
Learning monocular depth estimation infusing traditional stereo knowledge

Fabio Tosi, Filippo Aleotti, Matteo Poggi, Stefano Mattoccia

Department of Computer Science and Engineering (DISI)

University of Bologna, Italy

{fabio.tosi5, filippo.aleotti2, m.poggi, stefano.mattoccia }@unibo.it

Abstract

Depth estimation from a single image represents a fas-

cinating, yet challenging problem with countless applica-

tions. Recent works proved that this task could be learned

without direct supervision from ground truth labels lever-

aging image synthesis on sequences or stereo pairs. Focus-

ing on this second case, in this paper we leverage stereo

matching in order to improve monocular depth estimation.

To this aim we propose monoResMatch, a novel deep ar-

chitecture designed to infer depth from a single input image

by synthesizing features from a different point of view, hor-

izontally aligned with the input image, performing stereo

matching between the two cues. In contrast to previous

works sharing this rationale, our network is the first trained

end-to-end from scratch. Moreover, we show how obtaining

proxy ground truth annotation through traditional stereo

algorithms, such as Semi-Global Matching, enables more

accurate monocular depth estimation still countering the

need for expensive depth labels by keeping a self-supervised

approach. Exhaustive experimental results prove how

the synergy between i) the proposed monoResMatch ar-

chitecture and ii) proxy-supervision attains state-of-the-

art for self-supervised monocular depth estimation. The

code is publicly available at https://github.com/

fabiotosi92/monoResMatch-Tensorflow .

1. Introduction

Inferring accurate depth information of a sensed scene

is paramount for several applications such as autonomous

driving, augmented reality and robotics. Although tech-

nologies such as LiDAR and time-of-flight are quite pop-

ular, obtaining depth from images is often the preferred

choice. Compared to other sensors, those based on standard

cameras potentially have several advantages: they are inex-

pensive, have a higher resolution and are suited for almost

any environment. In this field, stereo is the preferred choice

to infer disparity (i.e., the inverse of depth) from two or

more images sensing the same area from different points of

Figure 1. Overview of the proposed depth-from-mono solution.

Input image from KITTI dataset (top). Estimated depth map by

our monoResMatch (bottom).

view and Semi-Global Matching (SGM) [15] is a popular,

yet effective algorithm to accomplish this task. However,

inferring depth from a single image is particularly attractive

because it does not require a stereo rig and overcomes some

intrinsic limitations of a binocular setup (e.g., occlusions).

On the other hand, it is an extremely challenging task due

to the ill-posed nature of the problem. Nonetheless, deep

learning enabled to achieve outstanding results for this task

[7], although the gap with state-of-the-art stereo solutions

is still huge [3, 24]. Self-supervised learning paradigms for

monocular depth estimation [11, 63, 32, 44, 40, 58] became

very popular to overcome the need for costly ground truth

annotations, usually obtained employing expensive active

sensors and human post-processing [10, 35, 52]. Following

this strategy, Convolutional Neural Networks (CNNs) can

be trained to tackle depth estimation as an image synthe-

sis task from stereo pairs or monocular sequences [11, 63].

For this purpose, using stereo pairs rather than monocular

sequences as supervision turned out to be more effective

according to the literature. Although the former strategy is

more constrained since a stereo setup is necessary for train-

ing, it does neither require to infer relative pose between

adjacent frames in a sequence nor to segment moving ob-

jects in the scene. Moreover, a stereo setup does not require

19799



camera motion, conversely to a monocular setup, to provide

meaningful supervision. Other means for self-supervision

consist into distilling proxy labels in place of more expen-

sive annotations for various tasks [49, 51, 28, 33, 20, 13].

In this paper, we propose monocular Residual Matching

(shorten, monoResMatch), a novel end-to-end architecture

trained to estimate depth from a monocular image leverag-

ing a virtual stereo setup. In the first stage, we map input

image into a features space, then we use such representation

to estimate a first depth outcome and consequently synthe-

size features aligned with a virtual right image. Finally, the

last refinement module performs stereo matching between

the real and synthesized representations. Differently from

other frameworks following a similar rationale [30] that

combines heterogeneous networks for synthesis [55] and

stereo [34], we use a single architecture trained in end-to-

end fashion yielding a notable accuracy improvement com-

pared to the existing solutions. Moreover, we leverage tra-

ditional knowledge from stereo to obtain accurate proxy la-

bels in order to improve monocular depth estimation super-

vised by stereo pairs. We will show that, despite the pres-

ence of outliers in the produced labels, training according to

this paradigm results in superior accuracy compared to im-

age warping approaches for self-supervision. Experimental

results on the KITTI raw dataset [9] will show that the syn-

ergy between the two aforementioned key components of

our pipeline enables to achieve state-of-the-art results com-

pared to other self-supervised frameworks for monocular

depth estimation not requiring any ground truth annotation.

