serious problem in applications

where stereo vision is most useful. Consider an autonomous

car driving along the twisting turns, endless meanders and

through the frequent tunnels around Lake Como. With few

or ineffective barriers offering safety from the shear cliffs, it

is imperative that the autonomous car performs flawlessly.

Moreover, when passing through frequent tunnels where the

∗Work done while at University of Oxford.
†Second two authors contributed equally.

lighting conditions change dramatically, a learned stereo

system might fail to perform in the expected manner, po-

tentially leading to fatal consequences.

Fine tuning a learned model on the target environment

may help to achieve good performance. However, acquir-

ing real dense ground truth data for stereo is extremely

challenging, even with expensive equipment and human ef-

fort [17]. Moreover, considering the above example, one

cannot expect to collect ground truth data for all possible

seasons, times of the day, weather conditions, etc. To ad-

dress this issue, we propose to investigate the use of syn-

thetic data to learn a model offline, which, when deployed,

can quickly adapt to any unseen target domain online in an

unsupervised manner, eliminating the need for expensive

data collection.

We formulate this learning-to-adapt problem using a

meta-learning scheme for continuous adaptation. Specif-

ically, we rely on a model agnostic meta-learning frame-

work [5] due to its theoretical foundation [6], ease of use,

and its successful application on various domains [5, 3, 1].

Our goal is to learn a model offline using synthetic data,

which can continuously adapt to unseen real video se-

quences in an unsupervised manner at test time. This means

our model is always in training mode and its parameters

are automatically tuned to the current environment online

without the need for supervision. Such an online adapta-

tion scenario has been considered previously in the litera-

ture [30, 34]. However, in this work, we explicitly learn-to-

adapt which allows us to achieve superior performance.

Our meta-learning approach directly incorporates the on-

line adaptation step into the learning objective, thus allow-

ing us to obtain a base set of weights that are better suited

for unsupervised online adaptation. However, since the

adaptation is performed in an unsupervised manner (e.g.,

based on re-projection loss [7, 10]), it is inherently noisy,

causing an adverse effect on the overall algorithm. To al-

leviate this deficiency, we learn a confidence measure on

the unsupervised loss and use the confidence weighted loss

to update the network parameters. This effectively masks
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(a) Left input frame (b) Left frame equalized (c) KITTI tuned (d) Ours

Figure 1. We demonstrate the effectiveness of continuous adaptation on a challenging video sequence from [16]. (a) Left input frame, (b)

histogram equalized frame for visualization purpose, (c) disparity map produced by a Dispnet-Corr1D [15] trained on annotated real data

from KITTI, (d) disparity map produced by a Dispnet-Corr1D [15] trained on synthetic data using our learning-to-adapt framework and

continuously adapted on this video sequence. The prediction of our method does not suffer from the same artifacts as (c) (highlighted in

white), thus illustrating the advantage of continuous unsupervised adaptation.

the noise in the adaptation step, preventing detrimental pa-

rameter updates. In our case, the confidence measures are

predicted using a small CNN which is incorporated into

the meta-learning framework, allowing the network to be

trained end-to-end with no additional supervision.

In our experiments, we make use of a synthetic

stereo dataset (Synthia [25]), a real-world dataset (KITTI-

raw [31]), and generate a new synthetic dataset containing

multiple sequences of varying weather and lighting condi-

tions using the Carla simulator [4]. We evaluate our algo-

rithm between two pairs of dataset domains: 1) Carla to

Synthia; and 2) Carla or Synthia to KITTI-raw. In all ex-

periments, our learning-to-adapt method consistently out-

performs previous unsupervised adaptation methods [30],

validating our hypothesis that learning-to-adapt provides an

effective framework for stereo.

2. Problem Setup and Preliminaries

In this section, first we formalize online adaptation and

discuss its advantages. We then briefly review a meta-

learning algorithm which we will transpose into our con-

tinuous adaptation scenario.

