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Abstract

Recent developments in deep domain adaptation have

allowed knowledge transfer from a labeled source domain

to an unlabeled target domain at the level of intermediate

features or input pixels. We propose that advantages may be

derived by combining them, in the form of different insights

that lead to a novel design and complementary properties

that result in better performance. At the feature level, in-

spired by insights from semi-supervised learning, we propose

a classification-aware domain adversarial neural network

that brings target examples into more classifiable regions of

source domain. Next, we posit that computer vision insights

are more amenable to injection at the pixel level. In partic-

ular, we use 3D geometry and image synthesis based on a

generalized appearance flow to preserve identity across pose

transformations, while using an attribute-conditioned Cycle-

GAN to translate a single source into multiple target images

that differ in lower-level properties such as lighting. Besides

standard UDA benchmark, we validate on a novel and apt

problem of car recognition in unlabeled surveillance images

using labeled images from the web, handling explicitly spec-

ified, nameable factors of variation through pixel-level and

implicit, unspecified factors through feature-level adaptation.

1. Introduction

Deep learning has made an enormous impact on many ap-

plications in computer vision such as generic object recogni-

tion [22, 44, 48, 17], fine-grained categorization [59, 21, 41],

object detection [26, 27, 28, 36, 37], semantic segmenta-

tion [6, 42] and 3D reconstruction [53, 52]. Much of its

success is attributed to the availability of large-scale labeled

training data [8, 15]. However, this is hardly true in many

practical scenarios: since annotation is expensive, most data

remains unlabeled. Consider car recognition problem from

surveillance images, where factors such as camera angle,

distance, lighting or weather condition are different across

locations. It is not feasible to exhaustively annotate all these

images. Meanwhile, there exists abundant labeled data from
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DANN 60.4 64.8 78.0

DANN-CA (ours) 75.8 77.7 84.2

Table 1: Our framework for unsupervised domain adaptation at

multiple semantic levels: at feature-level, we bring insights from

semi-supervised learning to obtain highly discriminative domain-

invariant representations; at pixel-level, we leverage complementary

domain-specific vision insights e.g., geometry and attributes. Our

joint pixel and feature-level DA demonstrates significant improve-

ment over individual adaptation counterparts as well as other com-

peting methods such as CyCADA (CycleGAN+DANN) [18] on car

recognition in surveillance domain under UDA setting. Please see

Section 5 for complete experimental analysis.

web domain [21, 62, 12], but with very different image char-

acteristics that precludes direct transfer of discriminative

CNN-based classifiers. For instance, web images might

be from catalog magazines with professional lighting and

ground-level camera poses, while surveillance images can

originate from cameras atop traffic lights with challenging

lighting and weather conditions.

Unsupervised domain adaptation (UDA) is a promising

tool to overcome the lack of labeled training data problem in

target domains. Several approaches aim to match distribu-

tions between source and target domains at different levels

of representations, such as feature [57, 56, 11, 45, 31] or

pixel levels [49, 43, 66, 3]. Certain adaptation challenges are

better handled in the feature space, but feature-level DA is

a black-box algorithm for which adding domain-specific in-

sights during adaptation is more difficult than in pixel space.

On the contrary, pixel space is much higher-dimensional

and the optimization problem is under-determined. How to
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effectively combine them has become an open challenge.

In this work we address this challenge by leveraging com-

plementary tools that are better-suited at each level (see

figure in Table 1). Specifically, we posit that feature-level

DA is more amenable to techniques from semi-supervised

learning (SSL), while pixel-level DA allows domain-specific

insights from computer vision. In Section 3, we present our

feature-level DA method called classification-aware domain

adversarial neural network (DANN-CA) that jointly param-

eterizes the classifier and domain discriminator inspired by

an instance of SSL algorithm [40]. We show this to be a gen-

eralization of DANN [11] to incorporate constraints (Fig. 1)

that guide discriminator to easily find major modes corre-

sponding to classes in the feature space, and in turn put target

examples into more classifiable regions via adversarial loss.

A challenge for pixel-level DA is to simultaneously trans-

form source image properties at multiple semantic levels. In

Section 4, we present pixel-level DA by image transforma-

tions that make use of vision concepts to deal with different

variation factors, such as photometric or geometric transfor-

mations (Fig. 2),1 for recognition in surveillance domain. To

handle low-level transformations, we propose an attribute-

conditioned CycleGAN (AC-CGAN) that extends [66] to

generate multiple target images with different attributes. To

handle high-level identity-preserving pose transformations,

we use an appearance flow (AF) [65], an warping-based

image synthesis tool. To reduce semantic gaps between syn-

thetic and real images, we propose a generalization of AF

with 2D keypoints [25] as a domain bridge.