Figure 1 shows an overview of our framework, depicting an

input frame and the outcome of monoResMatch.

2. Related Work

In this section, we review the literature relevant to our

work concerned with stereo/monocular depth estimation

and proxy label distillation.

Stereo depth estimation. Most conventional dense

stereo algorithms rely on some or all the well-known four

steps thoroughly described in [46]. In this field, SGM [15]

stood out for the excellent trade-off between accuracy and

efficiency thus becoming very popular. Z̆bontar and Le-

Cun [61] were the first to apply deep learning to stereo vi-

sion replacing the conventional matching costs calculation

with a siamese CNN network trained to predict the similar-

ity between patches. Luo et al. [29] cast the correspondence

problem as a multi-class classification task, obtaining better

results. Mayer et al. [34] backed away from the previous

approaches and proposed an end-to-end trainable network

called DispNetC able to infer disparity directly from im-

ages. While DispNetC applies a 1-D correlation to mimic

the cost volume, GCNet by Kendall et al. [17] exploited 3-

D convolutions over a 4-D volume to obtain matching costs

and finally applied a differentiable version of argmin to se-

lect the best disparity along this volume. Other works fol-

lowed these two main strategies, building more complex

architectures starting from DispNetC [37, 25, 57, 47] or

GCNet [3, 26, 18] respectively. The domain shift issue af-

fecting these architectures (e.g. synthetic to real) has been

addressed in either offline [49] or online [50] fashion, or

greatly reduced by guiding them with external depth mea-

surements (e.g. Lidar) [42].

Monocular depth estimation. Before the deep learn-

ing era, some works tackled depth-from-mono with MRF

[45] or boosted classifiers [22]. However, with the in-

creasing availability of ground truth depth data, supervised

approaches based on CNNs [23, 27, 56, 7] rapidly out-

performed previous techniques. An attractive trend con-

cerns the possibility of learning depth-from-mono in a self-

supervised manner, avoiding the need for expensive ground

truth depth labels that are replaced by multiple views of the

sensed scene. Then, supervision signals can be obtained by

image synthesis according to the estimated depth, camera

pose or both. In general, acquiring images from a stereo

camera enables a more effective training than using a sin-

gle, moving camera, since the pose between frames known.

Concerning stereo supervision, Garg et al. [8] first followed

this approach, while Godard et al. [11] introduced spatial

transform network [16] and a left-right consistency loss.

Other methods improved efficiency [40], deploying a pyra-

midal architecture, and accuracy by simulating a trinocular

setup [44] or including joint semantic segmentation [60]. In

[38], a strategy was proposed to reduce further the energy

efficiency of [40] leveraging fixed-point quantization. The

semi-supervised framework by Kuznietsov et al. [21] com-

bined stereo supervision with sparse LiDAR measurements.

The work by Zhou et al. [63] represents the first attempt to

supervise a depth-from-mono framework with single cam-

era sequences. This approach was improved including ad-

ditional cues such as point-cloud alignment [32], differen-

tiable DVO [53] and multi-task learning [64]. Zhan et al.

[62] combined the two supervision approaches outlined so

far deploying stereo sequences. Another class of methods

[2, 1, 5] applied a generative adversarial paradigm to the

monocular scenario.

Finally, relevant to our work is Single View Stereo

matching (SVS) [30], processing a single image to obtain a

second synthetic view using Deep3D [55] and then comput-

ing a disparity map between the two using DispNetC [34].

However, these two architectures are trained independently.

Moreover, DispNetC is supervised with ground truth labels

from synthetic [34] and real domains [35]. Differently, the

framework we are going to introduce requires no ground

truth at all and is elegantly trained in an end-to-end manner,

outperforming SVS by a notable margin.