2.1. Online Adaptation for Stereo

Let us denote two datasets of stereo video sequences:

Ds (supervised), with available ground truth, and Du (un-

supervised), without ground truth. We would like to learn

network parameters offline using Ds, and use Du as the tar-

get (or test) domain. However, in contrast to the standard

evaluation setting and following the evaluation protocol of

[30, 34], the model is allowed to adapt to the target domain

in an unsupervised manner. We follow the online adapta-

tion paradigm proposed in [30], i.e., for each new frame

acquired we perform a single gradient descent step to keep

the optimization fast and allow better handling of a rapidly

changing test environment.

Formally, let the parameters of the base model trained on

Ds be θ. Given an unseen target video sequence V ∈ Du,

the adaptation is iteratively performed for each consecutive

stereo pair in the sequence, using gradient descent on a pre-

defined unsupervised loss function (Lu). At iteration t, the

online adaptation can be written as:

θt ← θt−1 − α∇θLu(θt−1, it) , (1)

where θ0 = θ, α > 0 is the learning rate and it denotes the

stereo pair of tth frame of the sequence V . Note that the

network parameters are continuously updated for the entire

video in a sequential manner. This process is repeated for

each video sequence starting from the base model θ.

Motivating Example. To show that deep CNN based

stereo networks are highly sensitive to domain-shift and that

online adaptation is indeed necessary, we give a motivat-

ing example as follows. We select a video sequence from

[16] as a test domain, where the environment is similar to

that of KITTI but features extreme weather conditions (e.g.,

night, snow, etc.). We compare the predicted disparities of a

Dispnet-Corr1D network [15] for two training regimes. The

first is fine-tuned on the KITTI training sets [9, 17], and the

second is trained on synthetic data using our learning-to-

adapt framework and performs unsupervised online adapta-

tion for the target domain. The results are shown in Fig. 1.

Here it is evident that fine tuning on real images is not suffi-

cient to obtain reliable performance across all environments

as evidenced by the major mistakes in (c) marked in white.

As can be seen, (c) behaves worse than the network trained

only on synthetic data and adapted online to the target do-

main in an unsupervised manner by our formulation (d).

2.2. Model Agnostic Meta Learning

Model Agnostic Meta Learning (MAML) [5] is a popu-

lar meta-learning algorithm designed for few-shot learning

problems. The objective is to learn a base model θ∗, which

enables fast adaptation to new tasks when used as initial
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Algorithm 1 Adaptation at training time for sequence Vτ

Require: θ,Vτ = [iτ1 , . . . , i
τ
n]

1: θτ0 ← θ ⊲ Parameter initialization

2: for t← 1, . . . , n− 1 do

3: θτt ← θτt−1 − α∇θτ

t−1
Lu

(
θτt−1, it

)
⊲ Adaptation

4: Ls

(
θτt , i

τ
t+1

)
⊲ Supervised evaluation

weights. This is achieved by forming a nested optimisation

problem, where, in the inner loop, we perform SGD for each

task in the standard way. In the outer loop, the base model

parameters are optimized using the loss of all the tasks, en-

abling fast adaptation.

Let T be the set of tasks in the training set and let

the task-specific training and validation sets be Dtrain
τ and

Dval
τ respectively for τ ∈ T . Assuming a single gradient

step in the inner loop, the overall MAML objective can be

written as:

min
θ

∑

τ∈T

L(θ − α∇θL(θ,D
train
τ ),Dval

τ ), (2)

where α > 0 is the learning rate used for adaptation. As

previously stated, this meta-objective function is optimized

via a two-stage gradient descent algorithm. Specifically, at

each optimization iteration, the inner-loop performs a gra-

dient descent update for each task separately starting from

a common base model θ (adaptation step). Then, the outer-

loop performs an update on the common base model, where

the gradient is the sum of task-specific gradients computed

using the parameters updated in the inner loop. We refer the

interested reader to the original paper for more detail [5].

3. Learning to Adapt for Stereo

We first design a meta-learning algorithm for stereo

adaptation by incorporating unsupervised continuous adap-

tation into the training paradigm. Then, we introduce a new

mechanism to re-weight the pixel-wise errors estimated by

the unsupervised loss function, making the adaptation more

effective.