In Section 5, we evaluate our framework on car recog-

nition in surveillance images from the comprehensive cars

(CompCars) dataset [62]. We define an experimental proto-

col with web images as labeled source domain and surveil-

lance images as unlabeled target domain. We explicitly han-

dle nameable factors of variation such as pose and lighting

through pixel-level DA, while other nuisance factors are han-

dled by feature-level DA. As in Table 1, we achieve 84.20%
accuracy, reducing error by 64.9% from a model trained

only on the source domain. We present ablation studies to

demonstrate the importance of each adaptation component

by extensively evaluating performances with various mix-

tures of components. We further validate the effectiveness

of our proposed feature-level DA methods on standard UDA

benchmarks, namely digits and traffic signs [11] and office-

31 [38], achieving state-of-the-art recognition performance.

In summary, the contributions of our work are:

• A novel UDA framework that adapts at multiple seman-

tic levels from feature to pixel, with complementary

insights for each type of adaptation.

• For feature-level DA, a connection of DANN to a semi-

1Our framework is unsupervised DA in the sense that we don’t require

recognition labels from the target domain for training, but it uses side

annotations to inject insights from vision concepts for pixel-level adaptation.

supervised variant, motivating a novel regularization via

classification-aware domain adversarial neural network.

• For pixel-level DA, an attribute-conditioned CycleGAN

to translate a source image into multiple target images

with different attributes, along with an warping-based

image synthesization for identity-preserving pose trans-

lations via a keypoint-based appearance flow.

• A new experimental protocol on car recognition in

surveillance domain, with detailed analysis of various

modules and efficacy of our UDA framework.

• State-of-the-art performance on standard UDA bench-

marks, such as office-31 and digits, traffic signs adapta-

tion tasks, with our feature-level DA method.

Due to a large volume of our work, we put additional detail

in Section S1–S6 of the supplementary material at www.

nec-labs.com/˜mas/jointDA.

2. Related Work

Unsupervised Domain Adaptation. Following theoretical

developments of domain adaptation [2, 1], a major challenge

is to define a proper metric measuring the domain differ-

ence. The maximum mean discrepancy [29, 57, 9, 56, 47],

which measures the difference based on kernels, and the

domain adversarial neural network [11, 4, 3, 45, 46], which

measures the difference using discriminator, have been suc-

cessful. Noticing the similarity in problem settings between

UDA and SSL, there have been attempts to combine ideas

from SSL. For example, entropy minimization [14] has been

used in addition to domain adversarial loss [30, 31]. Our

feature-level DA is built on DANN by resolving issues of

discriminator in discovering modes in the feature space. Our

formulation also connects tightly to SSL and we explain why

entropy minimization is essential for DANN.

Perspective Transformation. Previous works [61, 23, 51]

propose encoder-decoder networks to generate output im-

ages of target viewpoint. Adversarial learning for perspective

transformation [54, 55, 63] has demonstrated good perfor-

mance on disentangling viewpoint from other appearance

factors, but there are still concept (e.g., class label) switches

in unpaired settings. Rather than learning the output distri-

bution, [65, 34] propose an warping-based viewpoint synthe-

sization by estimating a pixel-level flow field. We extend it to

improve generalization to real images using synthetic-to-real

domain invariant representations such as 2D key points [25].

Image-to-image Translation. With the success of GAN on

image generation [13, 35], conditional variants of GAN [32]

have been successfully adopted to image-to-image transla-

tion problems in both paired [19] and unpaired [43, 49, 66]

training settings. Our model extends the work of [66] for im-

age translation in unpaired settings using a control variable

or visual attribute [60] to generate multiple outputs.

Multi-level UDA. A combination of pixel and feature level
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adaptation has been attempted in [18], however, we differ in

a few important ways. Specifically, we go further in using in-

sights from SSL that allows novel regularization for feature-

level DA, while exploiting 3D geometry and attribute-based

conditioning in GANs to simultaneously handle high-level

pose and low-level lighting variations. Our experiments in-

clude a detailed study of the complementary benefits, as well

as the effectiveness of various adaptation modules. While

[18] consider problems such as semantic segmentation, we

study a car recognition problem that highlights the need for

adaptation at various levels. We also demonstrate state-of-

the-art results on standard UDA benchmarks.

3. Domain Adversarial Feature Learning

This section describes a classification-aware domain ad-

versarial neural network (Fig. 1(b)) that improves upon a

domain adversarial neural network [11] by joint parameteri-

zation of classifier and discriminator.

