Skin-based identification from multispectral image data using CNNs

Takeshi Uemori1 Atsushi Ito2 Yusuke Moriuchi2 Alexander Gatto1 Jun Murayama2

1Sony Europe B.V., Stuttgart, Germany 2Sony Corporation, Tokyo, Japan

Abstract

User identification from hand images only is still a challenging task. In this paper, we propose a new biometric identification system based solely on a skin patch from a multispectral image. The system is utilizing a novel modified 3D CNN architecture which is taking advantage of multispectral data. We demonstrate the application of our system for the example of human identification from multispectral images of hands. To the best of our knowledge, this paper is the first to describe a pose-invariant and robust to overlapping real-time human identification system using hands. Additionally, we provide a framework to optimize the required spectral bands for the given spatial resolution limitations.

1. Introduction

Personal identification using unique physiological features such as a face, an iris, fingerprints or vein, is required in a wide variety of systems and applications. Especially in the past couple of years, there has been significant increase of practical logon applications for different types of devices such as cellular phones [3, 28], laptops [24], and video game consoles [33]. In the case of tabletop devices, which fall into the category of a so-called tangible user interface [18, 34], identifying a user from his hands only is desired for individual access controls and natural user interfaces. The system is required to work without any constraints on hand pose, in contrast to fingerprint or vein which usually forces users to pause at the ideal pose. In recent years, thanks to progress in deep learning, there has been outstanding progress in a variety of computer vision tasks. The standard way to perform image-based recognition is to use geometric information. While this approach is suitable for relatively rigid objects such as faces, hand recognition often requires a particular hand pose [29, 5, 43, 30, 13]. Our method is pose-invariant and can deal with occlusions.

Recently, multispectral image acquisition systems which capture data at several specific wavelength ranges (usually more narrowly than RGB image acquisition systems) have become easier available. Due to the complexity of traditional multispectral acquisition systems, proposed applications have been limited to very specific fields [16, 22]. However, various types of systems [7, 11] are being developed recently and spreading to wider commercial applications [27, 6] including biometrics [45, 1]. Especially the advent of multispectral mosaic-array sensors [42, 21, 15] enables the acquisition of video as a sequence of single snapshots. However, the disadvantage of these sensors is the trade-off between spatial resolution and the number of spectral bands, which means the spatial resolution is sacrificed if the number of spectral bands is increased or vice versa.

Several skin spectra models have been proposed in early works [2, 40]. According to their optical considerations, perceived color is mainly composed of dermis scattering, melanin and vascular absorption which are different among individuals due to the differences of skin chromophore concentrations [35, 40]. Our approach has been motivated by knowledge from these studies.

In this paper, we propose a framework of hand identification using spatial and spectral distributions of skin, without using any geometric information, as shown in Figure 1. From a small patch (i.e. 16x16 pixels) of a hand, our CNN model can distinguish among registered users, without using any additional information about a hand’s shape. One advantage of our patch-based identification is that it works even when a hand of a user to be identified is overlapped by a hand of a different user, or a part of a hand is out of the view. Additionally, our model can distinguish between the left and right hand of a person because our CNN model learns different spectral and spatial features of skin for each hand. Finally our approach works in a frame-by-frame fashion, making real time processing more feasible. We demonstrate this user identification framework in the scenario of a tabletop projection system as shown in Figure 2. A multispectral camera, including a projection system, is mounted over the tabletop and acquires images of hands which are moving without any constraints on the table. These capabilities may provide a novel natural user interaction for many
Contributions The key technical contributions of this paper are summarized below.

- Showing superiority of our approach with respect to conventional RGB image skin-based identification when using the same amount of data.
- Demonstrating feasibility of hand identification based on spatial-spectral features of skin using CNNs with synthetic and real datasets.
- Proposing a novel 3D CNN which enhances relevant spectral bands for skin-based identification.
- Providing multispectral image dataset generating pipelines for finding an optimal shape of spatial-spectral data cube.

