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Abstract

Multiple object video object segmentation is a challeng-

ing task, specially for the zero-shot case, when no object

mask is given at the initial frame and the model has to find

the objects to be segmented along the sequence. In our

work, we propose a Recurrent network for multiple object

Video Object Segmentation (RVOS) that is fully end-to-end

trainable. Our model incorporates recurrence on two dif-

ferent domains: (i) the spatial, which allows to discover the

different object instances within a frame, and (ii) the tem-

poral, which allows to keep the coherence of the segmented

objects along time. We train RVOS for zero-shot video ob-

ject segmentation and are the first ones to report quantita-

tive results for DAVIS-2017 and YouTube-VOS benchmarks.

Further, we adapt RVOS for one-shot video object segmen-

tation by using the masks obtained in previous time steps as

inputs to be processed by the recurrent module. Our model

reaches comparable results to state-of-the-art techniques

in YouTube-VOS benchmark and outperforms all previous

video object segmentation methods not using online learn-

ing in the DAVIS-2017 benchmark. Moreover, our model

achieves faster inference runtimes than previous methods,

reaching 44ms/frame on a P100 GPU.

1. Introduction

Video object segmentation (VOS) aims at separating the

foreground from the background given a video sequence.

This task has raised a lot of interest in the computer vision

community since the appearance of benchmarks [21] that

have given access to annotated datasets and standardized

metrics. Recently, new benchmarks [22, 33] that address

multi-object segmentation and provide larger datasets have

become available, leading to more challenging tasks.

Most works addressing VOS treat frames indepen-
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Figure 1. Our proposed architecture where RNN is considered in

both spatial and temporal domains. We also show some qualita-

tive results where each predicted instance mask is displayed with

a different color.

dently [3,4,17,30], and do not consider the temporal dimen-

sion to gain coherence between consecutive frames. Some

works have leveraged the temporal information using opti-

cal flow estimations [2,5,9,29] or propagating the predicted

masks through the video sequence [20, 34].

In contrast to these works, some methods propose to

train models on spatio-temporal features, e.g., [29] used

RNNs to encode the spatio-temporal evolution of objects

in the video sequence. However, their pipeline relies on an

optical flow stream that prevents a fully end-to-end train-

able model. Recently, [32] proposed an encoder-decoder

architecture based on RNNs that is similar to our proposed

pipeline. The main difference is that they process only a

single object in an end-to-end manner. Thus, a separate for-

ward pass of the model is required for each object that is
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present in the video. None of these models consider multi-

object segmentation in a unified manner.

We present an architecture (see Figure 1) that serves for

several video object segmentation scenarios (single-object

vs. multi-object, and one-shot vs. zero-shot). Our model

is based on RSIS [26], a recurrent model for instance seg-

mentation that predicts a mask for each object instance of

the image at each step of the recurrence. Thanks to the

RNN’s memory capabilities, the output of the network does

not need any post-processing step since the network learns

to predict a mask for each object. In our model for video

object segmentation, we add recurrence in the temporal do-

main to predict instances for each frame of the sequence.

The fact that our proposed method is recurrent in the spa-

tial (the different instances of a single frame) and the tem-

poral (different frames) domains allows that the matching

between instances at different frames can be handled natu-

rally by the network. For the spatial recurrence, we force

that the ordering in which multiple instances are predicted

is the same across temporal time steps. Thus, our model is

a fully end-to-end solution, as we obtain multi-object seg-

mentation for video sequences without any post-processing.

Our architecture addresses the challenging task of zero-

shot learning for VOS (also known as unsupervised VOS in

a new challenge from DAVIS-20191). In this case, no initial

masks are given, and the model should discover segments

along the sequences. We present quantitative results for

zero-shot learning for two benchmarks: DAVIS-2017 [22]

and YouTube-VOS [33]. Furthermore, we can easily adapt

our architecture for one-shot VOS (also known as semi-

supervised), by feeding the objects masks from previous

time steps to the input of the recurrent network. Our contri-

butions can be summarized as follows:

• We present the first end-to-end architecture for video

object segmentation that tackles multi-object segmen-

tation and does not need any post-processing.