Notation. Let XS,XT ⊂X be source and target datasets and

Y = {1, ..., N} be the set for class label. Let f :X →R
K

be the feature generator, e.g., CNN, with parameters θf that

maps input x∈X into a K-dimensional vector.

3.1. Recap: Domain Adversarial Neural Network

Domain adversarial training [11] aims to adapt classifier

learned from the labeled source domain to unlabeled target

domain by making feature distributions of the two domains

indistinguishable. This is achieved through a domain dis-

criminator D :RK → (0, 1) that tells whether features from

the two domains are still distinguishable. Then, f is trained

to confuse D while classifying the source data correctly:

max
θc

{LC = EXS
logC(f, y)} (1)

max
θd

{LD = EXS
log(1−D(f)) + EXT

logD(f)} (2)

max
θf

{LF = LC + λEXT
log(1−D(f))} (3)

C :RK ×Y→ (0, 1) is a class score function that outputs the

probability of an input x being a class y among N categories,

i.e., C(f(x), y)=P (y|f(x); θc). λ balances classification

and domain adversarial losses. The parameters {θc, θd} and

{θf} are updated in turn using stochastic gradient descent.

3.2. Classification­Aware Adversarial Learning

We note that the problem setup of unsupervised domain

adaptation is not different from that of semi-supervised learn-

ing once we remove the notion of domains. Inspired by the

semi-supervised learning formulation of GANs [40, 7], we

propose a new domain adversarial learning objective that

jointly parameterizes classifier and discriminator as follows:

max
θc

{LC = EXS
logC(y) + EXT

logC(N+1)} (4)

max
θf

{LF = EXS
logC(y|Y) + λEXT

log(1−C(N+1))} (5)

CNN	
Discriminator	(D=1)	

Model	Classifier	
source	

CNN	 Discriminator	(D=2)	target	

shared	
shared	

CNN	 Model	Classifier	source	

CNN	 Discriminator	(D=1)	target	

shared	

(a) DANN (baseline)

CNN	source	

CNN	target	

shared	

CNN	source	

CNN	target	

shared	

Classifier	

(C=1,…,N	/	N+1)	

Classifier	

(C=N+1	/	N+1)	

shared	

Classifier	

(C=1,…,N	/	N)	

Classifier	

(C<N+1	/	N+1)	

shared	

(b) DANN-CA

Figure 1: (a) DANN and (b) classification-aware DANN (DANN-

CA) with (N+1)-way joint parameterization of classifier and dis-

criminator. CNN and classifiers are updated in turn (dotted boxes)

while fixing the others (solid boxes).

where we omit f(x) from C(f(x), y) for presentation clarity.

The score function C is defined on R
K ×{1, ..., N+1} and

the conditional score C(y|Y) is written as follows:

C(y|Y)= C(y)

1−C(N+1)
, ∀y≤N, C(N+1|Y)= 0 (6)

The formulation no more has a discriminator, but classifier

has one additional output entry for the target domain. We call

our model a classification-aware DANN or DANN-CA as it

allows discriminator to access to classifier directly. While

[40] has demonstrated an effectiveness of joint parameteri-

zation in semi-supervised GANs, it is not clearly explained

why it is better. In the following, we aim to explain the ad-

vantage of DANN-CA in the context of feature-level UDA.

Discriminator Should Know Classification Boundary.

Mode collapse is a critical issue in adversarial learning. To

prevent it, discriminator needs to discover as many modes in

data distribution as possible. While it is difficult to describe

the modes in the input space for generative modeling [13],

it is relatively easy to characterize the modes in the feature

space: there are N major modes, each of which corresponds

to each output class, and the discriminator is demanded for

discovering these modes in the feature space. Unfortunately,

the discriminator of DANN is trained with binary supervi-

sion, implying that the mode discovery is done unsupervis-

edly. On the other hand, the modes are already embedded in

the discriminator of DANN-CA via joint parameterization

and the adversarial learning can be made easier.

We further investigate the gradient of adversarial loss in

(3) and (5) with respect to f . For the ease of presentation,

we assume linear classifier and discriminator. Complete

derivation including non-linear version is in Section S1.

∂ log(1−D(f))
∂f

= −D(f)wd (7)

∂ log(1−C(N+1))
∂f

= − C(N+1)(wN+1−
∑N

y=1 wyC(y|Y))
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where wd, wy ∈R
K , y ∈{1, ..., N+1} are discriminator and

classifier weights, respectively. As is evident from (7), the

adversarial loss of DANN cannot capture multiple modes

as all target examples induce the gradient of the same direc-

tion. Even if we use MLP discriminator in practice, it still

demands to discover modes correspond to classes without

supervision. The joint parameterization allows not only to

push features away from the target domain, but also guides

them to be pulled close to classes based on the conditional

score C(y|Y) of individual target examples.