Outline This paper is organized as follows. We begin with reviewing prior work in Section 2. In Section 3, we introduce our network architecture utilizing a multispectral data cube as input. We explain our strategy of generating synthetic datasets in Section 4 and show superiority of multispectral image input via multiple experiments with our synthetic datasets in Section 5. The feasibility with real multispectral data is shown in Section 6. In Section 7, we discuss supportive evidence of our proposal with an explanation tool for deep networks. Conclusions, limitations and future works are provided in Section 8.

2. Prior Work

Identification approach using hands: There are already many commercial biometric user authentication systems which require an image of hands. Most of them can be categorized into fingerprint, vein and geometric identification. As an example of fingerprints identification, in [32], the authors extracted ridge ending and ridge bifurcation of fingerprint as feature values. In [26], the authors claimed multispectral fingerprint image acquisition improved robustness against environmental and physiological conditions like bright ambient lighting, wetness, poor contact between the finger and sensor. In the case of vein authentication, vascular patterns are recognized by analyzing deoxidized hemoglobin absorption of near-infrared light.
in [39]. The other category is the physical dimensions of a human hand. In [5], a user identification approach using 25 geometric features of finger and palm was proposed. In [43], features of hand silhouette extracted by using independent component analysis showed satisfactory performance for groups of about 500 users. A user authentication system with RGB camera on multi-touch tables was proposed in [30]. The authors used a support vector machine classifier with features of palm width, finger length and breadth. In [13], a non-contact identification method with CNN was proposed. Here, users hold their hands in front of a ToF camera and they are classified by shape features from their palm.

Multispectral image capturing system: A traditional multispectral imaging system operates in a sweeping manner and utilizes a prism or grating to disperse light [25]. The next category of multispectral imaging system employs either liquid-crystal tunable filters or acousto-optic tunable filters to modulate the input spectrum over time [14]. Recently, as the newest category, single-snapshot multispectral imaging systems are being developed to rapidly acquire a 3D spectral data cube which allow to avoid motion artifacts and thus enabling video acquisition [41, 42, 21, 15]. However, this category of mosaic-array multispectral imaging system usually sacrifices its spatial resolution for spectral resolution. To overcome this problem, some papers recently proposed the framework of combining image sensor architecture and image signal reconstruction [38, 12].

Potential of skin spectra for user identification: Early works have shown that skin has much personal information. The history began with the famous skin model in [2]. In [37], the authors proposed a novel skin model with two-region chromophore fitting and estimated consistency of pigments such as melanin, oxy- and deoxy-hemoglobin, by measuring the spectra of skin optical properties of 18 subjects of different skin phototypes I–VI [35] in the range from 500 to 1000 nm. In another work [40], the authors showed that absorption spectra and scattering spectra properties of skin sub-surface scattering are very different among 149 subjects.

3. Network architecture for hand identification

Recently, CNNs using 3D convolutions have been successful in various applications [10, 8, 23] with high dimensional data. In our skin identification task, with a spectral data cube, 3D convolution is expected to extract spectral-spatial features more efficiently than 2D convolution. The proposed network architecture is shown in Figure 3. Although any architecture can be used as the base network for extending to 3D, we selected the wide residual networks (Wide-ResNet) [44] because the ResNet architecture and its variants are commonly used in image classification field. The difference from a normal 3D Wide-ResNet is that spectral attention is involved to enhance the relevant spectral bands. It was inspired by the squeeze-and-excitation block (SE-block) [17]. SE block enhances the performance with small computational effort, and pays attention to a single weight for each channel of the feature maps. Position-SR block for facial attribute analysis was proposed in [46], which focuses on highlighting the relevant spatial position. Unlike [46], our SE block pays attention to spectra as well as channels of feature maps.

In our implementation we replaced all 2D convolutions of Wide-ResNet by 3D convolutions, while keeping the dimension of spectral band constant until the last global pooling layer. SE blocks were applied to each residual module. Concerning the global pooling layer in the SE blocks, only spatial axes were averaged. At the end of the SE blocks, weights for each spectral band, as well as each channel of feature maps, were obtained.

