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Figure 1: The proposed optimization-based method automatically discovers links between images that depict similar objects. This figure

shows two image clusters that emerge as a by-product of this approach on the VOC 6x2 object recognition dataset that mixes 6 classes

under two viewpoints. See text for details.

Abstract

Learning with complete or partial supervision is power-

ful but relies on ever-growing human annotation efforts. As

a way to mitigate this serious problem, as well as to serve

specific applications, unsupervised learning has emerged as

an important field of research. In computer vision, unsu-

pervised learning comes in various guises. We focus here

on the unsupervised discovery and matching of object cate-

gories among images in a collection, following the work of

Cho et al. [12]. We show that the original approach can be

reformulated and solved as a proper optimization problem.

Experiments on several benchmarks establish the merit of

our approach.

1. Introduction

Remarkable progress has been achieved in visual tasks

such as image categorization, object detection, or semantic

segmentation, typically using fully supervised algorithms

and vast amount of manually annotated data (e.g., [17, 20,

21, 27, 29, 38, 40]). With the advent of crowd-sourcing,

large corporations and, to a lesser extent, academic units

can launch the corresponding massive annotation efforts for

specific projects that may involve millions images [40].

But handling Internet-scale image (or video) repositories

or the continuous learning scenarios associated with per-

sonal assistants or autonomous cars demands approaches

less hungry for manual annotation. Several alternatives

are possible, including weakly supervised approaches that

rely on readily available meta-data [2, 9] or image-level la-

bels [14, 23, 24, 25, 39, 45] instead of more complex anno-

tations such as bounding boxes [17, 38] or object masks [20]

as supervisory signal; semi supervised methods [6, 26] that

exploit a relatively small number of fully annotated pic-

tures, together with a larger set of unlabelled images; and

self supervised algorithms that take advantage of the in-

ternal regularities of image parts [15, 37] or video subse-

quences [1, 34, 48] to construct image models that can be

further fine-tuned in fully supervised settings.

We address here the even more challenging problem of

discovering both the structure of image collections – that

is, which images depict similar objects (or textures, scenes,

actions, etc.), and the objects in question, in a fully un-

supervised setting [8, 11, 16, 30, 39, 41, 43]. Although

weakly, semi, and self supervised methods may provide a
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more practical foundation for large-scale visual recogni-

tion, the fully unsupervised construction of image models

is a fundamental scientific problem in computer vision, and

it should be studied. In addition, any reasonable solution to

this problem will facilitate subsequent human labelling (by

presenting discovered groups to the operator) and scaling

through automatic label propagation, help interactive query-

based visual search by linking ahead of time fragments of

potential interest, and provide a way to learn visual models

for subsequent recognition.

1.1. The implicit structure of image collections

Any collection of images, say, those found on the Inter-

net, or more modestly, in a dataset such as Pascal VOC’07,

admits a natural graph representation, where nodes are the

pictures themselves, and edges link pairs of images with

similar visual content. In supervised image categoriza-

tion (e.g., [27, 29]) or object detection (e.g., [17, 20, 38])

tasks, both the graph structure and the visual content are

clearly defined: Annotators typically sort the images into

bags, each one intended to represent some “object”, “scene”

or, say, “action” class (“horse”, “forest”, “playing tennis”,

etc.). Two nodes are linked by an edge when they are associ-

ated with the same bag, and each class is empirically defined

by the images (or some manually-defined rectangular re-

gions within) in the corresponding connected component of

the graph. In weakly supervised cosegmentation [23, 25, 39]

or colocalization [14, 24, 45] tasks, on the other hand, the

graph is fully connected, and all images are supposed to

contain instances of the (few) same object categories, say,

“horse”, “grass”, “sky”, “background”. Manual interven-

tion is reduced to selecting which images to put into a single

bag, and the visual content, in the form of regions defined

by pixel-level symbolic labels or bounding boxes associated

with one of the predefined categories, is discovered using a

clustering algorithm.1

We address in this paper the much more difficult problem

of fully unsupervised image matching and object discovery,

where both the graph structure and a model of visual con-

tent in the form of object bounding boxes must be extracted

from the native data without any manual intervention. This

problem has been addressed in various forms, e.g., cluster-

ing [16]2, image matching [39] or topic discovery [41, 43]

(see also [8, 11], where “pseudo-object” labels are learned

in an unsupervised manner). In this presentation, we build

directly on the work of Cho et al. [12] (see [28] for related

1In both the cases of supervised image categorization/object detec-

tion and weakly supervised cosegmentation/colocalization, once the graph

structure and the visual content have been identified at training time, these

can be used to learn a model of the different object classes and add nodes,

edges, and possibly additional bounding boxes at test time.
2Note that plain unsupervised clustering, whether classic, spectral, dis-

criminative or deep [4, 22, 32, 36], focuses on data partitioning and not on

the discovery of subsets of matching items within a cluttered collection.