Proxy labels distillation. Since for most tasks ground

truth labels are difficult and expensive to source, some
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Figure 2. Illustration of our monoResMatch architecture. Given one input image, the multi-scale feature extractor (in red) generates high-

level representations in the first stage. The initial disparity estimator (in blue) yields multi-scale disparity maps aligned with the left and

right frames of a stereo pair. The disparity refinement module (in orange) is in charge of refining the initial left disparity relying on features

computed in the first stage, disparities generated in the second stage, matching costs between high-dimensional features F 0

L extracted from

input and synthetic F̃
0

R from a virtual right viewpoint, together with absolute error eL between F
0

L and back-warped F̃
0

R (see Section 3.3).

works recently enquired about the possibility to replace

them with easier to obtain proxy labels. Tonioni et al. [49]

proposed to adapt deep stereo networks to unseen environ-

ments leveraging traditional stereo algorithms and confi-

dence measures [43], Tosi et al. [51] learned confidence es-

timation selecting positive and negative matches by means

of traditional confidence measures, Makansi et al. [33] and

Liu et al. [28] generated proxy labels for training optical

flow networks using conventional methods. Specifically rel-

evant to monocular depth estimation are the works proposed

by Yang et al. [58], using stereo visual odometry to train

monocular depth estimation, by Klodt and Vedaldi [20],

leveraging structure from motion algorithms and by Guo et

al. [13], obtaining labels from a deep network trained with

supervision to infer disparity maps from stereo pairs.

3. Monocular Residual Matching

In this section, we describe in detail the proposed monoc-

ular Residual Matching (monoResMatch) architecture de-

signed to infer accurate and dense depth estimation in a

self-supervised manner from a single image. Figure 2 re-

caps the three key components of our network. First, a

multi-scale feature extractor takes as input a single raw im-

age and computes deep learnable representations at differ-

ent scales from quarter resolution F 2

L to full-resolution F 0

L

in order to toughen the network to ambiguities in photomet-

ric appearance. Second, deep high-dimensional features at

input image resolution are processed to estimate, through

an hourglass structure with skip-connections, multi-scale

inverse depth (i.e., disparity) maps aligned with the input

and a virtual right view learned during training. By doing

so, our network learns to emulate a binocular setup, thus al-

lowing further processing in the stereo domain [30]. Third,

a disparity refinement stage estimates residual corrections

to the initial disparity. In particular, we use deep features

from the first stage and back-warped features of the virtual

right image to construct a cost volume that stores the stereo

matching costs using a correlation layer [34].

Our entire architecture is trained from scratch in an end-

to-end manner, while SVS [30] by training its two main

components, Deep3D [55] and DispNetC [34], on image

synthesis and disparity estimation tasks separately (with

the latter requiring additional, supervised depth labels from

synthetic imagery [34]).

Extensive experimental results will prove that monoRes-

Match enables much more accurate estimations compared

to SVS and other state-of-the-art approaches.

3.1. Multi­scale feature extractor

Inspired by [25], given one input image I we generate

deep representations using layers of convolutional filters. In

particular, the first 2-stride layer convolves I with 64 learn-

able filters of size 7× 7 followed by a second 2-stride con-

volutional layer composed of 128 filters with kernel size

4× 4. Two deconvolutional blocks, with stride 2 and 4, are

deployed to upsample features from lower-spatial resolution

to full input resolution producing 32 features maps each. A

1×1 convolutional layer with stride 1 further processes up-

sampled representations.

3.2. Initial Disparity Estimation

Given the features extracted by the first module, this

component is in charge of estimating an initial disparity

map. In particular, an encoder-decoder architecture inspired

by DispNet processes deep features at quarter resolution

from the multi-scale feature extractor (i.e., conv2) and out-

puts disparity maps at different scales, specifically from 1

128

to full-resolution. Each down-sampling module, composed

of two convolutional blocks with stride 2 and 1 each, pro-

duces a growing number of extracted features, respectively

64, 128, 256, 512, 1024, and each convolutional layer uses

3 × 3 kernels followed by ReLU non-linearities. Differ-

ently from DispNet, which computes matching costs in the

early part of this stage using features from the left and right

images of a stereo pair, our architecture lacks such neces-
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sary information required to compute a cost volume since

it processes a single input image. Thus, no 1-D correla-

tion layer can be imposed to encode geometrical constraints

in this stage of our network. Then, upsampling modules

are deployed to enrich feature representations through skip-

connections and to extract two disparity maps, aligned re-

spectively with the input frame and a virtual viewpoint on

its right as in [11]. This process is carried out at each scale

using 1-stride convolutional layers with kernel size 3× 3.