Relation to DANN [11].

Besides parameterization, the learning objectives are tightly

linked to those of DANN [11]. For instance, LF =LF with

D=C(N+1) and C(y)=C(y|Y). It is also easy to show

LC =LC +LD by rewriting C(y) using (6) as follows:

LC =EXS
logC(y|Y)+

EXS
log(1−C(N+1))+EXT

logC(N+1) (8)

Relation to Maximum Classifier Discrepancy [39].

We also relate our proposed DANN-CA to recently proposed

maximum classifier discrepancy (MCD) learning for UDA.

MCD learns shared feature extractor by reducing the predic-

tion discrepancy between two (or more) maximally different

classifiers. We show that our DANN-CA can be understood

as MCD with choices of classifiers and the divergence. Fol-

lowing [39], we define the two classification distributions:

p1(y|xt)=C(y|Y), p2(y|xt)=C(y), y≤N+1 (9)

Note that two classifiers F1 and F2 in [39] are both repre-

sented as (N+1)-way classifier. Using KL divergence, we

obtain following discrepancy loss:

− KL(p1‖p2) = log(1−C(N+1)) (10)

which is equivalent to the adversarial loss in (5). This analy-

sis provides a unified view of DANN, MCD and more gen-

eral class of consistency-based SSL algorithms [24, 50, 10].

A theoretical comparison of UDA algorithms is important as

empirical comparison could sometimes be misleading [33].

A full derivation of (10) and analysis are in Section S2.

4. Pixel-level Cross-Domain Image Translation

As is common for neural networks, DANN is a black-box

algorithm and adding domain-specific insight is non-trivial.

On the other hand, certain challenges in DA can be better

handled in image space. In this section, we introduce com-

plementary tools to deal with nameable factors of variation,

such as photometric or perspective transformations, at the

pixel level. To achieve this, we propose extensions to prior

works on CycleGAN [66] and appearance flows [65]. We

describe with an illustrative application of car recognition

in surveillance domain where the only labeled data is from

web domain. The pipeline of our system is in Fig. 2.

Labeled	web	images	

Santa	Fe	2016	VW	Jetta	2017	

Unlabeled	SV	images	

CNN	
Model	/	Domain	

Classifier	

§4.2.	Perspective	 §4.1.	Photometric	

10°	

20°	

night	

day	

§3.	Feature-level	DA	

Figure 2: Overview of our car recognition system using labeled

web and unlabeled surveillance (SV) images. Images taken by SV

cameras are different from web images in nameable factors, such

as viewpoint or lighting conditions as well as other nuisance fac-

tors. We integrate pixel-level DA for perspective and photometric

transformations and feature-level DA for other nuisance factors.

4.1. Photometric Transformation by CycleGAN

As noticed from Fig. 2, images from surveillance domain

have disparate color statistics from web images as they might

be acquired outdoors at different times with significant light-

ing variations. CycleGAN [66] is proposed as a promising

tool for image translation by disentangling low-level statis-

tics from geometric structure. A limitation, however, is that

it generates a single output when there could be multiple out-

put styles. We propose an attribute-conditioned CycleGAN

(AC-CGAN) that generates diverse output images with the

same geometric structure by incorporating a conditioning

variable into generators.

Let A be a set of attributes in the target domain (day or

night). We learn a generator G :XS ×A→XT that translates

an image with certain style a∈A by fooling an attribute-

specific discriminator Da. The learning objectives are:

max
θda

{LDa=EXTa
logDa(x)+EXS

log(1−Da(G(x, a)))} (11)

max
θg

{LG=EXS
EAlogDa(G(x, a))} (12)

We use multiple discriminators to prevent competition be-

tween different attribute configurations, but it is feasible to

have one discriminator with (|A|+1)-way domain classifi-

cation loss [49]. Also, one might afford to have multiple

generators per attribute without sharing parameters.2 Fol-

lowing [66], we add cycle consistency loss as follows:

EXS
‖F (G(x,a),a)−x‖1+EXTa

‖G(F (x,a),a)−x‖1 (13)

where an inverse generator F maps outputs back to source

domain F (G(x, a), a)=x. We also use patchGAN [19, 66]

for discriminators that makes real or fake decisions from

local patches and UNet [19] for generators, each of which

contributes to preserve geometric structure of an input image.