work): Given an image and its neighbors, assumed to con-

tain the same object, a robust matching technique exploits

both appearance and geometric consistency constraints to

assign confidence and saliency (“stand-out”) scores to re-

gion proposals in this image. The overall discovery algo-

rithm alternates between localization steps where the neigh-

bors are fixed and the regions with top saliency scores are

selected as potential objects, and retrieval steps where the

confidence of the regions within potential objects are used

to find the nearest neighbors of each image. After a fixed

number of steps, the region with top saliency in each im-

age is declared to be the object it contains. Empirically,

this method has been shown in [12] to give good results.

However, it does not formulate image matching and object

discovery as a proper optimization problem, and there is no

guarantee that successive iterations will improve some ob-

jective measure of performance. The aim of this paper is to

remedy this situation.

2. Proposed approach

2.1. Problem statement

Let us consider a set of n images, each containing pi
rectangular region proposals, with i in {1 . . . n}. We as-

sume that the images are equipped with some implicit graph

structure, where there is a link between two images when

the second image contains at least one object from a cate-

gory depicted in the first one, and our aim is to discover this

structure, that is, find the links and the corresponding ob-

jects. To model this problem, let us define an indicator vari-

able xk
i , whose value is 1 when region number k of image

i corresponds to a “foreground object” (visible in large part

and from a category that occurs multiple times in the image

collection), and 0 otherwise. We collect all the variables

xk
i associated with image i into an element xi of {0, 1}pi ,

and concatenate all the variables xi into an element x of

{0, 1}
∑n

i=1
pi . Likewise, let us define an indicator variable

eij , whose value is 1 if image j contains an object also oc-

curring in image i, with 1 ≤ i, j ≤ n and j 6= i, and 0

otherwise, collect all the variables eij associated with im-

age i into an element ei of {0, 1}n, and concatenate all the

variables ei into an n× n matrix e with rows eTi . Note that

we can use e to define a neighborhood for each image in the

set: Image j is a neighbor of the image i if eij = 1. By

definition, e defines an undirected graph if e is symmetric

and a directed one otherwise. Let us also denote by Skl
ij the

similarity between regions k and l of images i and j, and by

Sij the pi × pj matrix with entries Skl
ij .

We propose to maximize with respect to x and e the ob-

jective function

S(x, e) =

n
∑

i,j=1
j 6=i

eij
∑

1≤k≤pi

1≤l≤pj

Skl
ij x

k
i x

l
j =

n
∑

i,j=1
j 6=i

xT
i [eijSij ]xj . (1)
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Intuitively maximizing S(x, e) encourages building edges

between images i and j that contain regions k and l with a

strong similarity Skl
ij . Of course we would like to impose

certain constraints on the x and e variables. The following

cardinality constraints are rather natural:

• An image should not contain more than a prededined

number of objects, say ν,

∀ i ∈ 1 . . . n, xi · 1pi
≤ ν, (2)

where 1pi
is the element of Rpi with all entries equal to one.

• An image should not match more than a predefined num-

ber of other images, say τ ,

∀ i ∈ 1 . . . n, ei · 1n ≤ τ. (3)

Assumptions. We will suppose from now on that Sij is el-

ementwise nonnegative, but not necessarily symmetric (the

similarity model we explore in Section 3 is asymmetrical).

Likewise, we will assume that the matrix e has a zero diag-

onal but is not necessarily symmetric.

Under these assumptions, the cubic pseudo-Boolean

function S is supermodular [10]. Without constraints, this

type of functions can be maximized in polynomial time us-

ing a max-flow algorithm [7] (in the case of S(x, e), which

does not involve linear and quadratic terms, the solution is

of course trivial without constraints, and amounts to setting

all xk
i and eij with i 6= j to 1). When the cardinality con-

straints (2-3) are added, this is not the case anymore, and

we have to resort to a gradient ascent algorithm as explained

next.

2.2. Relaxing the problem

Let us first note that, for binary variables xk
i , xl

j and eij ,

we have

S(x, e) =

n
∑

i,j=1
j 6=i

∑

1≤k≤pi

1≤l≤pj

Skl
ij min(eij , x

k
i , x

l
j), (4)

with Skl
ij ≥ 0. Relaxing our problem so all variables are

allowed to take values in [0, 1], our objective becomes a sum

of concave functions, and thus is itself a concave function,

defined over the convex set (hyperrectangle) [0, 1]N , where

N is the total number of variables. This is the standard tight

concave continuous relaxation of supermodular functions.