3.3. Disparity Refinement

Given an initial estimate of the disparity at each scale

obtained in the second part of the network, often character-

ized by errors at depth discontinuities and occluded regions,

this stage predicts corresponding multi-scale residual sig-

nals [14] by a few stacked nonlinear layers that are then

used to compute the final left-view aligned disparity map.

This strategy allows us to simplify the end-to-end learning

process of the entire network. Moreover, motivated by [30],

we believe that geometrical constraints can play a central

role in boosting the final depth accuracy. For this reason,

we embed matching costs in feature space computed em-

ploying a horizontal correlation layer, typically deployed in

deep stereo algorithms. To this end, we rely on the right-

view disparity map computed previously to generate right-

view features F̃ 0

R from the left ones F 0

L using a differen-

tiable bilinear sampler [16]. The network is also fed with

error eL, i.e. the absolute difference between left and vir-

tual right features at input resolution, with the latter back-

warped at the same coordinates of the former, as in [24].

We point out once more that, differently from [30],

our architecture produces both a synthetic right view, i.e.

its features representation, and computes the final dispar-

ity map following stereo rationale. This makes monoRes-

Match a single end-to-end architecture, effectively perform-

ing stereo out of a single input view rather than the combi-

nation of two models (i.e., Deep3D [55] and DispNetC [34]

for the two tasks outlined) trained independently as in [31].

Moreover, exhaustive experiments will highlight the supe-

rior accuracy achieved by our fully self-supervised, end-to-

end approach.

3.4. Training Loss

In order to train our multi-stage architecture, we de-

fine the total loss as a sum of two main contributions, a

Linit term from the initial disparity estimation module and

a Lref term from the disparity refinement stage. Follow-

ing [12], we embrace the idea to up-sample the predicted

low-resolution disparity maps to the full input resolution

and then compute the corresponding signals. This simple

strategy is designed to force the inverse depth estimation

to reproduce the same objective at each scale, thus leading

to much better outcomes. In particular, we obtain the final

training loss as:

Ltotal =

ni
∑

s=1

Linit +

nr
∑

s=1

Lref (1)

where s indicates the output resolution, ni and nr the

numbers of considered scales during loss computation,

while Linit and Lref are formalised as:

Linit =αap(L
l
ap + Lr

ap) + αds(L
l
ds + Lr

ds)

+ αps(L
l
ps + Lr

ps)
(2)

Lref = αapL
l
ap + αdsL

l
ds + αpsL

l
ps (3)

where Lap is an image reconstruction loss, Lds is a

smoothness term and Lps is a proxy-supervised loss. Each

term contains both the left and right components for the ini-

tial disparity estimator, and the left components only for the

refinement stage.

Image reconstruction loss. A linear combination of l1
loss and structural similarity measure (SSIM) [54] encodes

the quality of the reconstructed image Ĩ with respect to the

original image I:

Lap =
1

N

∑

i,j

α
1− SSIM(Iij , Îij)

2
+ (1− α)|Iij − Îij |

(4)

Following [11], we set α = 0.85 and use a SSIM with

3× 3 block filter.

Disparity smoothness loss. This cost encourages the

predicted disparity to be locally smooth. Disparity gradients

are weighted by an edge-aware term from image domain:

Lds =
1

N

∑

i,j

|∂xdij |e
−|∂xIij | + |∂ydij |e

−|∂yIij | (5)

Proxy-supervised loss. Given the proxy disparity maps

obtained by a conventional stereo algorithm, detailed in

Section 4, we coach the network using reverse Huber

(berHu) loss [36]:

Lps =
1

N

∑

i,j

berHu(dij , d
st
ij , c) (6)

berHu(dij , d
st
ij , c) =

{

|dij − dstij | if |dij − dstij | ≤ c
|dij−dst

ij |
2−c2

2c
otherwise

(7)

where dij and dstij are, respectively, the predicted dispar-

ity and the proxy annotation for pixel at the coordinates i, j

of the image, while c is adaptively set as αmaxi,j |dij−dstij |,
with α = 0.2.
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(a) (b) (c)
Figure 3. Examples of proxy labels computed by SGM. Given the source image (a), the network exploits the SGM supervision filtered with

left-right consistency check (b) in order to train monoResMatch to estimate the final disparity map (c). No post-processing from [11] is

performed on (c) in this example.