3.1. Meta Learning for Stereo Adaptation

Our hypothesis is that for any deep stereo network, be-

fore performing online adaptation to a target domain, it is

beneficial to learn a base set of parameters (θ) that can be

adapted quickly and effectively to unseen environments. We

observe that our objective of learning-to-adapt to unseen

video sequences is similar in spirit to that of MAML. Here,

we perform the single task of dense disparity regression, but

learn how to adapt to different environments and conditions.

We model an environment through a stereo video se-

quence Vτ = [iτ1 , . . . , i
τ
n]

1. At test time, the parameters are

1For simplicity we assumed that all video sequences are of same length,

Algorithm 2 Learning to Adapt for Stereo

Require: Training set Ds, and hyper-parameters α, β, k, b

1: Initialize θ

2: while not done do

3: Db ∼ Ds ⊲ Sample a batch of sequences

4: for all Vτ ∈ Db do

5: θτ ← θ ⊲ Initialize model

6: Lτ ← 0 ⊲ Initialize accumulator

7: [is, . . . , is+k] ∼ V
τ ⊲ Sample k frames

8: for t← s, . . . , s+ k − 1 do

9: θτ ← θτ − α∇θτLu(θ
τ , it) ⊲ Adaptation

10: Lτ ← Lτ + Ls(θ
τ , it+1) ⊲ Evaluation

11: θ ← θ − β∇θ

∑
Vτ∈Db L

τ ⊲ Optimization

continuously adapted to the sequence Vτ in an unsupervised

manner according to Eq. 1. At training time, we mimic the

same adaptation process on training sequences and evaluate

the performance of the model after each adaptation step on

the subsequent frame. To measure the performance, we rely

on a supervised loss function Ls (e.g., L1 or L2 regression).

This procedure for a single sequence Vτ is given in Alg. 1.

During training we perform this adaptation on a super-

vised training set of video sequences Ds (e.g., a set of ren-

dered synthetic video sequences). The final objective of our

problem is to maximise the measured performance across

all frames and all sequences in Ds. This can be written in a

compact form as:

min
θ

∑

Vτ∈Ds

n−1∑

t=1

Ls(θ
τ
t , i

τ
t+1) , (3)

where θτt is obtained sequentially through updates as de-

tailed in Alg. 1.

Note that this formula extends Eq. 2 (MAML) to the con-

tinuous and unsupervised adaptation scenario. Contrary to

Eq. 2, we use two different loss functions: 1) an unsuper-

vised loss (Lu) to adapt a model to a video sequence; and

2) a supervised loss (Ls) for the optimization of the set of

parameters θ. We make this distinction to mimic the test

time behaviour. Specifically, Lu (i.e., some form of unsu-

pervised loss function) will be used at test time, while Ls

can use all the available annotations of the training set for

optimization. Our intuition is that by using two different

loss functions, θ can be optimized such that it is better suited

to be adapted without supervision (i.e., by Lu), while the

performance is measured with respect to the ground truth

(i.e., by Ls).

Note that optimizing Eq. 3 on complete video sequences

would be infeasible for long video sequences as the mem-

ory requirement grows linearly with n. To alleviate this, we

but this is not a necessity.
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Figure 2. Representation of one iteration of meta-learning of network parameters θ using a batch of b sequences and sampling k frames from

each. We represent loss computation steps with hexagons and gradient descent steps with colored arrows. Blue and orange arrows denote

adaptation steps and meta-learning steps, respectively. Starting from an initial set of parameters θ, the network is adapted independently on

each sequence using loss function Lu. The adapted models are evaluated on the following frame of each sequence using loss function Ls.

Finally, the initial parameters θ are updated via a gradient descent to minimize the sum of loss functions obtained by all evaluated models.

approximate it by optimizing over batches of sequences of k

randomly sampled consecutive frames. Our meta-learning

algorithm is detailed in Alg. 2. After sampling a batch of se-

quences (line 3) and k random frames from each sequence

(line 7), we perform unsupervised adaptation on the current

frame (line 9) and measure the effectiveness of this update

on the following frame (line 10). This process is repeated

for k frames. Finally, we optimize the base model param-

eters θ to minimize the sum of the supervised losses com-

puted across all the sequences and all the frames (line 11).