The Lagrangian associated with our relaxed problem is

K(x, e;λ, µ) = S(x, e)−
n
∑

i=1

[λi(xi·1pi
−ν)+µi(ei·1n−τ)],

(5)

where λ = (λ1, . . . , λn)
T and µ = (µ1, . . . , µn)

T are pos-

itive Lagrange multipliers. The function S(x, e) is concave

and the primal problem is strictly feasible; hence Slater’s

conditions [44] hold, and we have the following equivalent

primal and dual versions of our problem

{

max(x,e)∈D infλ,µ≥0 K(x, e;λ, µ),
minλ,µ≥0 sup(x,e)∈D K(x, e;λ, µ),

(6)

where the domain D is the Cartesian product of [0, 1]
∑

i
pi

and the space of n × n matrices with entries in [0, 1] and a

zero diagonal. With slight abuse we denote it D = [0, 1]N ,

with N =
∑

i pi + n(n− 1).

2.3. Solving the dual problem

We propose to solve the dual problem with a subgradient

descent approach. Starting from some initial values for λ0

and µ0, we use the update rule

{

λt+1
i = [λt

i + α(xt
i · 1pi

− ν)]+,
µt+1
i = [µt

i + β(eti · 1n − τ)]+,
(7)

where [·]+ denotes positive part, k ≥ 0, α and β are fixed

step sizes, xt
i · 1pi

− ν and eti · 1n − τ are respectively the

negative of the subgradients of the Lagrangian with respect

to λi and µi in λt
i and µt

i, and

(xt, et) ∈ argmax(x,e)∈[0,1]NK(x, e;λt, µt). (8)

As shown in Appendix, for fixed values of λ and µ, our

Lagrangian is a supermodular pseudo-Boolean function of

binary variables sets x and e. This allows us to take advan-

tage of the following direct corollary of [3, Prop. 3.7].

Proposition 2.1. Let f denote some supermodular pseudo-

Boolean function of n variables. We have

max
x∈{0,1}n

f(x) = max
x∈[0,1]n

f(x), (9)

and the set of maximizers of f(x) in [0, 1]n is the convex

hull of the set of maximizers of f on {0, 1}n.

In particular, we can take

(xt, et) ∈ argmax(x,e)∈{0,1}NK(x, e;λt, µt). (10)

As shown in [7, 10], the corresponding supermodular cubic

pseudo-Boolean function optimization problem is equiva-

lent to a maximum stable set problem in a bipartite con-

flict graph, which can itself be reduced to a maximum-flow

problem. See Appendix for details.

Note that the size of the min-cut/max-flow problems that

have to be solved is conditioned by the number of nonzero

Skl
ij entries, which is upper-bounded by n2p2 when the ma-

trices Sij are dense (denoting p = max{pi}). This is pro-

hibitively high given that, in practice, p is between 1000 and

4000. To make the computations manageable, we set all but

between 100 and 1000 (depending on the dataset’s size) of

the largest entries in Sij to zero in our implementation.
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2.4. Solving the primal problem

Once the dual problem is solved, as argued by Nedić &

Ozdaglar [35] and Bach [3], an approximate solution of the

primal problem can be found as a running average of the

primal sequence (xt, et) generated as a by-product of the

sub-gradient method:

x̂ =
1

T

T−1
∑

t=0

xt, ê =
1

T

T−1
∑

t=0

et (11)

after some number T of iterations. Note the scalars x̂k
i and

êij lie in [0, 1] but do not necessarily verify the constraints

(2) and (3). Theoretical guarantees on these values can be

found under additional assumptions in [3, 35].

2.5. Rounding the solution and greedy ascent

Note that two problems remain to be solved: The

solution (x̂, ê) found now belongs to [0, 1]N instead of

{0, 1}N , and it may not satisfy the original constraints.

Note, however, that because of the form of the function

S, given some i in {1, . . . , n} and fixed values for e and

all xj with j 6= i, the maximum value of S given the

constraints is obtained by setting to 1 exactly the ν entries

of xi corresponding to the ν largest entries of the vector
∑

j 6=i(eijSij + ejiS
T
ji)xj . Likewise, for some fixed value

of x, the maximum value of S is reached by setting to 1, for

all i in {1, . . . , n}, exactly the τ entries of ei corresponding

to the τ largest scalars xT
i Sijxj for j 6= i in {1 . . . n}.