4. Proxy labels distillation

To generate accurate proxy labels, we use the popular

SGM algorithm [15], a fast yet effective solution to in-

fer depth from a rectified stereo pair without training. In

our implementation, initial matching costs are computed for

each pixel p and disparity hypothesis d applying a 9×7 cen-

sus transform and computing Hamming distance on pixel

strings. Then, scanline optimization along eight different

paths refines the initial cost volume as follows:

E(p, d) =C(p, d) + min
j>1

[C(p′, d), C(p′, d± 1) + P1,

C(p′, d± q) + P2]− min
k<Dmax

(C(p′, k))

(8)

being C(p, d) the matching cost for pixel p and hypothesis

d, P1 and P2 two smoothness penalties, discouraging dis-

parity gaps between p and previous pixel p′ along the scan-

line path. The final disparity map D is obtained applying a

winner-takes-all strategy to each pixel of the reference im-

age. Although SGM generates quite accurate disparity la-

bels, outliers may affect the training of a depth model neg-

atively, as noticed by Tonioni et al. [49]. They applied a

learned confidence measure [41] to filter out erroneous la-

bels when computing the loss. Differently, we run a non-

learning based left-right consistency check to detect out-

liers. Purposely, by extracting both disparity maps DL and

DR with SGM, respectively for the left and right images,

we apply the following criteria to invalidate (i.e., set to -1)

pixels having different disparities across the two maps:

D(p) =

{

D(p) if |DL(p)−DR(p−DL(p))| ≤ ε

−1 otherwise
(9)

The left-right consistency check is a simple strategy

that removes many wrong disparity assignments, mostly

near depth discontinuities, without needing any training that

would be required by [49]. Therefore, our proxy labels gen-

eration process does not rely at all on ground truth depth

labels. Figure 3 shows an example of distilled labels (b),

where black pixels correspond to outliers filtered out by

left-right consistency. Although some of them persist, we

can notice how they do not affect the final prediction by the

trained network and how our proposal can recover accurate

disparity values in occluded regions on the left side of the

image (c).

5. Experimental results

In this section, we describe the datasets, implementation

details and then present exhaustive evaluations of monoRes-

Match on various training/testing configurations, showing

that our proposal consistently outperforms self-supervised

state-of-the-art approaches. As standard in this field, we as-

sess the performance of monocular depth estimation tech-

niques following the protocol by Eigen et al. [6], extract-

ing data from the KITTI [9] dataset, using sparse LiDAR

measurements as ground truth for evaluation. Additionally,

we also perform an exhaustive ablation study proving that

proxy supervision from SGM algorithm and effective ar-

chitectural choices enable our strategy to improve predicted

depth map accuracy by a large margin.

5.1. Datasets

For all our experiments we compute standard monocu-

lar metrics [6, 11]: Abs rel, Sq rel, RMSE and RMSE log

represent error measures while δ < ζ the percentage of pre-

dictions whose maximum between ratio and inverse ratio

with respect to the ground truth is lower than a threshold ζ.

Two main datasets are involved in our evaluation, that are

KITTI [9] and CityScapes [4].

KITTI. The KITTI stereo dataset [9] is a collection of

rectified stereo pairs made up of 61 scenes (containing about

42,382 stereo frames) mainly concerned with driving sce-

narios. Predominant image size is 1242 × 375 pixels. A

LiDAR device, mounted and calibrated in proximity to the

left camera, was deployed to measure depth information.

Following other works [6, 11], we divided the overall

dataset into two subsets, composed respectively of 29 and
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Lower is better Higher is better

Method Supervision Train set Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

Image SGM

Godard et al. [11] ResNet50 X K 0.128 1.038 5.355 0.223 0.833 0.939 0.972

Poggi et al. [44] ResNet50 X K 0.126 0.961 5.205 0.220 0.835 0.941 0.974

monoResMatch X K 0.116 0.986 5.098 0.214 0.847 0.939 0.972

monoResMatch X X K 0.111 0.867 4.714 0.199 0.864 0.954 0.979

Godard et al. [11] ResNet50 X CS,K 0.114 0.898 4.935 0.206 0.861 0.949 0.976

Poggi et al. [44] ResNet50 X CS,K 0.111 0.849 4.822 0.202 0.865 0.952 0.978

Godard et al. [11] ResNet50 X X CS,K 0.110 0.822 4.675 0.199 0.862 0.953 0.980

monoResMatch (no-refinement) X X CS,K 0.107 0.781 4.588 0.195 0.869 0.957 0.980

monoResMatch (no-corr) X X CS,K 0.104 0.766 4.553 0.192 0.875 0.958 0.980

monoResMatch (no-pp) X X CS,K 0.098 0.711 4.433 0.189 0.888 0.960 0.980

monoResMatch X X CS,K 0.096 0.673 4.351 0.184 0.890 0.961 0.981

Table 1. Ablation studies on the Eigen split [6], with maximum depth set to 80m. All networks run post-processing as in [11] unless

otherwise specified.