4. Generating synthetic datasets

We need datasets for evaluating the identification performance in various types of input data cubes. Therefore, we provide two types of synthetic multispectral dataset generating pipelines. One of them is for creating datasets which include actual hand skin textures. The other is for evaluating performance with a large number of subjects. In this framework, 1D spectral profiles are converted to 3D data cubes with measured distributions of skin textures.
To acquire the correct reflectance R, we mainly assumed a white illumination which has a flat spectral distribution over all wavelengths as L. With the sensor spectral sensitivities S_c, we mainly assumed profiles as shown in Figure 5 (a) and (b) respectively for a multispectral and RGB sensor which were used in actual camera experiments in Section 6. The final stage of the pipeline consists of adding sensor noise. We adopted a noise model described in equation 3 and 4:

$$\hat{I}_c(x) = G(I_c(x), s_n(x))$$

$$s_n(x) = \alpha \times \sqrt{I_c(x)}$$

$G(m, s)$ denotes a Gaussian distribution function with a mean value m and a standard deviation s. $\hat{I}_c(x)$ indicates the intensity in a patch image at position x and $s_n(x)$ is the standard deviation of noise. α is a noise scaling coefficient. We usually set $\alpha = 0.25$ as a base. In this case, the standard deviation s becomes 0.78% in a bright region of a 10-bit image. According to the procedure described above, we could generate a skin dataset #1 which was assumed to be captured by a multispectral sensor and an RGB sensor. Some examples of this dataset #1 are shown in our Supplementary Material.

4.1. Dataset #1 based on 2D spectral measurement

In order to create this dataset #1, we utilized a 2D spectrometer which has been prototyped internally in our affiliation. It acquires hyperspectral images in steps of 1 nm with 168x128 pixel resolution in the visible. 20 hands of skin from 12 subjects are in the source data and each of the hands is represented by 18 to 30 hyperspectral images with various poses. All subjects were Asian males. Here, we can emulate images according to a sensor specification. The upper line of Figure 4 shows the pipeline of generating our skin multispectral dataset #1. In general, an image capturing system with multiple wavelength channels is represented by equation 1:

$$I_c = \int_{400}^{700} R(\lambda)L(\lambda)S_c(\lambda)d\lambda + n$$

Where I_c means the intensity of spectral band c, λ is the wavelength over which is integrated and n is the noise. R is the spectral reflectance of a target in the scene and L is the spectral distribution of the illumination. Finally, S_c represents the sensor’s spectral sensitivity of spectral band c. To acquire the correct reflectance R for each pixel, we had to normalize the illumination under which we collected the data. We captured the spectral response of a gray uniform board whose reflectance is known in advance. Then, we normalized the skin spectra by using equation 2:

$$R(\lambda) = M_s(\lambda) \otimes M_g(\lambda)$$

Where M_s and M_g denote the measured data of skin and the gray board. The symbol \otimes represents the Kronecker division. We mainly assumed a white illumination which has a flat spectral distribution over all wavelengths as L. With the sensor spectral sensitivities S_c, we mainly assumed profiles as shown in Figure 5 (a) and (b) respectively for a multispectral and RGB sensor which were used in actual camera experiments in Section 6. The biggest difference with the pipeline of dataset #1 is that R in equation 1 has only spectral distributions, but does not have spatial distributions. Hence, we synthesized skin textures based on measurement of real skin. We measured the standard deviation of real skin s_r from the source of dataset #1. This standard deviation s_r is shown in Figure 6 as the yellow band. Then, we calculated the desired texture pixel number using equation 5:

$$\hat{R}(\lambda) = G(R(\lambda), s_r(\lambda))$$

Here, we could acquire a 3D data cube $\hat{R}(\lambda)$ as input of the pipeline. The subsequent procedure is the same as with
Figure 6. Skin spectral profiles in the SOCS dataset: 123 subjects’ spectral skin profiles were picked up for generating dataset #2. The wide yellow band means a spatial standard deviations of real skin. Because distribution among individuals are less than a spatial distribution, it looks difficult for a human to distinguish the person from them.

Section 4.1. We mainly generated patches with skin texture having a size of 16x16 pixels, but the size is flexible depending on a requirement of each experiment. Some samples of this dataset #2 are shown in Figure 7.

