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Abstract

In this paper, we study the problem of unifying knowl-

edge from a set of classifiers with different architectures and

target classes into a single classifier, given only a generic

set of unlabelled data. We call this problem Unifying Het-

erogeneous Classifiers (UHC). This problem is motivated by

scenarios where data is collected from multiple sources, but

the sources cannot share their data, e.g., due to privacy con-

cerns, and only privately trained models can be shared. In

addition, each source may not be able to gather data to train

all classes due to data availability at each source, and may

not be able to train the same classification model due to dif-

ferent computational resources. To tackle this problem, we

propose a generalisation of knowledge distillation to merge

HCs. We derive a probabilistic relation between the out-

puts of HCs and the probability over all classes. Based on

this relation, we propose two classes of methods based on

cross-entropy minimisation and matrix factorisation, which

allow us to estimate soft labels over all classes from unla-

belled samples and use them in lieu of ground truth labels

to train a unified classifier. Our extensive experiments on

ImageNet, LSUN, and Places365 datasets show that our ap-

proaches significantly outperform a naive extension of dis-

tillation and can achieve almost the same accuracy as clas-

sifiers that are trained in a centralised, supervised manner.

1. Introduction

The success of machine learning in image classification

tasks has been largely enabled by the availability of big

datasets, such as ImageNet [32] and MS-COCO [25]. As

the technology becomes more pervasive, data collection is

transitioning towards more distributed settings where the

data is sourced from multiple entities and then combined

to train a classifier in a central node (Fig. 1a). However,

in many cases, transfer of data between entities is not pos-

sible due to privacy concerns (e.g., private photo albums

or medical data) or bandwidth restrictions (e.g., very large
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Figure 1. Unifying Heterogeneous Classifiers. (a) Common train-

ing approaches require transferring data from sources to a cen-

tral processing node where a classifier is trained. (b) We propose

to train a unified classifier from pre-trained classifiers from each

source and an unlabelled set of generic data, thereby preserving

privacy. The individual pre-trained classifiers may have different

sets of target classes, hence the term Heterogeneous Classifiers

(HCs).

datasets), hampering the unification of knowledge from dif-

ferent sources. This has led to multiple works that pro-

pose to learn classifiers without directly sharing data, e.g.,

distributed optimisation [4], consensus-based training [12],

and federated learning [20]. However, these approaches

generally require models trained by each entity to be the

same both in terms of architecture and target classes.

In this paper, we aim to remove these limitations and

propose a system for a more general scenario consisting of

an ensemble of Heterogeneous Classifiers (HCs), as shown

in Fig. 1b. We define a set of HCs as a set of classifiers

which may have different architectures and, more impor-

tantly, may be trained to classify different sets of target

classes. To combine the HCs, each entity only needs to for-
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ward their trained classifiers and class names to the central

processing node, where all the HCs are unified into a single

model that can classify all target classes of all input HCs.

We refer to this problem as Unifying Heterogeneous Clas-

sifiers (UHC). UHC has practical applications for the cases

when it is not possible to enforce every entity to (i) use the

same model/architecture; (ii) collect sufficient training data

for all classes; or (iii) send the data to the central node, due

to computational, data availability, and confidentiality con-

straints.

To tackle UHC, we propose a generalisation of knowl-

edge distillation [8, 17]. Knowledge distillation was origi-

nally proposed to compress multiple complex teacher mod-

els into a single simpler student one. However, distillation

still assumes that the target classes of all teacher and stu-

dent models are the same, whereas in this work we relax

this limitation. To generalise distillation to UHC, we de-

rive a probabilistic relationship connecting the outputs of

HCs with that of the unified classifier. Based on this rela-

tionship, we propose two classes of methods, one based on

cross-entropy minimisation and the other on matrix factori-

sation with missing entries, to estimate the probability over

all classes of a given sample. After obtaining the probabil-

ity, we can then use it to train the unified classifier. Our

approach only requires unlabelled data to unify HCs, thus

no labour is necessary to label any data at the central node.

In addition, our approach can be applied to any classifiers

which can be trained with soft labels, e.g., neural networks,

boosting classifiers, random forests, etc.

We evaluated our proposed approach extensively on Im-

ageNet, LSUN, and Places365 datasets in a variety of set-

tings and against a natural extension of the standard distilla-

tion. Through our experiments we show that our approach

outperforms standard distillation and can achieve almost the

same accuracy as the classifiers that were trained in a cen-

tralised, supervised manner.