This suggests the following approach to rounding up the

solution, where the variables xi are updated sequentially

in an order specified by some random permutation σ of

{1, . . . , n}, before the variables ei are updated in parallel.

Given the permutation σ, the algorithm below turns the

running average (x̂, ê) of the primal sequence into a dis-

crete solution (x, e) that satisfies the conditions (2) and (3):

Initialize x = x̂, e = ê.

For i = 1 to n do

Compute the indices k1 to kν of the ν largest

elements of the vector
∑n

j 6=σ(i)(eσ(i)jSσ(i)j + ejσ(i)S
T
jσ(i))xj .

xσ(i) ← 0.

For t = 1 to ν do xkt

σ(i) ← 1.

For i = 1 to n do

Compute the indices j1 to jτ of the τ largest scalars

xT
i Sijxj .

ei ← 0.

For t = 1 to τ do eijt ← 1.

Return x, e.

Note that there is no preferred order for the image in-

dices. This actually suggests repeating this procedure with

different random permutations until the variables x and e do

not change anymore or some limit on the number of itera-

tions is reached. This iterative procedure can be seen as a

greedy ascent procedure over the discrete variables of inter-

est. Note that by construction the terms in the left and right

sides of (2) and (3) are equal at the optimum.

2.6. Ensemble post processing

The parameter ν can be seen from two different view-

points: (1) as the maximum number of objects that may be

depicted in an image, or (2) as an upper bound on the total

number of object region candidates that are under consid-

eration in a picture. Both viewpoints are equally valid but,

following Cho et al. [12], we focus in the rest of this pre-

sentation on the second one, and present in this section a

simple heuristic for selecting one final object region among

these candidates. Concretely, since using random permuta-

tions during greedy ascent provides a different solution for

each run of our method, we propose to apply an ensemble

method to stabilize the results and boost performance in this

selection process, itself viewed as a post-processing stage

separate from the optimization part.

Let us suppose that after L independent executions of the

greedy ascent step, we obtain L solutions (x(l), e(l)), 1 ≤
l ≤ L. We start by combining these solutions into a single

discrete pair (x̄, ē) where x̄ and ē satisfy

• x̄k
i = 1 if ∃ l, 1 ≤ l ≤ L such that xk

i (l) = 1,

• ēij = 1 if ∃ l, 1 ≤ l ≤ L such that eij(l) = 1.

This way of combining the individual solutions can be seen

as a max pooling procedure. We have also tried average

pooling but found it less effective. Note that after this in-

termediate step, an image might violate any of the two con-

straints (2-3). This is not a problem in this postprocessing

stage of our method. Indeed, we next show how to use x̄

and ē to select a single object proposal for each image.

We choose a single proposal for each image out of those

retained in x̄ (proposals (i, k) s.t. x̄k
i = 1). To this end,

we rank the proposals in image i according to a score uk
i

defined for each proposal (i, k) as

uk
i = x̄k

i

∑

j∈N (i,k)

max
l|x̄l

j
=1

Skl
ij , (12)

where N (i, k) is composed of the τ images represented by

the 1s in ēi which have the largest similarity to (i, k) as

measured by maxl|x̄l
j
=1 S

kl
ij . Finally, we choose the pro-

posal in image i with maximum score uk
i as the final ob-

ject region. Note that the graph of images corresponding to

these final object regions can be retrieved by computing e

that maximizes the objective function given the value of x

defined by these regions as in the greedy ascent. Also, the

method above can be generalized to more than one proposal

per image using the defined ranking.
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3. Similarity model

Let us now get back to the definition of the similarity

function Sij . As advocated by Cho et al. [12], a rectan-

gular region which is a tight fit for a compact object (the

foreground) should better model this object than a larger re-

gion, since it contains less background, or than a smaller

region (a part) since it contains more foreground. Cho et

al. [12] only implement the first constraint, in the form of

a stand-out score. We discuss in this section how to imple-

ment these ideas in the optimization context of this work.

3.1. Similarity score

Following [12], the similarity score between proposal k

of image i and proposal l of image j can be defined as

sklij = aklij

∑

o∈O

g(rki , r
l
j , o)

∑

1≤k′≤pi

1≤l′≤pj

g(rk
′

i , rl
′

j , o)a
k′l′

ij , (13)

where aklij is a similarity term based on appearance alone,

using the WHO descriptor (whiten HOG) [13, 19] in our

case, rki and rlj denote the image rectangles associated with

the two proposals, o is a discretized offset (translation plus

two scale factors) taking values in O, and g(r, s, o) mea-

sures the geometric compatibility between o and the rect-

angles r and s. Intuitively, sklij scales the appearance-only

score aklij by a geometric-consistency term akin to a gener-

alized Hough transform [5], see [12] for details.