2Empirically, using two separate generators for day and night performs

slightly better than a single generator. Please see Section S6 for results.
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Figure 3: Training framework of keypoint-based appearance flow

network (KFNet) by distilling knowledge from pretrained AFNet.

4.2. Perspective Synthesis by Appearance Flow

Besides color statistics, we observe significant differences

in camera perspective (Fig. 2). In this section, we deal with

perspective transformation using an image warping based

on a pixel-wise dense flow called appearance flow (AF) [65].

Specifically, we propose to improve the generalization of AF

estimation network (AFNet) trained on 3D CAD rendered

images to real images by utilizing a robust representation

across synthetic and real domains, i.e. 2D keypoints.

Appearance Flow.

Zhou et al. [65] propose to estimate a pixel-level dense flow

from an input image with target viewpoint and synthesize an

output by reorganizing pixels using bilinear sampling [20]:

Ii,jp =
∑

(h,w)∈N Ih,ws (1−|F i,j
y −h|)(1−|F i,j

x −w|), (14)

where Is, Ip are input and output, (Fx, Fy) is a pixel-level

flow field in horizontal and vertical axes called appearance

flow (AF), estimated by an AF estimation network (AFNet).

N denotes 4-pixel neighborhood of (F i,j
x , F i,j

y ). In contrast

to neural network based image synthesization methods [51],

AF-based transformation may have a better chance of pre-

serving object identity since all pixels of an output image

are from an input image and no new information, such as

learned priors in the decoder network, is introduced.

Keypoint-based Robust Estimation of AF.

AFNet requires image pairs (Is, It) with perspective being

the only factor of variation for training. Since it is infeasi-

ble to collect precisely controlled dataset of real images at

large-scale, rendered images from 3D CAD models are used.

However, this induces a generalization issue when applied

to real images at test time.

To make AFNet generalizable, we propose sparse 2D key-

points in replace of an RGB image as an input to AFNet both

at train and test times. Although sparse, for objects like cars,

we argue that 2D keypoints contain sufficient information

to reconstruct (rough) geometry of an entire object, while

being invariant across rendered and real domains. Besides,

keypoint estimation can be done robustly across synthetic

and real domains even when the keypoint localization net-

work is trained only on the synthetic data [25]. To this end,

we propose a 2D keypoint-based AFNet (KFNet) that takes

estimated 2D keypoints and the target viewpoint as an input

pair to generate flow fields F for synthesization.

The KFNet is trained using rendered image pairs. More-

over, we leverage pretrained AFNet that produces a robust

AF representation for rendered images to train the KFNet by

distillation. The learning objective is as follows:

min{L = ‖Fkpt − Fpix‖1 + λ‖Ip(Fkpt, Is)− It‖1} (15)

where Fkpt is an estimated appearance flow by KFNet and

Fpix is that by AFNet. Here, Ip(F, Is) is the predicted image

from Is using F based on (14). The training framework by

distillation is visualized in Fig. 3.

5. Experiments

We strive for providing empirical evidence for the effec-

tiveness of individual components of our proposed frame-

work as well as their complementarity by conducting exten-

sive experiments on car recognition in surveillance domain.

For feature-level adaptation, we also provide performance

comparison on standard benchmarks, namely digits and traf-

fic signs [11] and office-31 [38].

5.1. Car Recognition in Surveillance Domain

Dataset. CompCars dataset [62] offers two datasets, one

from the web and the other from the surveillance (SV) do-

mains. It contains 52, 083 web images across 431 car models

and 44, 481 SV images across 181 car models. Samples are

in Fig. 2. The SV test set contains 9, 630 images across 181
car models, of which 6, 404 images are in day condition.3

To train an appearance flow estimation network, based

on emperical distribution of web images, we render car im-

ages at multiple elevation (0◦∼30◦) and azimuth variations

(±15◦) from ShapeNet [5]. We apply pixel-level adaptation

to 5, 508 web images of frontal view.

Training. The task is to train a classifier that works well

on SV images using labeled web (source) and unlabeled SV

(target) images. We use ResNet-18 [17] fine-tuned on web

images as our baseline. Then, we train models with differ-

ent integration of pixel and feature-level DA components.

Note that synthesized images by pixel-level adaptation are

considered as labeled training examples. Furthermore, we

use data augmentation, such as translation, horizontal flip

or chromatic jitter, for all models by default. We refer to

Section S4.3 for more training details.