32 scenes. We used 697 frames belonging to the first group

for testing purposes and 22600 more taken from the second

for training. We refer to these subsets as Eigen split.

CityScapes. The CityScapes dataset [4] contains stereo

pairs concerning about 50 cities in Germany taken from a

moving vehicle in various weather conditions. It consists

of 22,973 stereo pairs with a shape of 2048 × 1024 pixels.

Since most of the images include the hood of the car, mostly

reflective and thus leading to wrong estimates, we discarded

the lower 20% of the frame before applying the random crop

during training [11].

5.2. Implementation details

Following the standard protocol in this field, we used

CityScapes followed by KITTI for training. We refer to

these two training sets as Cityscapes (CS) and Eigen KITTI

split (K) from now on. We implemented our architecture

using the TensorFlow framework, counting approximately

42.5 millions of parameters, summing variables from the

multi-scale feature extractor (0.51 M), the initial disparity

stage (41.4 M) and the refinement module (0.6 M). In the

experiments, we pre-trained monoResMatch on CS running

about 150k iteration using a batch size of 6 and random

crops of size 512× 256 on 1024× 512 resized images from

the original resolution. We used Adam optimizer [19] with

β1 = 0.9, β2 = 0.999 and ǫ = 10−8. We set the initial

learning rate to 10−4, manually halved after 100k and 120k

steps, then continuing until convergence. After the first pre-

initialisation procedure, we perform fine-tuning of the over-

all architecture on 22600 KITTI raw images from K. Specif-

ically, we run 300k steps using a batch size of 6 and extract-

ing random crops of size 640× 192 from resized images at

1280× 384 resolution. At this stage, we employed a learn-

ing rate of 10−4, halved after 180k and 240k iterations. We

fixed the hyper-parameters of the different loss components

to αap = 1, αds = 0.1 and αps = 1, while ni = 4 and

nr = 3. As in [11], data augmentation procedure has been

applied to both images from CS and K at training, in or-

der to increase the robustness of the network. At test time,

we post-process disparity as in [11, 44, 58]. Nevertheless,

we preliminary highlight that, differently from the strate-

gies mentioned above, effects such as disparity ramps on

the left border are effectively solved by simply picking ran-

dom crops on proxy disparity maps generated by SGM, as

clearly visible in Figure 3 (c).

Proxy supervision is obtained through SGM implemen-

tation from [48], which allows us to quickly generate dispar-

ity maps aligned with the left and right images for both CS

and K. We process such outputs using left-right consistency

check in order to reduce the numbers of outliers, as dis-

cussed in Section 4 using an ǫ of 1. We assess the accuracy

of our proxy generator on 200 high-quality disparity maps

from KITTI 2015 training dataset [35], measuring 96.1%
of pixels having disparity error smaller than 3. Compared

to Tonioni et al. [49], we register a negligible drop in accu-

racy from 99.6% reported in their paper. However, we do

not rely on any learning-based confidence estimator as they

do [41], so we maintain label distillation detached from the

need for ground truth as well. Since SGM runs over images

at full resolution while monoResMatch inputs are resized

to 1280 × 384 before extracting crops, we enforce a scal-

ing factor to SGM disparities given by 1280

W
, where W is

the original image width. Consequently, the depth map es-

timated by monoResMatch must be properly multiplied by
W

1280
at test time. The architecture is trained end-to-end on a

single Titan XP GPU without any stage-wise procedure and

infers depth maps in 0.16s per frame at test time, process-

ing images at KITTI resolution (i.e., about 1280×384 to be

compatible with monoResMatch downsampling factors).