• Our model can easily be adapted to one-shot and zero-

shot scenarios, and we present the first quantitative re-

sults for zero-shot video object segmentation for the

DAVIS-2017 and Youtube-VOS benchmarks [22, 33].

• We outperform previous VOS methods which do not

use online learning. Our model achieves a remarkable

performance without needing finetuning for each test

sequence, becoming the fastest method.

2. Related Work

Deep learning techniques for the object segmentation

task have gained attention in the research community during

the recent years [3, 5, 7–10, 13, 14, 20, 26–31, 34]. In great

1https://davischallenge.org/challenge2019/unsupervised.html

measure, this is due to the emergence of new challenges

and segmentation datasets, from Berkeley Video Segmen-

tation Dataset (2011) [1], SegTrack (2013) [15], Freiburg-

Berkeley Motion Segmentation Dataset (2014) [19], to

more accurate and dense labeled ones as DAVIS (2016-

2017) [21, 22], to the latest segmentation dataset YouTube-

VOS (2018) [32], which provides the largest amount of an-

notated videos up to date.

Video object segmentation Considering the temporal

dimension of video sequences, we differentiate between al-

gorithms that aim to model the temporal dimension of an

object segmentation through a video sequence, and those

without temporal modeling that predict object segmenta-

tions at each frame independently.

For segmentation without temporal modeling, one-shot

VOS has been handled with online learning, where the

first annotated frame of the video sequence is used to

fine-tune a pretrained network and segment the objects in

other frames [3]. Some approaches have worked on top of

this idea, by either updating the network online with ad-

ditional high confident predictions [30], or by using the

instance segments of the different objects in the scene as

prior knowledge and blend them with the segmentation out-

put [17]. Others have explored data augmentation strategies

for video by applying transformations to images and ob-

ject segments [12], tracking of object parts to obtain region-

of-interest segmentation masks [4], or meta-learning ap-

proaches to quickly adapt the network to the object mask

given in the first frame [34].

To leverage the temporal information, some works [5,

9, 18, 29] depend on pretrained models on other tasks (e.g.

optical flow or motion segmentation). Subsequent works

[2] use optical flow for temporal consistency after using

Markov random fields based on features taken from a Con-

volutional Neural Network. An alternative to gain tempo-

ral coherence is to use the predicted masks in the previous

frames as guidance for next frames [7, 11, 20, 34]. In the

same direction, [10] propagate information forward by us-

ing spatio-temporal features. Whereas these works cannot

be trained end-to-end, we propose a model that relies on

the temporal information and can be fully trained end-to-

end for VOS. Finally, [32] makes use of an encoder-decoder

recurrent neural network structure, that uses Convolutional

LSTMs for sequence learning. One difference between our

work and [32] is that our model is able to handle multiple

objects in a single forward pass by including spatial recur-

rence, which allows the object being segmented to consider

previously segmented objects in the same frame.

One and zero-shot video object segmentation In video

object segmentation, one-shot learning is understood as

making use of a single annotated frame (often the first frame

of the sequence) to estimate the remaining frames segmen-

tation in the sequence. On the other hand, zero-shot or unsu-
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pervised learning is understood as building models that do

not need an initialization to generate segmentation masks of

objects in the video sequence.

In the literature there are several works that rely on the

first mask as input to propagate it through the sequence

[3, 7, 10, 20, 29, 30, 34]. In general, one-shot methods reach

better performance than zero-shot ones, as the initial seg-

mentation is already given, thus not having to estimate the

initial segmentation mask from scratch. Most of these mod-

els rely on online learning, i.e. adapting their weights given

an initial frame and its corresponding masks. Typically on-

line learning methods reach better results, although they re-

quire more computational resources. In our case, we do not

rely on any form of online learning or post-processing to

generate the prediction masks.

In zero-shot learning, in order to estimate the segmen-

tation of the objects in an image, several works have ex-

ploited object saliency [8, 9, 27], leveraged the outputs of

object proposal techniques [13] or used a two-stream net-

work to jointly train with optical flow [5]. Exploiting mo-

tion patterns in videos has been studied in [28], while [14]

formulates the inference of a 3D flattened object represen-

tation and its motion segmentation. Finally, a foreground-

background segmentation based on instance embeddings

has been proposed in [16].