Model Selection. While it is desirable to do a model selec-

tion without labeled examples from the target domain, to our

knowledge, there does not exist an unsupervised evaluation

measure that is highly correlated with the supervised per-

formance [4]. To allow more meaningful and interpretable

comparisons across different methods, we report our results

based on a supervised model selection [4] using a small vali-

dation set containing approximately 5 labeled examples per

3We provide a binary label (day or night) for images from surveillance

domain by computing the mean pixel-intensity.
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ID Perspective Transformation SV Day Night

M1 Baseline (web only) 54.98 72.67 19.87

M3 Appearance Flow (AF) 59.73 75.78 27.87

M4 Keypoint-based AF (KF) 61.55 77.98 28.92

M5 KF with mask (MKF) 64.30 78.62 35.87

Table 2: Accuracy on SV test set with different perspective trans-

formation methods: appearance flow (AF), keypoint-based AF (KF)

and with mask (MKF).

ID Photometric Transformation SV Day Night

M1 Baseline (web only) 54.98 72.67 19.87

M6 CycleGAN 64.32 77.01 39.12

M7 AC-CGAN 67.30 78.20 45.66

M8 MKF+CycleGAN 71.21 81.54 50.68

M9 MKF+AC-CGAN 79.71 84.10 70.99

Table 3: Accuracy on SV test set with different photometric trans-

formation methods: CycleGAN [66], attribute-conditioned Cycle-

GAN (AC-CGAN), and combinations with MKF.

ID Pixel Feature SV Day Night

M1 Baseline (web only) 54.98 72.67 19.87

M2 Supervised (web+SV) 98.63 98.92 98.05

M10 – DANN 60.40 75.56 30.31

[18] CycleGAN DANN 64.82 76.35 41.93

M11 – DANN-CA 75.83 76.73 74.05

M12 MKF DANN-CA 80.40 82.50 76.22

M13 AC-CGAN DANN-CA 80.24 82.15 76.44

M14 MKF+AC-CGAN DANN-CA 84.20 85.77 81.10

Table 4: Accuracy on SV test set with pixel and feature-level DA

components. We consider an MKF for perspective and attribute-

conditioned CycleGAN (AC-CGAN) for photometric transforma-

tions for pixel-level DA, and DANN-CA for feature-level DA.

class from the target domain. We provide a comprehensive

comparison to unsupervised model selection using a variant

of reverse validation [64, 11] in Section S3.

5.2. Summary Results

We report the classification accuracy on the surveillance

test set in Tables 2 to 4. Noticing a huge accuracy drop on

night images, we also report accuracy of individual day and

night sets. We present t-SNE [58] plots of web (blue), day

(red) and night (green) images in Fig. 4 and Fig. 8.

Firstly, although achieving state-of-the-art accuracy on

the web test set (96.4% vs 91.2% [62]), the baseline model

trained only on web images suffers from generalization to

SV images, resulting in only 54.98% accuracy. Comparing

to the performance of the model trained with target domain

supervision (98.65% in Table 4) provides a sense of how

different two domains are. While the baseline adaptation

model, DANN (M10 in Table 4), achieves only 58.80%, the

proposed joint pixel and feature-level adaptation method

achieves 84.20%, reducing the error by 64.9% from the

baseline M1. While the use of baseline pixel (CycleGAN)

and feature-level (DANN) DA methods as in [18] demon-

M10	(DANN)	

M11	(DANN-CA)	

Training	Epoch	

V
a
li
d
a
ti
o
n
	A
cc
u
ra
cy
	

50	epoch	 100	epoch	

0	epoch	

474	epoch	

100	epoch	

5	epoch	

Figure 4: Accuracy of DANN (M10) and DANN-CA (M11) on

SV validation set over training. We also visualize t-SNE plots of

each model at different training epochs.

Method M→MM S→S S→M M→S S→G

Source only 67.90 87.05 63.74 62.44 94.53

DANN 98.00 92.24 88.70 82.30 97.38

DANN-CA 98.03 94.47 96.23 87.48 98.70

Table 5: Evaluation on UDA tasks [11], such as MNIST to MNIST-

M (M→MM), Synthetic Digits to SVHN (S→S), SVHN to MNIST

(S→M), MNIST to SVHN (M→S), or Synthetic Signs to GTSRB

(S→G). Test set accuracy averaged over 10 runs is reported. The

best performers and the ones within standard error are bold-faced.

Method A→W D→W W→D A→D D→A W→A

Source only 76.42 96.76 97.99 79.81 60.44 59.53

DANN 85.97 96.87 97.94 84.12 67.63 66.78

DANN-CA 91.35 98.24 99.48 89.94 69.63 68.76

Table 6: Evaluation on office-31 benchmark [38] between Ama-

zon (A), DSLR (D), and Webcam (W) domains using ResNet-50.