5. Evaluation on synthetic datasets

In this section, we analyzed identification performances with synthetic datasets which were generated as described in the previous section. To validate superiority of a multispectral image as input in various aspects, we evaluated on data trade-off conditions (Section 5.1), different numbers of classes (Section 5.2) and different noise conditions (Section 5.3). Finally, we compared the performance between 2D and 3D CNNs including our proposed network architecture (Section 5.4).

5.1. Data cube trade-off comparison

In the case of a mosaic-array sensor, the number of spectral bands and the spatial resolution are in a trade-off relationship, if keeping the amount of data (image width×image height×number of bands) constant. In this experiment, we evaluated performances among this trade-off conditions.

Experimental setup: We conducted this experiment with the generation pipeline of dataset #1. At first, 7 types of multi-band sensors which have respectively 3, 4, 6, 8, 16, 32 and 301 bands were generated. Their sensor sensitivities were defined by dividing the range 400−700 nm into their band numbers equally (whose spectral profiles shaped into squares). An ideal white illumination was assumed. From the obtained multispectral images, we cropped 16×16×3 (RGB) samples are shown. They look very similar and it seems to be difficult for a human to distinguish a subject.

Figure 7. Samples of synthetic dataset #2: Multispectral data patches were generated from 1D spectral profiles from the SOCS dataset. Here, 16×16×3 (RGB) samples are shown. They look very similar and it seems to be difficult for a human to distinguish a subject.

Figure 8. Performance comparison under same amount of data: The amount of data is defined by the multiplication of the number of spectral bands×the spatial resolution ratio. We evaluated performances under this trade-off conditions and found that at 16 spectral bands the combination of spectral and spatial information is optimal.

Figure 8. Performance comparison under same amount of data: The amount of data is defined by the multiplication of the number of spectral bands×the spatial resolution ratio. We evaluated performances under this trade-off conditions and found that at 16 spectral bands the combination of spectral and spatial information is optimal.

5.2. Performance scalability in large scale datasets

We show the scalability of performance related to the number of classes in the identification.
Experimental setup: To facilitate this experiment, we prepared skin data cubes by utilizing the procedure as described in Section 4.2 which was used previously for generation dataset #2. In this experiment, we intended to emulate and compare existing sensors, therefore we adopted sensor sensitivities of the 3-band sensor (Figure 5 (a)) and the 8-band sensor (Figure 5 (b)). An ideal white illumination was assumed and the noise level was set to $\alpha = 0.5$ in equation 4. Then we got 16x16x8 data cubes for the 8-band sensor and 23x23x3 data cubes for the RGB sensor. Their data volumes are almost the same when considering the Bayer pattern [4] in RGB. We prepared sub-datasets with different numbers of subjects (16, 32, 64 and 123) based on the original dataset #2 containing 123 subjects. The number of patches for each subject were the same in the training and evaluation. The network architecture and its parameters were as in the previous experiment explained in Section 5.1.

Analysis: The results of classification accuracy are shown in Figure 9. In the case of 16 classes, high accuracy over 99.0% was achieved with both RGB and multispectral inputs. This means that this dataset with 16 classes might be simpler than the experiment in Section 5.1. However, the performance gap between them became larger as the number of classes increased. The accuracy with multispectral input was still kept 88.3% even in the case of 123 classes, though the accuracy with RGB was declined to 72.9%.

5.3. Robustness for noise

We also compared the robustness for sensor noise between RGB and multispectral input.

Experimental setup: Here, we regenerated dataset #1 with various noise levels. We set the noise scaling coefficient in equation 4 as $\alpha = 0, 0.25, 0.5, 1.0$, for creating different levels of noise. We used the same sensor sensitivities as in Section 5.2. Except for noise and sensor sensitivity, all other conditions were the same as in the experiment in Section 5.1. The network, its parameters and training procedures were also according to Section 5.1.

Analysis: The comparison with different noise levels is shown in Figure 10. The performance with multispectral input was superior to the one with RGB input at every noise level. Although both decreased, the performance gap increased with the noise level. This result implies that spectral information keep contributing to the performance, even when spatial information is degraded by noise.

5.4. Comparison between 2D and 3D CNNs

In this experiment, we show the performance improvement by our network architecture described in Section 3.