Note that we can rewrite Eq. (13) as

sklij = bklij · cij , (14)

where bklij is the vector of dimension |O| with entries

aklijg(r
k
i , r

l
j , o), and cij =

∑p

k′,l′=1 b
k′l′

ij . The pipj vectors

bklij and the vector cij can be precomputed with time and

storage cost of O(p2|O|). Each term sklij can then be com-

puted in O(|O|) time, and the matrix Sij can thus be com-

puted with a total time and space complexity of O(p2|O|).
Note that the score sklij defined by Eq. (13) depends on

the number of region proposals per images, which may in-

troduce a bias for edges between images that contain many

region proposals. It may thus be desirable to normalize this

score by defining it instead as

sklij =
1

pipj
bklij · cij . (15)

3.2. Standout score

Let us identify the region proposals contained in some

image i with their index k, and define P k
i as the set of re-

gions that are parts of that region (that is, they are included,

with some tolerance, within k). Let us also define Bk
i as the

set of regions that form the background for k (that is, k is

included, with some tolerance, within these regions). Let rki

denote the actual rectangular image region associated with

proposal k in image i, and let A(r) denote the area of some

rectangle r. A plausible definition for P k
i is

P k
i = {l : A(rki ∩ rli) > ρA(rli)}, (16)

for some reasonable value of ρ, e.g., 0.5. Likewise, a plau-

sible definition for Bk
i is

Bk
i = {l : A(rki ∩ rli) > δA(rki ) and A(rli) > γA(rki )},

(17)

for reasonable values of δ and γ, e.g., 0.8 and 2. Follow-

ing [12], we define the stand-out score of a match (k, l) as

Skl
ij = sklij − vklij , where vklij = max

(k′,l′)∈Bk
i
×Bl

j

sk
′l′

ij . (18)

With this definition, Skl
ij may be negative. In our implemen-

tation, we threshold these scores so they are nonnegative.

When Bk
i and Bl

j are large, which is generally the case

when the regions rki and rlj are small, a brute-force compu-

tation of vklij may be very slow. We propose below instead a

simple heuristic that greatly speeds up calculations.

Let Qij denote the set formed by the q matches (k, l)
with highest scores sklij , sorted in increasing order, which

can be computed in O(p2 log p). The stand-out scores

can be computed efficiently by the following procedure:

Initialize all vklij to 0.

For each match (k′, l′) in Qij do

For each match (k, l) in P k′

i × P l′

j do vklij = sk
′l′

ij .

For k = 1 to pi and l = 1 to pj do

If sklij > 0 and vklij = 0 then vklij = max
(k′,l′)∈Bk

i
×Bl

j

sk
′l′

ij .

The idea is that relatively few high-confidence matches

(k′, l′) in Qij can be used to efficiently compute many

stand-out scores. There is a trade-off between the cost of

this step, O(
∑

(k′,l′)∈Qij
|P k′

i | |P
l′

j |), and the number of

variables vklij it assigns a value to, O(| ∪(k′,l′)∈Qij
P k′

i ×

P l′

j |). In practice, we have found that taking q = 10, 000
is a good compromise, with only about 5% of the stand-out

scores being computed in a brute-force manner, and a sig-

nificant speed-up factor of over 10.

4. Experiments and results

Datasets, proposals and metric. For our experiments we

use the same datasets (ObjectDiscovery [OD], VOC 6x2

and VOC all) and region proposals (obtained by the ran-

domized Prim’s algorithm [RP] [33]) as Cho et al. [12]. OD

consists of pictures of three object classes (airplane, horse

and car) with outliers not containing any object instance.

There are 100 images per category, with 18, 7 and 11 out-

liers respectively (containing no object instance). VOC all
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Method OD VOC 6x2

Cho et al. 84.2 67.7

Cho et al., our version 84.2 67.6

w/o EM

w/o CO
w/o NS 81.9 ± 0.9 65.9 ± 1.0

w NS 83.1 ± 0.8 67.2 ± 1.0

w CO
w/o NS 82.9 ± 0.8 66.6 ± 0.7

w NS 84.4 ± 0.8 68.1 ± 0.9

w EM

w/o CO
w/o NS 84.4 ± 0.0 68.8 ± 0.4

w NS 85.6 ± 0.3 68.7 ± 0.5

w CO
w/o NS 83.8 ± 0.2 67.4 ± 0.4

w NS 85.8 ± 0.6 69.4 ± 0.3

Table 1: Performance of different configurations of our algorithm

compared to the results of Cho et al. on Object Discovery and

VOC 6x2 datasets in the separate setting.

is a subset of the PASCAL VOC2007 train+val dataset ob-

tained by eliminating all images containing only objects

marked as difficult or truncated. Finally, VOC 6x2 is a sub-

set of VOC all containing only images of 6 classes – aero-

plane, bicycle, boat, bus, horse – and motorbike from two

different views, left and right.