Here, α and β are the two learning rates used for online

adaptation and for meta training, respectively. In Fig. 2, we

illustrate one optimization iteration of the network parame-

ters θ using a batch of b sequences and k frames from each.

By optimizing Eq. 3 we are able to learn a base parameter

configuration θ suited for adaptation. However, the use of

an imperfect unsupervised loss function (Lu) for adaptation

introduces mistakes in the optimization process that may

have an adverse effect on the overall algorithm. To alleviate

this issue, we introduce a mechanism to learn to recognize

the noise (or mistakes) in the unsupervised loss estimation

which can then be masked effectively.

3.2. Confidence Weighted Adaptation

Unsupervised loss functions for dense disparity estima-

tion often compute some form of pixel-wise error map and

minimize over the average mistake. Unfortunately, this pro-

cess is not perfect and usually introduces errors in the op-

timization process. This may result in sub-optimal perfor-

mance when compared to the use of supervised loss func-

tions. For example, the left-right re-projection loss pro-

posed in [7] is well-known to produce mistakes in occluded

areas and reflective surfaces. These mistakes are not due

to bad predictions by the disparity estimation model, but

instead are due to differences between the left and right

frames. Ideally, we would like to have a confidence function

Weighting Network

Reprojection Loss

Network

Figure 3. Schematic representation of our weighted adaptation for

a single stereo frame using an unsupervised re-projection based

loss function Lu (bright colors indicate higher values). The system

takes a stereo-pair (it) and computes a disparity map as well as a

re-projection loss (εt). This loss is then weighted according to Wt

effectively masking the mistakes.

to detect erroneous estimations of this loss such that they

can be effectively masked. However, training such a confi-

dence function might be difficult since there is no easy pro-

cedure to obtain ground-truth annotations for this task. We

propose to avoid explicit supervised training, and instead,

automatically learn to detect noise in the loss estimations

by incorporating this new objective into our meta-learning

formulation.

In particular, we propose to learn a small CNN that takes

a pixel-wise error map estimated by Lu as an input and pro-

duces a tensor W as an output, which has the same shape as

the input and its elements are between 0 and 1. This output

can be interpreted as a per pixel confidence on the reliability

of the loss estimation with 1 corresponding to high reliabil-

ity. We can now mask out potentially erroneous estimations

by multiplying the loss values by their corresponding con-
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fidence values. The result is a cleaner measurement of the

loss function that reduces detrimental weight updates due

to incorrect loss values. The idea of masking or weighting

the contribution of single examples in the presence of noise

or class imbalance in the labels has been previously stud-

ied for supervised classification in [11, 24]. In our case, we

transpose the similar idea to pixel-wise loss, estimated for

a dense regression task and directly predict a dense confi-

dence map.

Let W = F(η, ε) be the mask produced by the re-

weighting network parametrized by η and ε = Lu(θ, i) be

the estimated pixel-wise error map computed on the predic-

tion of the disparity model with parameter θ on stereo frame

i. We normalize the elements of W by dividing each one of

them by the number of elements in W . Now, by modifying

Eq. 1, the final weighted adaptation formula can be written

as:

θ̃t ← θ̃t−1 − α∇
θ̃

(
Wt ⊙ Lu(θ̃t−1, it)

)
,

Wt = F(η,Lu(θ̃t−1, it)) .
(4)

where θ̃0 = θ and ⊙ indicating the element-wise product

between the matrices. Note that, the dimension of θ̃ is the

same as that of θ, however we denote it differently to high-

light the fact that θ̃ depends on both the base model (θ) as

well as the re-weighting network (η).

In Fig. 3, we show a schematic representation of our pro-

posed weighted adaptation computed from a single stereo

input frame it. On the bottom right corner we give a vi-

sualization of the error map produced by an unsupervised

re-projection loss Lu, while the top right corner shows a

possible confidence mask Wt. In this example the weight-

ing network is masking errors due to occlusions (e.g., on the

left side of the car) and due to reflections (e.g., the puddles

on the road).