Our model is able to handle both zero and one-shot cases.

In Section 4 we show results for both configurations, tested

on the Youtube-VOS [33] and DAVIS-2017 [22] datasets.

For one-shot VOS our model has not been finetuned with

the mask given at the first frame. Furthermore, on the zero-

shot case, we do not use any pretraining on detection tasks

or rely on object proposals. This way, our model can be

fully trained end-to-end for VOS, without depending on

models that have been trained for other tasks.

End-to-end training Regarding video object segmenta-

tion we distinguish between two types of end-to-end train-

ing. A first type of approach is frame-based and allows

end-to-end training for multiple-objects [17, 30]. A second

group of models allow training in the temporal dimension

in an end-to-end manner, but deal with a single object at a

time [32], requiring a forward pass for each object and a

post-processing step to merge the predicted instances.

To the best of our knowledge, our model is the first that

allows a full end-to-end training given a video sequence and

its masks, without requiring any kind of post-processing.

3. Model

We propose a model based on an encoder-decoder ar-

chitecture to solve two different tasks for the video object

segmentation problem: one-shot and zero-shot VOS. On the

one hand, for the one-shot VOS, the input consists of the set

of RGB image frames of the video sequence, as well as the

masks of the objects at the frame where each object appears

for first time. On the other hand, for the zero-shot VOS, the

input only consists of the set of RGB image frames. In both

cases, the output consists of a sequence of masks for each

object in the video, with the difference that the objects to

segment are unknown in the zero-shot VOS task.

3.1. Encoder

We use the architecture proposed by [26], which consists

of a ResNet-101 [6] model pre-trained on ImageNet [25].

This architecture does instance segmentation by predict-

ing a sequence of masks, similarly to [23, 24]. The in-

put xt of the encoder is an RGB image, which corre-

sponds to frame t in the video sequence, and the output

ft = {ft,1, ft,2, ..., ft,k} is a set of features at different res-

olutions. The architecture of the encoder is illustrated as the

blue part (on the left) in Figure 2. We propose two different

configurations: (i) an architecture that includes the mask

of the instances from the previous frame as one additional

channel of the output features (as showed in the figure), and

(ii) the original architecture from [26], i.e. without the ad-

ditional channel. The inclusion of the mask from the previ-

ous frame is especially designed for the one-shot VOS task,

where the first frame masks are given.

3.2. Decoder

Figure 2 depicts the decoder architecture for a single

frame and a single step of the spatial recurrence. The de-

coder is designed as a hierarchical recurrent architecture

of ConvLSTMs [31] which can leverage the different res-

olutions of the input features ft = {ft,1, ft,2, ..., ft,k},

where ft,k are the features extracted at the level k of the

encoder for the frame t of the video sequence. The out-

put of the decoder is a set of object segmentation predic-

tions {St,1, , ..., St,i, ..., St,N}, where St,i is the segmenta-

tion of object i at frame t. The recurrence in the temporal

domain has been designed so that the mask predicted for

the same object at different frames has the same index in

the spatial recurrence. For this reason, the number of object

segmentation predictions given by the decoder is constant

(N ) along the sequence. This way, if an object i disap-

pears in a sequence at frame t, the expected segmentation

mask for object i, i.e. St,i, will be empty at frame t and

the following frames. We do not force any specific order in

the spatial recurrence for the first frame. Instead, we find

the optimal assignment between predicted and ground truth

masks with the Hungarian algorithm using the soft Intersec-

tion over Union score as cost function.

In Figure 3 the difference between having only spatial

recurrence, over having spatial and temporal recurrence is

depicted. The output ht,i,k of the k-th ConvLSTM layer

for object i at frame t depends on the following variables:

(a) the features ft obtained from the encoder from frame t,

(b) the preceding k − 1-th ConvLSTM layer, (c) the hid-
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Figure 2. Our proposed recurrent architecture for video object segmentation for a a single frame at time step t. The figure illustrates a single

forward of the decoder, predicting only the first mask of the image.

den state representation from the previous object i − 1 at

the same frame t, i.e. ht,i−1,k, which will be referred to as

the spatial hidden state, (d) the hidden state representation

representation from the same object i at the previous frame

t − 1, i.e. ht−1,i,k, which will be referred to as the tempo-

ral hidden state, and (e) the object segmentation prediction

mask St−1,i of the object i at the previous frame t− 1:

hinput = [ B2(ht,i,k−1) | f
′

t,k | St−1,i ] (1)

hstate = [ ht,i−1,k | ht−1,i,k ] (2)

ht,i,k = ConvLSTMk( hinput , hstate ) (3)

where B2 is the bilinear upsampling operator by a factor

of 2 and f ′

t,k is the result of projecting ft,k to have lower

dimensionality via a convolutional layer.