For evaluation, we use the standard CorLoc measure,

the percentage of images correctly localized. It is a proxy

metric in the case of unsupervised discovery. An image

is “correctly localized” when the intersection over union

(IoU ) between one of the ground-truth regions and the pre-

dicted one is greater than 0.5. Following [12], we evaluate

our algorithm in “separate” and “mixed” settings. In the

former case, the class-wise performance is averaged over

classes. In the latter, a single performance is computed

over all classes jointly. In our experiments, we use ν = 5,

τ = 10 and standout matrices with 1000 non-zero entries

unless mentioned otherwise.

Separate setting. We firstly evaluate different settings

of our algorithm on the two smaller datasets, OD and

VOC 6x2. The performance is governed by three design

choices: (1) using the normalized stand-out score (NS) or

its unnormalized version, (2) using continuous optimization

(CO) or variables x and e with all entries equal to one to

initialize the greedy ascent procedure, and (3) using the en-

semble method (EM) or not. In total, we thus have eight

configurations to test.

The results are shown in Table 1. We have found a small

bug in the publicly available code of Cho et al. [12], and re-

port both the results from [12] and those we obtained after

correction. We observe that the normalized standout score

always gives comparable or better results than its unnormal-

ized counterpart, while the ensemble method also improves

both the score and the stability (lower variance) of our solu-

tion. Combining the normalized standout score, the ensem-

ble method, and the continuous optimization initialization

to greedy ascent yields the best performance. Our best re-

sults outperform [12] by small but statistically significant

margins: 1.6% for OD and 1.8% for VOC 6x2. Finally,

to assess the merit of the continuous optimization, we have

Method VOC all

Cho et al. 36.6

Cho et al., our execution 37.6

w/o CO
w/o EM 36.4 ± 0.3

w EM 39.0 ± 0.2

w CO
w/o EM 37.8 ± 0.3

w EM 39.2 ± 0.2

Li et al. [31] 40.0

Wei et al. [49] 46.9

Table 2: Performance on VOC all in separate setting with differ-

ent configurations.

measured its duality gap on OD and VOC 6x2: it ranges

from 1.5% to 8.7% of the energy, with an average of 5.2%

and 3.9% on the two datasets respectively.

We now evaluate our algorithm on VOC all. As the com-

plexity of solving the max flow problem grows very fast

with the number of images, for configurations with contin-

uous optimization, we reduce the number of non-zero en-

tries in each standout matrix such that the total number of

nodes in the graph is around 2× 107. These standout matri-

ces are then used in rounding the continuous solution, but in

the greedy ascent procedure we switch to standout matrices

with 1000 non-zero entries. For configurations without the

continuous optimization, we always use the standout matri-

ces with 1000 non-zero entries. Also, to reduce the mem-

ory footprint of our method, we prefilter the set of potential

neighbors of each image for the class person that contains

1023 pictures. Pre-filtering is done by marking 100 nearest

neighbors of each image in terms of Euclidean distance be-

tween GIST [46] descriptors as potential neighbors. In the

separate setting, we only apply the pre-filtering on the class

person which has 1023 images. The other classes are suffi-

ciently small for not resorting to the prefiltering procedure.

Table 2 shows the CorLoc values obtained by our method

with different configurations compared to Cho et al. It can

be seen that the ensemble postprocessing and the continu-

ous optimization are also helpful on this dataset. We obtain

the best result with the configuration that includes both of

them, which is 1.6% better than Cho et al. However, our

performance is still inferior to state of the art in image colo-

calization [31, 49] which employ deep features from con-

volutional neural networks trained for image classification

and explicitly exploits the single-class assumption.

Mixed setting. We now compare in Table 3 the perfor-

mance of our algorithm to Cho et al. in the mixed setting

(none of the other methods is applicable to this case). It can

be seen that our algorithm without the continuous optimiza-

tion has the best performance among those in considera-

tion. Compared to Cho et al., it gives a CorLoc 0.8% better

on OD dataset, 4.3% better on VOC 6x2 and 2.3% better

on VOC all. The decrease in performance of our method

when using the continuous optimization is likely due to the

fact that we use standout matrices with only 200 non-zero

entries on OD, 100 non-zero entries on VOC 6x2 and 100
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Method OD VOC 6x2 VOC all

Cho et al. - - 37.6

Cho et al., our execution 82.2 55.9 37.5

w/o CO 83.0 ± 0.4 60.2 ± 0.4 39.8 ± 0.2

w CO 80.8 ± 0.5 59.3 ± 0.4 38.5 ± 0.2

Table 3: Performance on the datasets in mixed setting.