Target domain accuracy averaged over 5 runs is reported. The best

performers and the ones within standard error are bold-faced.

strates moderate improvement (64.82%) over the baseline,

this is far below our proposed DA framework. In the follow-

ing, we present comprehensive studies on the contribution

of individual components and their complementarity.

5.3. Analysis on Pixel­level Adaptation

This section contributes to the analysis of our pixel-level

DA on dealing with perspective and photometric transforma-

tions, typical factors of variation introduced in SV domain.

Perspective Transformation with CycleGAN [66].

The success of CycleGAN on image translation is attributed

by few factors, such as cycle consistency loss, patch-based

discriminator, or generator with skip connection. However,

these constraints may be too strong to translate viewpoint.

As is evident from Fig. 6, the output of CycleGAN (second

row) maintains the geometric structure of the input (first row)

faithfully but fails at adapting to the viewpoint of SV domain.

Relaxing constraints, such as removing skip connections of

generator and increasing receptive field size of patch-based

discriminator, allows perspective adaptation possible (third

row), but we lose many details crucial for recognition tasks.

Our approach solves the challenge by translating images
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(b) Perspective (0◦∼30
◦) and photometric (day, night) transformations on real data

Figure 5: Synthesized images by (a) perspective on rendered images of 3D CAD models and (b) perspective and photometirc transformations

on real images from CompCars dataset. (a) From left to right: input, GT of target view, and perspective transformed images using AFNet

and sparse 2D keypoint-based AFNet (KFNet). (b) From left to right: for each web image, perspective transformed images using AFNet,

KFNet and its masked output (MKF), followed by photometric transformation into day and night by AC-CGAN.

Surveillance	

Figure 6: Web to SV (day) translation using CycleGAN (second)

and its variant (third) by removing skip connection from generator

and increasing receptive filed size for patch discriminator. On the

right, we overlay left half of translated images with SV image to

highlight the impact of constraints on perspective transformation.

in two steps, resulting in high-quality image synthesis from

web to SV domain as in Fig. 5(b). The conclusion from our

visual investigation aligns with the recognition performance,

where combined perspective transformation and CycleGAN

(M8) achieves 71.21%, which improves upon a model with-

out perspective transformation (M6, 64.32%) in Table 3 or a

model without CycleGAN (M5, 64.30%) in Table 2.

Disentangling Illumination via AC-CGAN.

The AC-CGAN fixes the unimodal translation nature of Cy-

cleGAN with a latent code [60]. This allows learning disen-

tangled representation from an attribute, which in our case

the illumination, and as a result, we can synthesize images

of the same car with different illumination conditions, as in

Fig. 5(b). Moreover, the continuous interpolation of latent

code allows to generate continuous change in illumination

factor (e.g., color tone, pixel intensity of headlight) without

changing the shape and appearance of each car, as in Fig. 7.

Generating images with diverse illumination conditions

improves the recognition accuracy as in Table 3, especially

on the night images of SV domain. The AC-CGAN (M7)

improves by 2.98% upon the CycleGAN (M6). Moreover,

when combined with perspective transformation (M8 and

M9), we observe a larger increase in improvement of 8.50%.

Comparison between AFNet and KFNet.

KFNet is developed to improve the generalization of AFNet

to real images. Before comparing these models on them, we

Figure 7: Continuous interploation of latent code of AC-CGAN.

evaluate KFNet on rendered images from 3D CAD models

to demonstrate comparable performance to AFNet. We show

inputs, output targets and transformed images by AFNet and

KFNet in Fig. 5(a). We observe reliable estimation of appear-

ance flow by KFNet. Furthermore, we obtain 0.072 per-pixel

L1 reconstruction error between rendered output images and

perspective transformed images at four elevations (0◦ to 30◦)

using KFNet, which is comparable to 0.071 error of AFNet

(pixel values are normalized to [0, 1]).
Now, we show results on real images in Fig. 5(b). AFNet

struggles to generalize on real images and generates distorted

images with incorrect target elevation. Although sparse, 2D

keypoints are more robust to domain shift from synthetic

to real and are sufficient to preserve the object geometry

and correctly transform to the target perspective. Finally,

better recognition performance on SV domain of the network

trained with source and the perspective transformed images

(59.73%→61.55% from M3 to M4 in Table 2) implies the

superiority of the proposed KFNet.