2. Related Work

There exists a long history of research that aims to har-

ness the power of multiple classifiers to boost classification

result. The most well-known approaches are arguably en-

semble methods [19, 23, 30] which combine the output of

multiple classifiers to make a classification. Many tech-

niques, such as voting and averaging [23], can merge pre-

diction from trained classifiers, while some train the clas-

sifiers jointly as part of the technique, e.g., boosting [13]

and random forests [6]. These techniques have been suc-

cessfully used in many applications, e.g., multi-class clas-

sification [15], object detection [34, 27], tracking [1], etc.

However, ensemble methods require storing and running all

models for prediction, which may lead to scalability issues

when complex models, e.g., deep networks, are used. In

addition, ensemble methods assume all base classifiers are

Figure 2. UHC problem and approach overview. An input image x

is drawn from an unlabelled set U and input to a set of pre-trained

classifiers {C1, · · · , CN}, where each Ci returns soft label pi over

classes in Li. Here, the classes Li may be different for each Ci.

The goal of UHC is to train a classifier CU that can classify all

target classes in LU using the prediction of Ci on x ∈ U instead of

labelled data. Our approach to UHC involves using pi to estimate

q, the soft label of x over all classes in LU , then using x and q to

train CU .

trained to classify all classes, which is not suitable for the

scenarios addressed by UHC.

To the best of our knowledge, the closest class of meth-

ods to UHC is knowledge distillation [8, 17]. Distilla-

tion approaches operate by passing unlabelled data to a

set of pretrained teacher models to obtain soft predictions,

which are used to train a student model. Albeit origi-

nally conceived for compressing complex models into sim-

pler ones by matching predictions, distillation has been

further extended to, for instance, matching intermediate

features [31], knowledge transfer between domains [14],

combining knowledge using generative adversarial-based

loss [35], etc. More related to UHC, Lopes et al. [26] pro-

pose to distill teacher models trained by different entities

using their metadata rather than raw inputs. This allows the

student model to be trained without any raw data transfer,

thus preserving privacy while also not requiring any data

collection from the central processing node. Still, no for-

mulation of distillation can cope with the case where each

teacher model has different target classes, which we tackle

in this paper. We describe how distillation can be gener-

alised to UHC in the next section.

3. Unifying Heterogeneous Classifiers (UHC)

We define the Unifying Heterogeneous Classifiers

(UHC) problem in this paper as follows (see Fig. 2). Let

U be an unlabelled set of images (“transfer set”) and let

C = {Ci}
N
i=1 be a set of N Heterogeneous Classifiers

(HCs), where each Ci is trained to predict the probabil-

ity pi(Y = lj) of an image belonging to class lj ∈ Li.

Given U and C, the goal of this work is to learn a uni-
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fied classifier CU that estimates the probability q(Y = lj)
of an input image belonging to the class lj ∈ LU where

LU =
⋃N

i=1 Li = {l1, l2, . . . , lL}. Note that Ci might be

trained to classify different sets of classes, i.e., we may have

Li 6= Lj or even |Li| 6= |Lj | for i 6= j.

Our approach to tackle UHC involves three steps:

(i) passing the image x ∈ U to Ci to obtain pi, ∀i, (ii) esti-

mating q from {pi}i, then (iii) using the estimated q to train

CU in a supervised manner. We note that it is possible to

combine (ii) and (iii) into a single step for neural networks

(see Sec. 3.5.1), but this 3-step approach allows it to be ap-

plied to other classifiers, e.g., boosting and random forests.

To accomplish (ii), we derive probabilistic relationship be-

tween each pi and q, which we leverage to estimate q via the

following two proposed methods: cross-entropy minimisa-

tion and matrix factorisation. In the rest of this section, we

first review standard distillation, showing why it cannot be

applied to UHC. We then describe our approaches to esti-

mate q from {pi}i. We provide a discussion on the compu-

tation cost in the supplementary material.

3.1. Review of Distillation

Overview Distillation [8, 17] is a class of algorithms

used for compressing multiple trained models Ci into a sin-

gle unified model CU using a set of unlabelled data U1.

Referring to Fig. 2, standard distillation corresponds to the

case where Li = Lj , ∀(i, j). The unified CU is trained

by minimising the cross-entropy between outputs of Ci and

CU as

J(q) = −
∑

i

∑

l∈LU

pi(Y = l) log q(Y = l). (1)

Essentially, the outputs of Ci are used as soft labels for the

unlabelled U in training CU . For neural networks, class

probabilities are usually computed with softmax function:

p(Y = l) =
exp(zl/T )

∑

k∈LU
exp(zk/T )

, (2)

where zl is the logit for class l, and T denotes an adjustable

temperature parameter. In [17], it was shown that minimis-

ing (1) when T is high is similar to minimising the ℓ2 error

between the logits of p and q, thereby relating the cross-

entropy minimising to logit matching.