Method VOC 6x2

ν = 1
w/o CO

w/o EM 63.5 ± 1.2

w EM 67.7 ± 0.8

w CO
w/o EM 65.8 ± 0.8

w EM 68.1 ± 0.7

ν = 5
w/o CO

w/o EM 67.2 ± 1.0

w EM 68.7 ± 0.5

w CO
w/o EM 68.1 ± 0.9

w EM 69.4 ± 0.3

ν = 10
w/o CO

w/o EM 68.6 ± 1.0

w EM 69.1 ± 0.3

w CO
w/o EM 68.9 ± 0.7

w EM 70.0 ± 0.3

Table 4: Performance of different configurations of our algorithm

with ν = 1, ν = 5 and ν = 10.

non-zero entries on VOC all (due to the limit on the number

of nodes of the bipartite graphs) in the configuration with

the continuous optimization while we use standout matrices

with 1000 non-zero entries in the configuration without the

continuous optimization.

Sensitivity to ν. We compare the performance of our

method when using different values of ν on the VOC 6x2

dataset.3 Table 4 shows the CorLoc obtained by different

configurations of our algorithm, all with normalized stand-

out. The performance consistently increases with the value

of ν on this dataset. In all other experiments however, we

set ν = 5 to ease comparisons to [12].

Using deep features. Since activations from deep neural

networks trained for image classification (deep features) are

known to be better image representations than handcrafted

features in various tasks, we have also experimented with

such descriptors. We have replaced WHO [19] by activa-

tions from different layers in VGG16 [42], when computing

the appearance similarity between regions. In this case, the

similarity between two regions is simply the scalar prod-

uct of the corresponding deep features (normalized or not).

As a preliminary experiment to evaluate the effectiveness of

deep features, we have run our algorithm without the contin-

uous optimization with the standout score computed using

layers conv4 3, conv5 3 and fc6 in VGG16. Table 5 shows

the results of these experiments. Surprisingly, most of the

deep features tested give worse results than WHO. This may

be due to the fact that our matching task is more akin to im-

age retrieval than classification, for which deep features are

typically trained. Among those tested, only a variant of the

features extracted from the layer conv5 3 of VGG16 gives

an improvement (about 2%) compared to the result obtained

3Note that we have also tried the interpretation of ν as the maximum

number of objects per image, without satisfying results so far.

by using WHO.

Features Average

WHO 68.8 ± 0.5

conv4 3

warping +

center cropping

unnormalized 64.2 ± 0.2

normalized 57.1 ± 0.6

ROI pooling [18]
unnormalized 63.1 ± 0.2

normalized 63.4 ± 0.4

conv5 3

warping +

center cropping

unnormalized 64.9 ± 0.2

normalized 64.1 ± 0.4

ROI pooling [18]
unnormalized 70.7 ± 0.2

normalized 68.2 ± 0.3

fc6
warping +

center cropping

unnormalized 61.3 ± 0.2

normalized 61.0 ± 0.4

Table 5: Performance of our algorithm with deep features on

VOC 6x2 in the separate setting.

Unsupervised initial proposals. It should be noted that,

although our algorithm like that of Cho et al. [12] is totally

unsupervised once given the region proposals, the random-

ized Prim’s algorithm itself is supervised [33]. To study

the effect of this built-in supervision, we have also tested

the unsupervised selective search algorithm [47] for choos-

ing region proposals. We have conducted experiments on

VOC 6x2 dataset with the three different settings of selec-

tive search (fast, medium and quality). As one might expect,

the fast mode gives the smallest number of proposals and of

positive ones (proposals whose IoU with one ground truth

box is greater than 0.5); the quality mode outputs the largest

set of proposals and of positive ones, the medium mode lies

in-between. To compare with [12], we also run their public

software with each mode of selective search.

Proposal algorithm Cho et al. Ours

selective search

fast 23.3 41.4 ± 0.5

medium 20.6 48.4 ± 0.5

quality 32.6 62.8 ± 0.6

randomized Prim’s 67.6 69.4 ± 0.4

Table 6: Object discovery on VOC 6x2 with selective search and

randomized Prim’s as region proposal algorithms.