Equation 3 is applied in chain for k ∈ {1, ..., nb}, being

nb the number of convolutional blocks in the encoder. ht,i,0

is obtained by considering

hinput = [ f ′

t,0 | St−1,i ]

and for the first object, hstate is obtained as follows:

hstate = [ Z | ht−1,i,k ]

where Z is a zero matrix that represents that there is no

previous spatial hidden state for this object.

In Section 4, an ablation study will be performed in or-

der to analyze the importance of spatial and temporal recur-

rence in the decoder for the VOS task.

4. Experiments

The experiments are carried out for two different tasks of

the VOS: the one-shot and the zero-shot. In both cases, we

analyze how important the spatial and the temporal hidden
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Figure 3. Comparison between original spatial [26] (left) and pro-

posed spatio-temporal recurrent networks (right).

states are. Thus, we consider three different options: (i)
spatial model (temporal recurrence is not used), (ii) tempo-

ral model (spatial recurrence is not used), and (iii) spatio-

temporal model (both spatial and temporal recurrence are

used). In the one-shot VOS, since the masks for the objects

at the first frame are given, the decoder always considers

the mask St−1,i from the previous frame when computing

hinput (see Eq. 1). On the other hand, in the zero-shot VOS,

St−1,i is not used since no ground truth masks are given.

The experiments are performed in the two most recent

VOS benchmarks: YouTube-VOS [33] and DAVIS-2017

[22]. YouTube-VOS consists of 3,471 videos in the training

set and 474 videos in the validation set, being the largest

video object segmentation benchmark. The training set in-

cludes 65 unique object categories which are regarded as

seen categories. In the validation set, there are 91 unique

object categories, which include all the seen categories and

26 unseen categories. On the other hand, DAVIS-2017 con-

sists of 60 videos in the training set, 30 videos in the val-

idation set and 30 videos in the test-dev set. Evaluation is

performed on the YouTube-VOS validation set and on the

DAVIS-2017 test-dev set. Both YouTube-VOS and DAVIS-

2017 videos include multiple objects and have a similar du-

ration in time (3-6 seconds).
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YouTube-VOS one-shot

Jseen Junseen Fseen Funseen

RVOS-Mask-S 54.7 37.3 57.4 42.4

RVOS-Mask-T 59.9 39.2 63.1 45.6

RVOS-Mask-ST 60.8 44.6 63.7 50.3

RVOS-Mask-ST+ 63.1 44.5 67.1 50.4

Table 1. Ablation study about spatial and temporal recurrence in

the decoder for one-shot VOS in YouTube-VOS dataset. Models

have been trained using 80%-20% partition of the training set and

evaluated on the validation set. + means that the model has been

trained using the inferred masks.

The experiments are evaluated using the usual evalua-

tion measures for VOS: (i) the region similarity J , and (ii)
the contour accuracy F . In YouTube-VOS, each of these

measures is split into two different measures, depending on

whether the categories have already been seen by the model

(Jseen and Fseen), i.e. these categories are included in the

training set, or the model has never seen these categories

(Junseen and Funseen).

4.1. One­shot video object segmentation

One-shot VOS consists in segmenting the objects from a

video given the objects masks from the first frame. Since

the initial masks are given, the experiments have been per-

formed including the mask of the previous frame as one ad-

ditional input channel in the ConvLSTMs from our decoder.

YouTube-VOS benchmark Table 1 shows the results

obtained in YouTube-VOS validation set for different con-

figurations: spatial (RVOS-Mask-S), temporal (RVOS-

Mask-T) and spatio-temporal (RVOS-Mask-ST). All mod-

els from this ablation study have been trained using a 80%-

20% split of the training set. We can see that the spatio-

temporal model improves both the region similarity J and

contour accuracy F for seen and unseen categories over the

spatial and temporal models. Figure 4 shows some qualita-

tive results comparing the spatial and the spatio-temporal

models, where we can see that the RVOS-Mask-ST pre-

serves better the segmentation of the objects along the time.