Issues The main issue with standard distillation stems

from its inability to cope with the more general case of Li 6=
Lj . Mathematically, Eq. (1) assumes CU and Ci’s share

the same set of classes. This is not true in our case since

each Ci is trained to predict classes in Li, thus pi(Y = l) is

undefined for l ∈ L−i
2. A naive solution to this issue would

be to simply set pi(Y = l) = 0 for l ∈ L−i. However,

1Labelled data can also be used in a supervised manner.
2We define L−i as the set of classes in LU but outside Li.

this could incur serious errors, e.g., one may set pi(Y =
cat) of a cat image to zero when Ci does not classify cats,

which would be an improper supervision. We show that this

approach does not provide good results in the experiments.

It is also worth mentioning that Ci in UHC is different

from the Specialised Classifiers (SC) in [17]. While SCs

are trained to specialise in classifying a subset of classes,

they are also trained with data from other classes which are

grouped together into a single dustbin class. This allows

SCs to distinguish dustbin from their specialised classes,

enabling student model to be trained with (1). Using the

previous example, the cat image would be labelled as dust-

bin class, which is an appropriate supervision for SCs that

do not classify cat. However, the presence of a dustbin class

imposes a design constraint on the Ci’s, as well as requiring

the data source entities to collect large amounts of generic

data to train it. Conversely, we remove these constraints

in our formulation, and Ci’s are trained without a dustbin

class. Thus, given data from L−i, Ci will only provide

pi only over classes in Li, making it difficult to unify C
with (1).

3.2. Relating outputs of HCs and unified classifier

To overcome the limitation of standard distillation, we

need to relate the output pi of each Ci to the probability q
over LU . Since pi is defined only in the subset Li ⊆ LU ,

we can consider pi(Y = l) as the probability q of Y = l
given that Y cannot be in L−i. This leads to the following

derivation:

pi(Y = l) = q(Y = l|Y /∈ L−i) (3)

= q(Y = l|Y ∈ Li) (4)

=
q(Y = l, Y ∈ Li)

q(Y ∈ Li)
(5)

=
q(Y = l)

∑

k∈Li
q(Y = k)

. (6)

We can see that pi(Y = l) is equivalent to q(Y = l) nor-

malised by the classes in Li. In the following sections, we

describe two classes of methods that utilise this relationship

for estimating q from {pi}i.

3.3. Method 1: Cross­entropy approach

Recall that the goal of (1) is to match q to pi by min-

imising the cross-entropy between them. Based on the re-

lation in (6), we generalise (1) to tackle UHC by matching
q(Y=l)∑

k∈Li
q(Y=k) to pi(Y = k), resulting in:

J(q) = −
∑

i

∑

l∈Li

pi(Y = l) log q̂i(Y = l), (7)

where:

q̂i(Y = l) =
q(Y = l)

∑

k∈Li
q(Y = k)

. (8)
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We can see that the difference between (1) and (7) lies in

the normalisation of q. Specifically, the cross-entropy of

each Ci (i.e., the second summation) is computed between

pi(Y = l) and q̂i(Y = l) over the classes in Li. With

this approach, we do not need to arbitrarily define values

for pi(Y = l) whenever l ∈ L−i, thus not causing spurious

supervision. We now outline optimality properties of (7).

Proposition 1 (Sufficient condition for optimality) Sup-

pose there exists a probability p̄ over LU , where pi(Y = l) =
p̄(Y=l)∑

k∈Li
p̄(Y=k) , ∀i, then q = p̄ is a global minimum of (7).

Sketch of proof Consider J̃i(q̃i) = −
∑

l∈Li
pi(Y =

l) log q̃i(Y = l) (Note J̃i is a function of q̃i whereas J
is a function of q). J̃i(q̃i) achieves its minimum when

q̃i = pi, with the a value of J̃i(pi). Thus, the minimum

value of
∑

i J̃i(q̃i) is
∑

i J̃i(pi). This is a lower bound of

(7), i.e.,
∑

i J̃i(pi) ≤ J(q), ∀q. However, we can see that

by setting q = p̄, we achieve equality in the bound, i.e.,
∑

i J̃i(pi) = J(p̄), and so p̄ is a global minimum of (7). �

The above result establishes the form of a global min-

imum of (7), and that minimising (7) may obtain the true

underlying probability p̄ if it exists. However, there are

cases where the global solution may not be unique. A sim-

ple example is when there are no shared classes between the

HCs, e.g., N = 2 with L1 ∩ L2 = ∅. It may be possible

to show uniqueness of the global solution in some cases de-

pending on the structure of shared classes between Li’s, but

we leave this as future work.