Experimental setup: We used the same dataset with noise level $\alpha = 0.25$ which was generated in Section 5.3.

We compared the performances of 2D and 3D convolutions in Wide-ResNet architecture. Then, we evaluated the effectiveness of the SE-blocks which pay attention to relevant spectral bands.

Analysis: Table 1 shows the results obtained from RGB and multispectral input with different networks. In the comparison between different inputs in 2D CNN, multispectral input led to 7.6% improvement. However, from the comparison between 2D and 3D convolutions, 3D convolutions did not enhance the performance for each input. As mentioned in [20], this might due to the fact that 3D convolutions do not work well with insufficient number of training data. On the other hand, our proposal with multispectral input had 2.5% improvement from the 2D CNN. From this result, SE-blocks enhanced the performance of 3D CNN even with the insufficient amount of training data. Visualized results are shown in our Supplementary Material.

Table 1. Classification accuracy with 2D and 3D based networks

<table>
<thead>
<tr>
<th>Approach</th>
<th>RGB (3 bands) (%)</th>
<th>Multispectral (8 bands) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D CNN</td>
<td>81.0</td>
<td>88.6</td>
</tr>
<tr>
<td>3D CNN</td>
<td>80.0</td>
<td>88.0</td>
</tr>
<tr>
<td>3D CNN with SE (Ours)</td>
<td>83.2</td>
<td>91.1</td>
</tr>
</tbody>
</table>
6. Evaluation on an actual camera dataset

To validate experiments with synthetic data in the previous section, we did an experiment with an actual camera setup. We made a real hand skin dataset which was acquired by a multispectral and RGB camera, and compared the identification performance achieved with each camera dataset against each other.

6.1. Experimental setup

We used a commercially available multispectral camera, the CMS-C of SILIOS Technologies, for the image acquisition. This camera can acquire 8 narrow spectral bands and a broad monochrome band. In our experiment, we used the 8 color spectral bands only. For the RGB image acquisition, we used the acA2500-14gc of Basler AG. Both cameras were synchronized by software with a framerate of about 5 frames per second. Their spectral sensitivities have been already shown in Figure 5. Other camera specifications and the experimental setup are explained in our Supplementary Material. We acquired images of both hands from 5 males, 1 Asian and 4 Caucasians. During the acquisition, the subjects moved their hands freely on the wall which was 0.8 meters away from the cameras. A conventional 100W bulb was used as a light source. As pre-processing before inputting to CNN, illumination normalization represented by equation 2 were applied to both datasets. In addition to that, we adjusted the field of view of a pixel by nearest neighbor resizing and the bit depth between both cameras by rounding RGB images. Measured noise levels were corresponding to \(\alpha = 0.36 \) in an RGB image and \(\alpha = 0.43 \) in a multispectral image on average of spectral bands.

Then, we split images of each hand into training data and evaluation data in the ratio of 7 to 3. In order to detect skin pixels, we preprocessed both RGB and multispectral images by transforming them into the HSV color space and identified skin pixels by a reference sub-color space. From the training data, we randomly extracted 8100 patches of size 16x16 pixels, centered around the detected pixels. In the same manner, we prepared 3471 patches per hand for the evaluation. We evaluated the performance with each input using the same three networks described in Section 5.4.

6.2. Result

Figure 11 shows selected results for comparing between the 2D CNN with RGB input and our proposed 3D CNN added SE with multispectral input. Since our goal is to identify a person from just a small skin area, this performance gap is considerable. Table 2 shows the quantitative results obtained from actual RGB and multispectral inputs with different networks. When comparing the performances between 2D CNN and 3D CNN without SE, multispectral based performance was improved with more than eight times the amount of training data to Section 5.4. On the other hand, RGB based performance was decreased. We believe that this result comes from 3D convolution, which benefit more from the relevant spectral information of multispectral data, and not only from the model capacity increase. We also confirmed that our proposed network led to more improvement by involving SE-blocks. The final performance gap was 4.8%. When considering the experimental setup of the class number and noise levels, this result is reasonable. Figure 12 shows another comparison with confusion matrices. This result also supports our conclusion.