Furthermore, we have also considered fine-tuning the

models some additional epochs using the inferred mask

from the previous frame Ŝt−1,i, instead of using the ground

truth mask St−1,i. This way, the model can learn how to fix

some errors that may occur in inference. In Table 1, we can

see that this model (RVOS-Mask-ST+) is more robust and

outperforms the model trained only with the ground truth

masks. Figure 5 shows some qualitative results comparing

the model trained with the ground truth mask and the model

trained with the inferred mask.

Once stated that the spatio-temporal model is the model

that gives the best performance, we have trained the model

using the whole YouTube-VOS training set to compare it

Figure 4. Qualitative results comparing spatial (rows 1,3) and

spatio-temporal (rows 2,4) models.

Figure 5. Qualitative results comparing training with ground truth

masks (rows 1,3) and training with inferred masks (rows 2,4).

with other state-of-the-art techniques (see Table 2). Our

proposed spatio-temporal model (RVOS-Mask-ST+) has

comparable results with respect to S2S w/o OL [33], with a

slightly worse performance in region similarity J but with

a slightly better performance in contour accuracy F . Our

model outperforms the rest of state-of-the-art techniques

[3, 20, 30, 34] for the seen categories. It is OSVOS [3]

the one that gives the best performance for the unseen cat-

egories. However, note that the comparison of S2S without

online learning [33] and our proposed model with respect to

OSVOS [3], OnAVOS [30] and MaskTrack [20] is not fair

for Junseen and Funseen because OSVOS, OnAVOS and

MaskTrack models are finetuned using the annotations of

the first frames from the validation set, i.e. they use online

learning. Therefore, unseen categories should not be con-

sidered as such since the model has already seen them.

Table 3 shows the results on the region similarity J and

the contour accuracy F depending on the number of in-

stances in the videos. We can see that the fewer the objects

to segment, the easier the task, obtaining the best results for

sequences where only one or two objects are annotated.

Figure 6 shows some qualitative results of our spatio-

temporal model for different sequences from YouTube-VOS

validation set. It includes examples with different number
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YouTube-VOS one-shot

OL Jseen Junseen Fseen Funseen

OSVOS [3] ✓ 59.8 54.2 60.5 60.7

MaskTrack [20] ✓ 59.9 45.0 59.5 47.9

OnAVOS [30] ✓ 60.1 46.6 62.7 51.4

OSMN [34] ✗ 60.0 40.6 60.1 44.0

S2S w/o OL [33] ✗ 66.7 48.2 65.5 50.3

RVOS-Mask-ST+ ✗ 63.6 45.5 67.2 51.0

Table 2. Comparison against state of the art VOS techniques for

one-shot VOS on YouTube-VOS validation set. OL refers to on-

line learning. The table is split in two parts, depending on whether

the techniques use online learning or not.

Number of instances (YouTube-VOS)

1 2 3 4 5

J mean 78.2 62.8 50.7 50.2 56.3

F mean 75.5 67.6 56.1 62.3 66.4

Table 3. Analysis of our proposed model RVOS-Mask-ST+ de-

pending on the number of instances in one-shot VOS.

of instances. Note that the instances have been properly

segmented although there are different instances of the same

category in the sequence (fishes, sheeps, people, leopards

or birds) or there are some instances that disappear from the

sequence (one sheep in third row or the dog in fourth row).

DAVIS-2017 benchmark Our pretrained model RVOS-

Mask-ST+ in YouTube-VOS has been tested on a different

benchmark: DAVIS-2017. As it can be seen in Table 4,

when the pretrained model is directly applied to DAVIS-

2017, RVOS-Mask-ST+ (pre) outperforms the rest of state-

of-the-art techniques that do not make use of online learn-

ing, i.e. OSMN [34] and FAVOS [4]. Furthermore, when

the model is further finetuned for the DAVIS-2017 training

set, RVOS-Mask-ST+ (ft) outperforms some techniques as

OSVOS [3], which is among the techniques that make use

of online learning. Note that online learning requires fine-

tuning the model at test time.