The results are shown in Table 6. It can be seen that

the performance of both Cho et al.’s method and ours drop

significantly when using selective search. This may be due

to the fact that the percentage of positive proposals found by

selective search is much smaller than that of RP. However,

we see that with the quality mode of selective search, our

method gives results quite close to those of RP, whereas the

method in [12] fails badly. This suggests that our method is

more robust.

Visualization. In order to gain insight into the structures

discovered by our approach, we derive from its output a

graph of image regions and visualize its main connected

components. The nodes of this graph are the image regions

that have been finally retained. Two regions (i, k) and (j, l)
are connected if the images containing them are neighbors

in the discovered undirected image graph (eij or eji = 1)
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Figure 2: Visualization of VOC 6x2 in the mixed setting. The

figure shows the third component in the graph of regions, corre-

sponding roughly to class motorbike. The two first components

are shown in Fig.1.

and the standout score between them, Skl
ij , is greater than a

certain threshold.

Choosing the threshold to get a sufficient number of large

enough components for visualization purpose has proven

difficult. We used instead an iterative procedure: the graph

is first constructed with a high threshold to produce a small

number of connected components of reasonable size, which

are removed from the graph. On the remaining graph, a

new, suitable threshold is found to get new components of

sufficient size. This is repeated until a target number of

components is reached.

When applied to our results in the mixed setting on

VOC 6x2 dataset, this visualization procedure yields clus-

ters that roughly match object categories. In Figure 1, we

show sub-sampled graphs (for visualization purpose) of the

two first components, which roughly correspond to classes

bicycle and aeroplane. The third component is shown in

Figure 2. Although containing also images of other classes,

it is by far dominated by motorbike images. The visual-

ization suggests that our model does extract meaningful se-

mantic structures from the image collections and regions

they contain.

5. Conclusion

We have presented an optimization-based approach to

fully unsupervised image matching and object discovery

and demonstrated its promise on several standard bench-

marks. In its current form, our algorithm is limited to rel-

atively small datasets. We are exploring several paths for

scaling up its performance, including better mechanisms

based on deep features and the PHM algorithm for pre-

filtering image neighbors and selecting regions proposals.

Future work will also be dedicated to developing effective

ensemble methods for discovering multiple objects in im-

ages, further investigating a symmetric version of the pro-

posed approach using an undirected graph, understanding

why deep features do not give better results in our context,

and improving our continuous optimization approach so as

to handle large datasets in a mixed setting, perhaps through

some form of variable clustering.

Appendix: Maximization of supermodular cu-

bic pseudo-Boolean functions

An immediate corollary of [7, Lemma 1] is that a cu-

bic pseudo-Boolean function with nonegative trinary coef-

ficients and no binary terms is supermodular. For fixed λ

and µ, this is obviously the case for the Lagrangian K in

(5).

In addition, the unary terms in K are nonpositive, and

the Langragian can thus be rewritten, up to some constant

additive term, in the form

f(x1, . . . , xn) =
∑

i∈U

cix̄i +
∑

(i,j,k)∈T

cijkxixjxk, (19)

where x̄i = 1−xi (the complement of xi), U ⊂ {1, . . . , n},
T ⊂ {1, . . . , n}2, and all coefficients ci and cijk are pos-

itive. We specialize in the rest of this section the general

maximization method of [7] to functions of this form.

The conflict graph [7, 10] G(f) associated with such a

function f has as a set of nodes X(f) = V ∪ W , where

the elements of V correspond to linear terms, those of W

correspond to cubic terms, and an edge links to nodes when

one of the corresponding terms contains a variable, and the

other one its complement. By construction G(f) is a bi-

partite graph, with edges joining only elements of V to ele-

ments of W .

As shown in [7] maximizing f amounts to finding a max-

imum weight stable set in G(f), where the nodes of V

are assigned weights ci and the nodes of W are assigned

weights cijk, which in turn reduces to computing a maxi-

mum flow between nodes s and t in the network deducted

from G(f) by (1) adding a source node and edges with up-

per capacity bound ci between s and the corresponding ele-

ments of V ; (2) adding a sink node t and edges with upper

capacity bound cijk between the corresponding elements of

W and t; (3) assigning to all edges (from V to W ) in G(f)
an upper capacity bound of +∞.

Let [A, Ā] denote the minimum cut obtained by comput-

ing the maximum flow in this graph, where s is an element

of A and t is an element of Ā = X(f) \ A. The maximum

weight stable set is then S = (A ∩ V ) ∪ (Ā ∩ W ). The

monomials x̄i and xixjxk associated with elements of S

are set to 1, from which the values of all variables are easily

deduced.
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