5.4. Analysis on Feature­level Adaptation

We demonstrate the superiority of the proposed DANN-

CA to the DANN on car recognition and other UDA tasks.

Evaluation on Car Recognition in SV Domain.

Note that, on top of 512-dim features, the linear classifier

(512−431/432) is used for both models, while we use the

3-layer MLP (512−320−320−1) for the discriminator of

DANN after trying several discriminator architectures with
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different depths. As in Table 4, the improvement of DANN-

CA is larger than that of DANN, confirming the superiority

of the proposed method. We further investigate the behavior

of these methods from training curves in Fig. 4. The DANN

starts to drop significantly after few epochs of adversarial

training, remaining with a few collapsed modes in the end.

While it shows some fluctuations at the beginning of training,

DANN-CA shows clear progression over training and finally

reaches at convergence.

Evaluation on UDA Benchmarks.

We also evaluate the performance of DANN and our DANN-

CA on UDA benchmarks. For digits and traffic signs tasks,

we use data augmentation as in [16]. Due to space constraint,

we provide more details on experimental setting and com-

parison to other methods in Section S5. As we see in the

summary results of Table 5 and 6, our proposed DANN-CA

outperforms the DANN on all tasks and sometimes by a

huge margin. We remind that the only difference between

the two methods is the parameterization of the classifier and

discriminator, and it clearly shows the importance of joint

parameterization in adversarial domain adaptation.

5.5. Analysis on Joint PnF Adaptation

Finally, we provide an empirical analysis on the proposed

joint pixel and feature-level (PnF) adaptation. In the joint

framework, we train models with feature-level adaptation

methods using unlabeled target domain and expanded la-

beled source domain including original source images and

synthesized images by pixel-level DA.

Improved Domain Alignment with Feature-level DA.

While it allows high-fidelity generation, constraints in the

pixel-level DA make it hard to faithfully adapt to the target

domain. It is evident from Fig. 8 where t-SNE plot of M9

is less clean than that of M11. This implies that the role of

feature-level DA in joint DA framework is to learn remaining

factors not yet discovered by the pixel-level DA.

Improved Training Stability with Pixel-level DA.

We delve deeper into understanding the interplay between

pixel and feature-level DAs. Fig. 8 shows accuracy curves

of pixel-level (M9), feature-level (M11) and joint (M14) DA

models on day (dotted) and night (solid) of SV validation

sets. While the accuracy on days are stable for all models,

we observe a large up-and-down for curve on nights of M11.

Note that the fluctuation in the night curve of M9 is not as

significant. This is due to many constraints (e.g., warp-based

viewpoint synthesis, cycle-consistency or UNet architecture)

imposed on the training of pixel-level DA, allowing high-

fidelity translation of perspective and illumination variations

whose outputs are closer to the target domain than the source

examples. Consequently, M14 shows significantly less fluc-

tuation during the training than M11.

We further study the training stability from the mode cov-

erage perspective. Assuming modes correspond to classes in

M14	(joint)	M9	(pixel)	 M11	(feature)	
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M14	(joint)	

dotted	(day)	

solid	(night)	
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Figure 8: Accuracy curves on day (dotted) and night (solid) SV

validation set over training and t-SNE plots of pixel-level (M9),

feature-level (M11) and joint (M14) DA models.

M9 (pixel) M11 (feature) M14 (joint)

# missing modes 2 29.6±1.1 10.4±0.6

Table 7: Number of missing modes (classes) out of 181 classes.

the feature space, the number of classes that are not assigned

as top-1 prediction by any of SV test set images is used as

a proxy to mode coverage. We provide results in Table 7.

While M11 has 29.6 classes on average over 5 runs with no

assigned SV image, only 2 classes are missing for M9. The

pixel-level DA effectively complements the mode collapse

of adversarial learning in the feature-level DA, reducing the

number of missing modes to 10.4 for M14.

Complementarity of Components.

To summarize, each module has its own disadvantage, such

as training instability for feature-level DA and the lack of

adaptation flexibility for pixel-level DA. Our empirical analy-

sis suggests that these shortages can be complemented when

combined in a unified framework, improving the accuracy

by 4.49% and 8.37% upon individual modules, respectively.

6. Conclusion

With an observation that certain adaptation challenges are

better handled in feature space and others in pixel space, we

propose a joint UDA framework by leveraging complemen-

tary tools that are better-suited for each type of adaptation

challenge. Importance and complementarity of each compo-

nent are demonstrated through extensive experiments on a

novel application of car recognition in surveillance domain.

We also demonstrate state-of-the-art performance on UDA

benchmarks with our proposed feature-level DA methods.
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