Since supervision is not available for W , we indirectly

train η by incorporating Eq. 4 inside the meta-learning ob-

jective described in Eq. 3. The final objective of our com-

plete system becomes:

min
θ,η

∑

Vτ∈Ds

n−1∑

t=1

Ls(θ̃
τ
t , i

τ
t ) . (5)

Here, θ̃τt are the parameters of the model updated according

to the weighted unsupervised loss function on sequence Vτ .

As such it depends on both η and θ according to Eq. 4. The

whole network can be trained end-to-end with the only su-

pervision coming from the depth annotations used to com-

pute Ls. Both θ and η are tuned to maximize the network

performances after few steps of optimization as measured

by Ls. By optimizing a single objective function we are

able to learn the parameters (η) of the weighting network,

and a set of base weights for the disparity estimation model

(θ) which allow for fast adaptation.

4. Related Work

Machine Learning for Stereo. Mayer et al. [15], pro-

posed the first end-to-end stereo architecture that, despite

not having achieved state-of-the-art accuracy, initiated a

huge shift in stereo literature towards CNN based mod-

els. More recent proposals [13, 20, 14, 2, 12] have quickly

reached top performance on the challenging KITTI bench-

marks by deploying 3D convolution [13], two-stage refine-

ment [20] and pyramidal elaboration [2]. All these works

share the same training protocol. Specifically, the network

is first pretrained on the large and perfectly annotated syn-

thetic FlyingThings3D dataset [15] and then fine tuned on

the smaller KITTI training sets.

Unsupervised Adaptation for Stereo. Tonioni et al. [29]

highlight how machine learning models for stereo are data

dependent and, if exposed to environments different from

the ones observed during training, will suffer from a severe

loss in performance. To overcome this problem they intro-

duce an unsupervised way of adapting networks to new do-

mains by deploying traditional stereo algorithms and confi-

dence measures. Pang et al. [21] achieve the same objective

by an iterative optimization of predictions obtained at mul-

tiple resolutions, while many recent works [35, 10, 33, 22]

warp different views according to the predicted disparity

and minimize the re-projection error.

Recently, the adaptation problem has also been ad-

dressed through an online learning perspective focusing on

inference speed [30]. On a related topic, Zhong et al. [34]

propose to use video sequences to train a deep network on-

line from random initialization. Moreover, they employ a

LSTM in their model to leverage temporal information dur-

ing the prediction. Similarly to [30, 34], we constantly train

our network when deployed on unseen environments, but

we additionally propose to learn a good set of initial weights

and a confidence function for the loss function that will im-

prove the adaptation process.

Meta Learning. Meta-learning is a long-standing prob-

lem in machine learning [19, 28, 26] that tries to exploit

structures in data to learn more effective learning rules or al-

gorithms. Most of the recent developments in meta-learning

algorithms have focused on the task of few shot classifica-

tion [32, 27, 23], with few exceptions like [5, 18] extending

their models to simple function regression and reinforce-

ment learning. In [5], the authors propose to constrain the

learning rule for the model to be stochastic gradient descent

and update the initial weight configuration of a network to

make it more suited to learning new tasks. This simple

formulation has been recently extended to address online

adaptation in reinforcement learning using meta-learning to
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adapt to changing agents [3] or non-stationary and competi-

tive environments [1]. Our work builds on [5] by modifying

it to use structured regression, unsupervised loss functions

and temporal consistency during the update process.

5. Experiments

This section presents an evaluation of the quality of our

proposed adaptation method. Firstly, we lay out our eval-

uation setup in Sec. 5.1. Secondly, in Sec. 5.2, we pro-

vide qualitative and quantitative results for two pairs of do-

mains: 1) synthetic to real (i.e., training on synthetic data

and testing on real data from KITTI); and 2) synthetic to

synthetic (i.e., training on one synthetic dataset and testing

on a different synthetic domain). Finally, in Sec. 5.3 we re-

port qualitative results illustrating our confidence weighted

loss. We provide the code needed to implement our frame-

work to ease further research in this field 2.