Figure 7 shows some qualitative results obtained for

DAVIS-2017 one-shot VOS. As depicted in some qualita-

tive results for YouTube-VOS, RVOS-Mask-ST+ (ft) is also

able to deal with objects that disappear from the sequence.

4.2. Zero­shot video object segmentation

Zero-shot VOS consists in segmenting the objects from

a video without having any prior knowledge about which

objects have to be segmented, i.e. no object masks are pro-

vided. This task is more complex that the one-shot VOS

since the model has to detect and segment the objects ap-

pearing in the video.

Nowadays, to our best knowledge, there is no benchmark

specially designed for zero-shot VOS. Although YouTube-

VOS and DAVIS benchmarks can be used for training and

DAVIS-2017 one-shot

OL J F

OSVOS [3] ✓ 47.0 54.8

OnAVOS [30] ✓ 49.9 55.7

OSVOS-S [17] ✓ 52.9 62.1

CINM [2] ✓ 64.5 70.5

OSMN [34] ✗ 37.7 44.9

FAVOS [4] ✗ 42.9 44.2

RVOS-Mask-ST+ (pre) ✗ 46.4 50.6

RVOS-Mask-ST+ (ft) ✗ 48.0 52.6

Table 4. Comparison against state of the art VOS techniques for

one-shot VOS on DAVIS-2017 test-dev set. OL refers to online

learning. The model RVOS-Mask-ST+(pre) is the one trained on

Youtube-VOS, and the model RVOS-Mask-ST+ (ft) is after fine-

tuning the model for DAVIS-2017. The table is split in two parts,

depending on whether the techniques use online learning or not.

evaluating the models without using the annotations given

at the first frame, both benchmarks have the limitation that

not all objects appearing in the video are annotated. Specif-

ically, in YouTube-VOS, there are up to 5 object instances

annotated per video. This makes sense when the objects to

segment are given (as done in one-shot VOS), but it may

be a problem for zero-shot VOS since the model could be

segmenting correctly objects that have not been annotated

in the dataset. Figure 8 shows a couple of examples where

there are some missing object annotations.

Despite the problem stated before about missing object

annotations, we have trained our model for the zero-shot

VOS problem using the object annotations available in these

datasets. To minimize the effect of segmenting objects that

are not annotated and missing the ones that are annotated,

we allow our system to segment up to 10 object instances

along the sequence, expecting that the up to 5 annotated ob-

jects are among the predicted ones. During training, each

annotated object is uniquely assigned to one predicted ob-

ject to compute the loss. Therefore, predicted objects which

have not been assigned do not result in any loss penaliza-

tion. However, the bad prediction of any annotated object is

considered by the loss. Analogously, in inference, in order

to evaluate our results for zero-shot video object segmenta-

tion, the masks provided for the first frame in one-shot VOS

are used to select which predicted instances are selected for

evaluation. Note that the assignment is only performed at

the first frame and the predicted segmentation masks con-

sidered for the rest of the frames are the corresponding ones.

YouTube-VOS benchmark Table 5 shows the results

obtained on YouTube-VOS validation set for the zero-shot

VOS problem. As stated for the one-shot VOS problem, the

spatio-temporal model (RVOS-ST) also outperforms both

spatial (RVOS-S) and temporal (RVOS-T) models.

Figure 9 shows some qualitative results for zero-shot
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Figure 6. Qualitative results for one-shot video object segmentation on YouTube-VOS with multiple instances.

Figure 7. Qualitative results for one-shot on DAVIS-2017 test-dev.

Figure 8. Missing object annotations may suppose a problem for

zero-shot video object segmentation.

VOS in YouTube-VOS validation set. Note that the masks

are not provided and the model has to discover the ob-

jects to be segmented. We can see that in many cases our

spatio-temporal model is temporal consistent although the

sequence contains different instances of the same category.