5.3. Ablation study

In this section we examine the impact of i) proxy-

supervision from SGM and ii) the different components of

monoResMatch. The outcomes of these experiments, con-
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Lower is better Higher is better

Method Supervision Train set Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

Zou et al. [64] Seq CS,K 0.146 1.182 5.215 0.213 0.818 0.943 0.978

Mahjourian et al. [32] Seq CS,K 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Yin et al. [59] GeoNet ResNet50 Seq CS,K 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Wang et al. [53] Seq CS,K 0.148 1.187 5.496 0.226 0.812 0.938 0.975

Poggi et al. [40] PyD-Net (200) Stereo CS,K 0.146 1.291 5.907 0.245 0.801 0.926 0.967

Godard et al. [11] ResNet50 Stereo CS,K 0.114 0.898 4.935 0.206 0.861 0.949 0.976

Poggi et al. [44] 3Net ResNet50 Stereo CS,K 0.111 0.849 4.822 0.202 0.865 0.952 0.978

Pilzer et al. [39] (Teacher) Stereo CS,K 0.098 0.831 4.656 0.202 0.882 0.948 0.973

Yang et al. [58] Seq+Stereo Ko, Kr, Ko 0.097 0.734 4.442 0.187 0.888 0.958 0.980

monoResMatch Stereo CS,K 0.096 0.673 4.351 0.184 0.890 0.961 0.981

Table 2. Quantitative evaluation on the test set of KITTI dataset [9] using the split of Eigen et al. [6], maximum depth: 80m. Last four

entries include post-processing [11]. Ko, Kr , Ko are splits from K, defined in [58]. Best results are shown in bold.

ducted on the Eigen split, are collected in Table 1.

Proxy-supervised loss analysis. We train monodepth

framework by Godard et al. [11] from scratch adding our

proxy-loss, then we compare the obtained model with the

original one, as well as with the more effective strategy used

by 3Net [44]. We can observe that proxy-loss enables a

more accurate monodepth model (row 3) compared to [11],

moreover it also outperforms virtual trinocular supervision

proposed in [44], attaining better metrics with respect of

both, but δ < 1.25 for 3Net. Specifically, by recalling Fig-

ure 3, the proxy distillation couples well with a cropping

strategy, solving well-known issues for stereo supervision

such as disparity ramps on the left border. We refer to sup-

plementary material for additional qualitative examples.

Component analysis. Still referring to Table 1, we eval-

uate different configurations of our framework by ablating

the key modules peculiar to our architecture. First, we train

monoResMatch on K without proxy supervision (row 3)

to highlight that our architecture already outperforms [11]

(row 1). Training on CS+K with proxy labels, we can no-

tice how without any refinement module (no-refinement),

our framework already outperforms the proxy-supervised

ResNet50 model of Godard et al. [11]. Adding the dispar-

ity refinement component without encoding any matching

relationship (no-corr) enables small improvements, becom-

ing much larger on most metrics when a correlation layer is

introduced (no-pp) to process real and synthesized features

as to resemble stereo matching. Finally, post-processing as

in [11] (row 11) still ameliorates all scores, although the

larger contribution is given by the correlation-based refine-

ment module, as perceived by comparing no-refinement and

no-pp entries. Finally, by comparing rows 4 and 11 we can

also perceive the impact given by CS pretraining on our full

model.

5.4. Comparison with self­supervised frameworks

Having studied in detail the contribution of both

monoResMatch architecture and proxy supervision,

we compare our framework with state-of-the-art self-

supervised approaches for monocular depth estimation.

Table 2 collects results obtained evaluating different models

on the aforementioned Eigen split [6]. In this evaluation,

we consider only competitors trained without any super-

vision from ground truth labels (e.g., synthetic datasets

[34]) involved in any phase of the training process [30, 13].

We refer to methods using monocular supervision (Seq),

binocular (Stereo) or both (Seq+Stereo). Most methods are

trained on CS and K, except Yang et al. [58] that leverages

on different sub-splits of K. From the table, we can notice

that monoResMatch outperforms all of them significantly.

To compete with methods exploiting supervision from

dense synthetic ground truth [34], we run additional exper-

iments using very few annotated samples from KITTI as

in [31, 13], for a more fair comparison. Table 3 collects

the outcome of these experiments according to different de-

grees of supervision, in particular using accurate ground

truth labels from the KITTI 2015 training split (200-acrt)

or different amounts of samples from K with LiDAR mea-

surements, respectively 100, 200, 500 and 700 as proposed

in [31, 13], running only 5k iterations for each configura-

tion. We point out that monoResMatch, on direct compar-

isons to methods trained with the same amount of labeled

images, consistently achieves better scores, with rare ex-

ceptions. Moreover, we highlight in red for each metric the

best score among all the considered configurations, figur-

ing out that monoResMatch trained with 200-acrt plus 500

samples from K attains the best accuracy on all metrics.