5.1. Experimental Setup

Datasets. In our experimental evaluation we simulate re-

alistic test conditions, in which no data from the target do-

main is available. We therefore use training and testing data

sampled from two completely disjoint datasets. For the real

dataset, we use the 71 different sequences of the KITTI-raw

dataset [8] (denoted as KITTI) accounting for∼43K images

with sparse depth annotations provided by [31].

For the synthetic dataset, we have used the FlyingTh-

ings3D dataset [15] (shortened F3D) to perform an initial

training of the networks from random initialization. Then,

we use Synthia [25] as a synthetic dataset containing sce-

narios similar to KITTI. The dataset is composed of 50 dif-

ferent video sequences rendered in different seasons and

weather conditions for a total of ∼45K images. For this

dataset we scaled the image to half resolution to bring the

disparity into the same range as KITTI.

Finally, using the Carla simulator [4], we have rendered a

new dataset (referenced as Carla) composed of 25 different

video sequences, each being a thousand frames long, with

accurate ground truth data for each frame. Each video se-

quence is rendered in 15 different weather conditions to add

variance to the dataset. Resulting in a total of 375K frames.

During the rendering we set up the virtual cameras to match

the geometry of the real KITTI dataset (i.e., same baseline,

field of view and similar image resolution).

Network Architectures. For the experiments we have se-

lected the Dispnet-Corr1D [15] architecture (shortened to

Dispnet). For all the evaluation tests, we pretrain the net-

works on F3D to obtain a set of weights that will be used

as an initialization across all the other tests. We implement

the confidence function introduced in Sec. 3.2 as a small

2https://github.com/CVLAB-Unibo/Learning2AdaptForStereo

three layer fully convolutional CNN with batch normaliza-

tion. The network takes the re-projection error scaled to

quarter resolution as an input and produces an output at the

same resolution. The prediction is then scaled to full resolu-

tion using bilinear upsampling. More details on the network

architectures and on the hyper-parameters used to pretrain

them are reported in the supplementary material.

Evaluation Protocol. After an initial offline training,

we perform online adaptation and evaluate models on se-

quences of stereo frames. To test independent adaptations

for each sequence, we reset the disparity network to its

trained weight configuration at the beginning of each test

sequence. Then, for each frame, first, we measure the per-

formance of the current model and then we adapt it by a

single step of back-propagation and weight update accord-

ing to Eq. 1 before moving to the next frame. We do not

measure the performance on frames used for adaptation.

Metrics. We measure performance according to both av-

erage End Point Error (EPE) and percentage of pixels with

disparity error larger than 3 (D1-all). Firstly, we measure

both metrics independently for each frame to plot perfor-

mance as a function of the number of frames processed for

adaptation. Secondly, we average over each sequence and

finally over all the dataset.

Offline Training. After the initial pretraining on F3D we

fine tune the networks on a training set with our learning-to-

adapt framework Alg. 2, we use k = 3 consecutive frames

for each sample and set the learning rates α = 0.00001 and

β = 0.0001

Online Adaptation. We use the left-right re-projected un-

supervised loss [10] for the adaptation. Optimization is

performed using gradient descent with momentum, where

the momentum value is set to 0.9 and a learning rate set to

0.0001.

5.2. Results

We evaluate our learning-to-learn method between pairs

of datasets, one for training, and one for evaluation. We

consider two scenarios: 1) synthetic to real and 2) syn-

thetic to synthetic. We compare the results of our learning-

to-adapt framework (L2A), and the method trained using

a supervised L1 regression loss (SL). Methods perform-

ing unsupervised online adaptation at test time are indi-

cated by appending +Ad to the training method, and con-

fidence weighted adaptation by +WAd. It is worth noting

that SL+Ad corresponds to the adaptation method proposed

in [30].
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Method Training set D1-all (%) EPE ∆D1 ∆EPE