Optimisation Minimisation of (7) can be transformed

into a geometric program (see supplementary material),

which can then be converted to a convex problem and ef-

ficiently solved [3]. In short, we define ul ∈ R for l ∈ LU

and replace q(Y = l) with exp(ul). Thus, (7) transforms to

Ĵ({ul}l) = −
∑

i

∑

l∈Li

pi(Y = l)



ul − log





∑

k∈Li

exp(uk)







 ,

(9)

which is convex in {ul}l since it is a sum of scaled and

log-sum-exps of {ul}l [5]. We minimise it using gradient

descent. Once the optimal {ul}l is obtained, we transform

it to q with the softmax function (2).

3.4. Method 2: Matrix factorisation approaches

Our second class of approaches is based on low-rank ma-

trix factorisation with missing entries. Indeed, it is possible

to cast UHC as a problem of filling an incomplete matrix of

soft labels. During the last decade, low-rank matrix comple-

tion and factorisation [10, 11] have been successfully used

in various applications, e.g., structure from motion [18] and

recommender systems [21]. It has also been used for mul-

tilabel classification in a transductive setting [9]. Here, we

will describe how we can use matrix factorisation to recover

soft labels q from {pi}i.

3.4.1 Matrix factorisation in probability space

Consider a matrix P ∈ [0, 1]L×N where we set Pli (the

element in row l and column i) to pi(Y = l) if l ∈ Li

and zero otherwise. This matrix P is similar to the decision

profile matrix in ensemble methods [23], but here we fill in

0 for the classes that Ci’s cannot predict. To account for

these missing predictions, we define M ∈ {0, 1}L×N as a

mask matrix where Mli is 1 if l ∈ Li and zero otherwise.

Using the relation between pi and q in (6), we can see that

P can be factorised into a masked product of vectors as:

M⊙P = M⊙ (uv⊤), (10)

u =







q(Y = l1)
...

q(Y = lm)






,v =









1∑
l∈L1

q(Y=l)

...
1∑

l∈LN
q(Y=l)









, (11)

where ⊙ is the Hadamard product. Here, u is the vector

containing q, and each element in v contains the normali-

sation factor for each Ci. In this form, we can estimate the

probability vector u by solving the following rank-1 matrix

completion problem:

minimise
u,v

‖M⊙ (P− uv
⊤)‖2F (12)

subject to u
⊤
1L = 1 (13)

v ≥ 0N ,u ≥ 0L, (14)

where ‖·‖F denotes Frobenius norm, and 0k and 1k denote

vectors of zeros and ones of size k. Here, the constraints

ensure that u is a probability vector and that v remains non-

negative so that the sign of probability in u is not flipped.

This formulation can be regarded as a non-negative matrix

factorisation problem [24], which we solve using Alternat-

ing Least Squares (ALS) [2] where we normalise u to sum

to 1 in each iteration3. Due to gauge freedom [7], this nor-

malisation in u does not affect the cost function.

3.4.2 Matrix factorisation in logit space

In Sec. 3.1, we discussed the relationship between minimis-

ing cross-entropy and logit matching under ℓ2 distance. In

this section, we consider applying matrix factorisation in

logit space and show that our formulation is a generalisa-

tion of logit matching between Ci and CU .

Let zil be the given logit output of class l of Ci
4, and

ul be that of CU to be estimated. Consider a matrix Z ∈
R

L×N where Zli = zil if l ∈ Li and zero otherwise. We

3We note there are more effective algorithms for matrix factorisation

than ALS [7, 29, 11]. Here, we use ALS due to ease of implementation.
4For algorithms besides neural networks, we can obtain logits from

probability via zi
l
= log pi(Y = l).
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can formulate the problem of estimating the vector of logits

u ∈ R
L as :

minimise
u,v,c

‖M⊙ (Z− uv
⊤ − 1Lc

⊤)‖2F + λ(‖u‖22 + ‖v‖22)

(15)

subject to v ≥ 0N , (16)

where c ∈ R
N deals with shift in logits5, and λ ∈ R is

a hyperparameter controlling regularisation [7]. Here, op-

timising v ∈ R
N is akin to optimising the temperature of

logits [17] from each source classifier, and we constrained it

to be nonnegative to prevent the logit sign flip, which could

affect the probability.

Relation to logit matching The optimisation in (15) has

three variables. Since c is unconstrained, we derive its

closed form solution and remove it from the formulation.