DAVIS-2017 benchmark To our best knowledge, there

are no published results for this task in DAVIS-2017 to be

compared. The zero-shot VOS has only been considered for

DAVIS-2016, where some unsupervised techniques have

YouTube-VOS zero-shot

Jseen Junseen Fseen Funseen

RVOS-S 40.8 19.9 43.9 23.2

RVOS-T 37.1 20.2 38.7 21.6

RVOS-ST 44.7 21.2 45.0 23.9

Table 5. Ablation study about spatial and temporal recurrence in

the decoder for zero-shot VOS in YouTube-VOS dataset. Our

models have been trained using 80%-20% partition of the train-

ing set and evaluated on the validation set.

been applied. However, in DAVIS-2016, there is only a sin-

gle object annotated for sequence, which could be consid-

ered as a foreground-background video segmentation prob-

lem and not as a multi-object video object segmentation.

Our pretrained model RVOS-ST on Youtube-VOS for zero-

shot, when it is directly applied to DAVIS-2017, obtains a

mean region similarity J = 21.7 and a mean contour ac-

curacy F = 27.3. When the pretrained model is finetuned

for the DAVIS-2017 trainval set achieves a slightly better

performance, with J = 23.0 and F = 29.9.

Although the model has been trained on a large video

dataset as Youtube-VOS, there are some sequences where

the object instances have not been segmented from the

beginning. The low performance for zero-shot VOS in

DAVIS-2017 (J = 23.0) can be explained due to the bad

performance also in YouTube-VOS for the unseen cate-
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Figure 9. Qualitative results for zero-shot video object segmenta-

tion on YouTube-VOS with multiple instances.

Figure 10. Qualitative results for zero-shot video object segmenta-

tion on DAVIS-2017 with multiple instances.

gories (Junseen = 21.2). Therefore, while the model is able

to segment properly categories which are included among

the YouTube-VOS training set categories, e.g. persons or

animals, the model fails when trying to segment an object

which has not been seen before. Note that it is specially for

these cases when online learning becomes relevant, since it

allows to finetune the model by leveraging the object mask

given at the first frame for the one-shot VOS problem. Fig-

ure 10 shows some qualitative results for the DAVIS-2017

test-dev set when no object mask is provided where our

RVOS-ST model has been able to segment the multiple ob-

ject instances appearing in the sequences.

4.3. Runtime analysis and training details

Runtime analysis Our model (RVOS) is the fastest

method amongst all while achieving comparable segmen-

tation quality with respect to state-of-the-art as seen pre-

viously in Tables 2 and 4. The inference time for RVOS

is 44ms per frame with a GPU P100 and 67ms per frame

with a GPU K80. Methods not using online learning (in-

cluding ours) are two orders of magnitude faster than tech-

niques using online learning. Inference times for OSMN

[34] (140ms) and S2S [33] (160ms) have been obtained

from their respective papers. For a fair comparison, we also

compute runtimes for OSMN [34] in our machines (K80

and P100) using their public implementation (no publicly

available code was found for [33]). We measured better

runtimes for OSMN than those reported in [34], but RVOS

is still faster in all cases (e.g. 65ms vs. 44ms on a P100,

respectively). To the best of our knowledge, our method is

the first to share the encoder forward pass for all the objects

in a frame, which explains its fast overall runtime.

Training details The original RGB frames and annota-

tions have been resized to 256×448 in order to have a fair

comparison with S2S [32] in terms of image resolution. In

training, due to memory restrictions, each training mini-

batch is composed with 4 clips of 5 consecutive frames.

However, in inference, the hidden state is propagated along

the whole video. Adam optimizer is used to train our net-

work and the initial learning rate is set to 10−6. Our model

has been trained for 20 epochs using the previous ground

truth mask and 20 epochs using the previous inferred mask

in a single GPU with 12GB RAM, taking about 2 days.

5. Conclusions

In this work we have presented a fully end-to-end train-

able model for multiple objects in video object segmenta-

tion (VOS) with a recurrence module based on spatial and

temporal domains. The model has been designed for both

one-shot and zero-shot VOS and tested on YouTube-VOS

and DAVIS-2017 benchmarks.

The experiments performed show that the model trained

with spatio-temporal recurrence improves the models that

only consider the spatial or the temporal domain. We give

the first results for zero-shot VOS on both benchmarks and

we also outperform state-of-the-art techniques that do not

make use of online learning for one-shot VOS on them.

The code is available in our project website2.
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