(a) SL - 9.43 1.62 - -

(b) SL+Ad[30] - 7.81 1.44 -1.62 -0.18

(c) SL Carla 7.46 1.48 - -

(d) SL+Ad[30] Carla 5.26 1.20 -2.20 -0.28

(e) SL Synthia 8.55 1.51 - -

(f) SL+Ad[30] Synthia 5.33 1.19 -3.22 -0.32

O
u
rs

(g) L2A Carla 8.41 1.51 - -

(h) L2A+WAd Carla 4.49 1.12 -3.92 -0.39

(i) L2A Synthia 8.22 1.50 - -

(j) L2A+WAd Synthia 4.65 1.14 -3.57 -0.36

(k) SL (ideal) KITTI 4.26 1.12 - -

Table 1. Performance on KITTI for the Dispnet network trained

according to different methods after initialization from F3D. It

can clearly be seen that online adaptation (+Ad/+WAd) provides

a significant improvement compared to when it is left out. The

best results are obtained when the training is achieved using our

L2A+WAd framework. Line (k) indicates an upper bound on how

well Dispnet can perform when fine tuned on a subset of samples

from the target domain. The last two columns indicate the per-

formance improvement with adaptation, and as it is evident in the

table, our L2A+WAd method obtains the largest increase in per-

formance with adaptation.

5.2.1 Synthetic to Real

The most interesting scenario is the one where training on

a synthetic domain is followed by testing on a real-life do-

main. Specifically, we train on Synthia or Carla and then

evaluate on the KITTI dataset.

The results for the Dispnet architecture are provided in

Tab. 1. Lines (a) to (f) report the performance when the net-

work weights are obtained in a standard way (using a super-

vised L1 loss function). As expected, the network performs

poorly when tested on a different domain with respect to the

one it was trained on - lines (a, c, e). The use of adaptation

for this setup provides a significant improvement - lines (b,

d, f) - further motivating the need to adapt to a new domain.

The two rows (h) and (j) report results obtained by learn-

ing to adapt on Carla or Synthia using the L2A+WAd

framework. Our proposed framework clearly outperforms

the baseline methods for both training datasets. Compar-

ing lines (h) and (d) clearly shows that our training pro-

cess is able to learn a model which is better suited for con-

tinuous adaptation. The same conclusions hold even for

the results with Synthia (lines (j) and (f)). In the last two

columns we can observe the relative improvement provided

by adaptation for each method. In these results, it is ev-

ident that our L2A+WAd framework provides the largest

increase in accuracy when performing adaptation. Lastly,

in line (k), we provide the performance of Dispnet obtained

in the ideal scenario where samples from the target domains

are available (i.e., KITTI2012 and KITTI2015 training sets)

and used to fine tune the base model with a supervised L1

regression loss. Although having access to such samples

0 50 100 150 200 250 300 350 400 450 500
Adaptation steps

2%
3%
4%
5%
6%
7%
8%
9%

10%
11%

D1
-A

ll

SL L2A SL+Ad. L2A+WAd.

Figure 4. Average D1-all error with respect to the number of adap-

tation steps performed on the KITTI database by a Dispnet net-

work trained according to supervised learning (SL) or our learning

to adapt framework (L2A).

Method Training Set
Ad. Unsupervised Ad. Supervised

D1-all (%) EPE D1-all (%) EPE

(a) SL+Ad[30] - 26.56 3.96 15.60 2.24

(b) SL+Ad[30] Carla 25.07 3.62 13.89 1.97

(c) L2A+Ad Carla 22.69 3.08 12.01 1.80

(d) L2A+WAd Carla 21.07 2.90 ✗ ✗

Table 2. Comparison of the training methods when evaluated on

sequences from Synthia. It can be seen that the best performing

training method is L2A+WAd. We also provide results for when

we use a L1 supervised adaptation loss. Best results in bold.

would defeat the purpose of our approach, the result listed

here ultimately serves as an upper bound on the attainable

performance. As shown, our L2A+WAd framework obtains

competitive results.