This fact points out the high effectiveness of the proposed

architecture, able to outperform state-of-the-art techniques

[30, 13] trained with much more supervised data (i.e., more

than 30k stereo pairs from [34] and pre-trained weights

from ImageNet). Leveraging on the traditional SGM algo-

rithm instead of a deep stereo network as in [13] for proxy-

supervision ensures a faster and easier to handle training

procedure.

5.5. Performance on single view stereo estimation

Finally, we further compare monoResMatch directly

with Single View Stereo (SVS) by Luo et al. [30], being

both driven by the same rationale. We fine-tuned monoRes-
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Lower is better Higher is better

Method Supervision Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ < 1.252 δ < 1.253

200-acrt 100 200 500 700

Luo et al. [30] X 0.101 0.673 4.425 0.176 - - -

monoResMatch X 0.089 0.575 4.186 0.181 0.897 0.964 0.982

Luo et al. [30] X X 0.100 0.670 4.437 0.192 0.882 0.958 0.979

monoResMatch X X 0.096 0.573 3.950 0.168 0.897 0.968 0.987

Luo et al. [30] X X 0.094 0.635 4.275 0.179 0.889 0.964 0.984

monoResMatch X X 0.093 0.567 3.914 0.165 0.901 0.969 0.987

Luo et al. [30] X X 0.094 0.626 4.252 0.177 0.891 0.965 0.984

monoResMatch X X 0.095 0.567 3.942 0.166 0.899 0.969 0.987

Guo et al. [13] X 0.096 0.641 4.095 0.168 0.892 0.967 0.986

monoResMatch X 0.098 0.597 3.973 0.169 0.895 0.968 0.987

Table 3. Experimental results on the Eigen split [6], maximum depth: 80m. Comparison between methods supervised by few annotated

samples. Best results in direct comparisons are shown in bold, best overall scores are in red, consistently attained by monoResMatch.

Figure 4. Stereo evaluation of our depth-from-mono framework. From left to right the input image, the predicted depth and the errors with

respect to ground truth. The last line reports the color code used to display the seriousness of the shortcomings (same of [35])

Method D1-bg D1-fg D1-all

monodepth [11] 27.00 28.24 27.21

OCV-BM 24.29 30.13 25.27

SVS [30] 25.18 20.77 24.44

monoResMatch 22.10 19.81 21.72

Table 4. Quantitative results on the test set of the KITTI 2015

Stereo Benchmark [35]. Percentage of pixels having error larger

than 3 or 5% of the ground truth. Best results are shown in bold.

Match on the KITTI 2015 training set as in Table 3 and

submitted to the online stereo benchmark [35] as performed

in [31]. Table 4 compares monoResMatch with SVS and

other techniques evaluated in [31], respectively monodepth

[11] and OpenCV Block-Matching (OCV-BM). D1 scores

represent the percentages of pixels having a disparity error

larger than 3 or 5% of the ground truth value on different

portions of the image, respectively background (bg), fore-

ground (fg) or its entirety (all). We can observe from the

table a margin larger than 3% on D1-bg and near to 1%

for D1-fg, resumed in a total reduction of 2.72%. This

outcome supports once more the superiority of monoRes-

Match, although SVS is trained on many, synthetic images

with ground truth [34]. Finally, Figure 4 depicts qualitative

examples retrieved from the KITTI online benchmark.

6. Conclusions

In this paper, we proposed monoResMatch, a novel

framework for monocular depth estimation. It combines

i) pondered design choices to tackle depth-from-mono in

analogy to stereo matching, thanks to a correlation-based

refinement module and ii) a more robust self-supervised

training leveraging on proxy ground truth labels gener-

ated through a traditional (i.e. non-learning based) algo-

rithm such as SGM. In contrast to state-of-the-art mod-

els [30, 13, 58], our architecture is elegantly trained in

an end-to-end manner. Through exhaustive experiments,

we prove that plugging proxy-supervision at training time

leads to more accurate networks and, coupling this strat-

egy with monoResMatch architecture, is state-of-the-art for

self-supervised monocular depth estimation.
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