Table 2. Classification accuracy with the actual camera dataset

<table>
<thead>
<tr>
<th>Approach</th>
<th>RGB (3 bands) (%)</th>
<th>Multispectral (8 bands) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D CNN [44]</td>
<td>88.3</td>
<td>91.3</td>
</tr>
<tr>
<td>3D CNN</td>
<td>87.9</td>
<td>92.5</td>
</tr>
<tr>
<td>3D CNN with SE (Ours)</td>
<td>89.1</td>
<td>93.1</td>
</tr>
</tbody>
</table>

Figure 12. Confusion matrices comparison between (a) 2D CNN with RGB input and (b) Ours with multispectral input: More confusion among subjects as well as between hands of a subject are found in (a). Ours with multispectral input distinguishes among hands more accurately.
that the experimental results with synthetic dataset was validated with the actual dataset.

7. Discussion with network explanation tool

In this section, we reveal the contributing factors to identification performances with Grad-CAM [31] which is a technique to produce visual explanations of decisions from a large class of CNN-based models.

Contribution degree of each spectral band: We can analyze contributing spectral bands of input. To facilitate this evaluation, we applied Grad-CAM to the 3D Wide-ResNet with SE model which was trained in Section 6. Then, we observed feature maps output from the last residual block. They had (N. of channels, height, width, No. of spectral bands) = (512, 4, 4, 8) dimensions and got weights for each spectral band. Figure 13 shows the histogram of the most contributing spectral band. From the aggregated result, we found that band #5 (center wavelength $\lambda_c = 572nm$) and #4 ($\lambda_c = 541nm$) contributed more than other bands. Some Grad-CAM visualizations as heat maps are shown in the bottom of Figure 13. We can see that the peak of contribution is located mostly within band #4 and #5.

Discussion: As shown above, there were significant bias among contributions of each input spectral bands. The plots in the top of Figure 13 are quoted from [9]. They are typical cases of skin reflectance with different conditions of the underlying blood. They indicate cases of high and low hemoglobin concentration as well as high and low oxygenation. [9] claims that a skin spectrum shapes into a “W” curve around 550nm due to underlying blood conditions which are depending on individuals. This is consistent with our Grad-CAM analysis, showing that spectral bands of this wavelength region were the most relevant for skin-based identification. Our 3D CNN with SE architecture enhanced the relevant spectral characteristics. Also, it could learn from the underlying hemoglobin more than other approaches. We consider that these are the main reasons for higher performance.

8. Conclusion

In this paper we have presented a novel framework for skin-based user identification, by combining multispectral imaging and CNNs. We showed superiority of our approach, with respect to conventional RGB imaging, when using the same amount of data. Feasibility of the approach was demonstrated with synthetic and actual image datasets. We proposed a novel 3D CNN model which is enhancing the influence of spectral image data. This paper is the first to involve SE-blocks for boosting relevant wavelengths. Additionally, we developed multispectral image dataset generation pipelines for finding an optimal shape of spatial-spectral data cubes.

Limitations and future work: One limitation is that we do not consider variations in illumination. A solution would be to add information from a spectrometer which senses the illumination spectra of a light source in a scene. Spectrometers recently became affordable devices, making this approach feasible. Another limitation is that we do not account for a sudden change of skin color due to sunburn or coloration by hand cream. Finally, the current work is restricted to the back-side of the hand. This is mainly due to the targeted use case scenario of a tabletop device. In principle, our approach can be also applied to the palm or other parts of the human body.

Optimizing spectral combinations of a mosaic-array sensor is the most interesting future work. Recently, there are several proposals which enable to customize capturing spectral bands such as [42]. We consider that our synthetic data generation framework and the CNN visualization technique described in Section 7 are valid for this work. Additionally, there should be many spatial clues of personal identification in infrared spectral bands, although our current camera configuration is limited to visible wavelengths only. We are looking forward to finding the best combination of bands and extending wavelengths for improving the performance of our identification framework.

Acknowledgement

We are grateful to our colleagues from Sony Europe B.V. and Sony Corporation for their fruitful discussions and support.
References

[32] Tatsuya Shimahara. Technologies for improving the speed and accuracy of fingerprint identification systems in support