Adaptation Performance Over Time: To further high-

light the difference of behaviour between models trained

to regress and those trained to adapt, we plot the average

D1-all error achieved by Dispnet on KITTI as a function of

the number of adaptation steps in Fig. 4. The vertical axis

represents the average D1-all error of the kth frame in all of

the sequences in KITTI. Comparing the methods with and

without online adaptation, it is clear that in both cases, adap-

tation drastically improves the performance. The compari-

son between SL+Ad (green line) and L2A+WAd (red line)

shows how quickly our method adapts to the given video

sequence. The poor results of L2A can easily be explained

since our formulation never explicitly optimizes the base

model for regression. Instead it optimizes the network to

quickly learn-to-adapt, therefore the base model results can

be sub-optimal, providing the performance can be improved

in a few adaptation steps.
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5.2.2 Synthetic to Synthetic

Here, we perform a more controlled synthetic-to-synthetic

evaluation where we can measure the difference in perfor-

mance more explicitly thanks to the availability of dense

and accurate ground truth labels. The aim of the follow-

ing series of tests will be to quantify the performance of

the two key aspects of the learning-to-adapt framework,

namely, learning to adapt through meta-learning and learn-

ing to weight noisy loss estimation. To further prove the

generality of our learning to adapt formulation, we also pro-

vide results when the networks are trained to perform online

adaptation using a supervised L1 loss (i.e., Lu ≡ Ls).

For these tests, we again use Dispnet trained on Carla

but tested on all the sequences of the full Synthia dataset.

Specifically, to show that we can adapt using different loss

functions, we train for both unsupervised and supervised

adaptation3, and evaluate the performance of the following

training scenarios: (a) Using the initial model trained using

F3D; (b) Training on Carla using a supervised L1 loss; (c)

Using the learning-to-adapt framework without confidence

weighted loss; (d) Using the learning-to-adapt framework

with confidence weighted loss.

We report the results in Tab. 2, where it can be seen that

explicitly training Dispnet to adapt using our learning-to-

learn formulation (c), allows the network to exploit the on-

line adaptation and greatly improve the performance both in

the unsupervised and supervised adaptation setups. Finally,

it can also be seen that weighting the unsupervised loss val-

ues results in superior performance (d). For this test set up,

the results clearly demonstrate how our formulation is able

to learn a weight configuration that is more inclined to be

adapted to a new environment.

5.3. Confidence Weighted Loss Function

In Fig. 5, we show a visualization of the confidence

masks and weighted errors optimized by our confidence

guided adaptation loss described in Sec. 3.2. A quantita-

tive evaluation is not possible due to the unavailability of

the corresponding ground-truth data and obtaining it is not

straightforward. The predicted confidence maps effectively

mask out occluded regions in the image while keeping the

useful error signals in the rest of the image (low confidence

areas are encoded as dark pixels). Errors on occluded re-

gions, e.g., to the left of the traffic sign in the left column

or to the left of the car in the right column, are effectively

masked out, producing a cleaner error estimation that will

improve adaptation performances. We wish to highlight that

the confidence network has been trained without any direct

supervision and only on Carla, nevertheless, it seems to be

able to generalize well to KITTI. We believe this ability to

3In online adaptation we use the L1 loss between the predicted dispar-

ity and the ground truth annotations for each stereo pair.

Carla KITTI

(a) Left RGB Frame

(b) Disparity Predicted

(c) Reprojection Error (ε)

(d) Confidence Mask (W )

(e) W ⊙ ε

Figure 5. Visualization of the errors optimized to achieve unsuper-

vised adaptation with reprojection based loss function and using

our weighting function. Brighter colours encode higher values.

generalize is mainly due to the avoidance of working di-

rectly with RGB inputs, which inevitably change drastically

between datasets. Instead, the confidence network relies on

the estimated re-projection error, which is more consistent

across different environments.

6. Discussion

We have introduced a learning to adapt framework for

stereo and demonstrated how the performance of deep

stereo networks can be improved by explicitly training the

network to be suited for adaptation. Moreover, we are

able to automatically learn an implicit confidence mea-

sure, for noisy unsupervised error estimation, directly in

our learning-to-adapt framework. Specifically, we showed

the ability of a Dispnet [15] network to adapt to a real and

synthetic domain, when training is performed on a different

synthetic domain. In this setting, we obtained increased per-

formance when applying our learning-to-adapt formulation.

In future, we plan to test this framework on more complex

network architectures (e.g., [13, 34]) and to extend it to use

different unsupervised loss functions for online adaptation

(e.g., the improved re-projection loss described in [33]).
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