This transforms (15) into:

minimise
u,v

N
∑

i=1

∥

∥P|Li| ([zi − uvi]Li
)
∥

∥

2

2
+ λ(‖u‖22 + ‖v‖22)

(17)

subject to v ≥ 0N , (18)

where zi is the ith column of Z; [x]Li
selects the elements

of x which are indexed in Li; and Pk(x) = (Ik−
1
k
1k1

⊤
k )x

is the orthogonal projector that removes the mean from the

vector x ∈ R
k. This transformation simplifies (15) to con-

tain only u and v. We can see that this formulation min-

imises the ℓ2 distance between logits, but instead of consid-

ering all classes in LU , each term in the summation consid-

ers only the classes in Li. In addition, (17) also includes

regularisation and optimises for scaling in v. Thus, we can

say that (15) is a generalisation of logit matching for UHC.

Optimisation While (17) has fewer parameters

than (15), it is more complicated to optimise as the ele-

ments in u are entangled due to the projector. Instead, we

solve (15) using ALS over u, v, and c. Here, there is no

constraint on u, so we do not normalise it as in Sec. 3.4.1.

Alternative approach: Setting v as a constant While

setting v as a variable allows (15) to handle different scal-

ings of logits, it also introduces cumbersome issues. Specif-

ically, the gauge freedom in uv
⊤ may lead to arbitrary scal-

ing in u and v, i.e., uv⊤ = (u/α)(αv⊤) for α 6= 0. Also,

while the regularisers help prevent the norms of u and v to

become too large, it is difficult to set a single λ that works

well for all data in U . To combat these issues, we propose

another formulation of (15) where we fix v = 1N . With

v fixed, we do not require to regularise u since its scale is

determined by Z. In addition, the new formulation is con-

vex and can be solved to global optimality. We solve this

alternative formulation with gradient descent.

5Recall that a shift in logit values has no effect on the probability out-

put, but we need to account for the different shifts from the Ci’s to cast it

as matrix factorisation.

3.5. Extensions

In Secs. 3.3 and 3.4, we have described methods for esti-

mating q from {pi} then using q as the soft label for training

CU . In this section, we discuss two possible extensions ap-

plicable to all the methods: (i) direct backpropagation for

neural networks and (ii) fixing imbalance in soft labels.

3.5.1 Direct backpropagation for neural networks

Suppose the unified classifier CU is a neural network. While

it possible to use q to train CU in a supervised manner, we

could also consider an alternative where we directly back-

propagate the loss without having to estimate q first. In the

case of cross-entropy (Sec. 3.3), we can think of q as the

probability output from CU , through which we can directly

backpropagate the loss. In the case of matrix factorisation

(Sec. 3.4), we could consider u as the vector of probability

(Sec. 3.4.1) or logit (Sec. 3.4.2) outputs from CU . Once u

is obtained from CU , we plug it in each formulation, solve

for other variables (e.g., v and c) with u fixed, then back-

propagate the loss via u. Directly backpropagating the loss

merges the steps of estimating q and using it to train CU

into a single step.

3.5.2 Balancing soft labels

All the methods we have discussed are based on individual

samples: we estimate q from {pi} of a single x from the

transfer set U and use it to train CU . However, we observe

that the set of estimated q’s from the whole U could be im-

balanced. That is, the estimated q’s may be biased towards

certain classes more than others. To counter this effect, we

apply the common technique of weighting the cross-entropy

loss while training CU [28]. The weight of each class l is

computed as the inverse of the mean of q(Y = l) over all

data from U .

4. Experiments

In this section, we perform experiments to compare dif-

ferent methods for solving UHC. The main experiments on

ImageNet, LSUN, and Places365 datasets are described in

Sec. 4.1, while sensitivity analysis is described in Sec. 4.2.

We use the following abbreviations to denote the meth-

ods. SD for the naive extension of Standard Distilla-

tion (Sec. 3.1) [17]; CE-X for Cross-Entropy methods

(Sec. 3.3); MF-P-X for Matrix Factorization in Probabil-

ity space (Sec. 3.4.1); and MF-LU-X and MF-LF-X for

Matrix Factorization in Logit space with Unfixed and Fixed

v (Sec. 3.4.2), resp. The suffix ‘X’ is replaced with ‘E’ if

we estimate q first before using it as soft label to train CU ;

with ‘BP’ if we perform direct backpropagation from the

loss function (Sec. 3.5.1); and with ‘BS’ if we estimate and

balance the soft labels q before training CU (Sec. 3.5.2).
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Table 1. HC configurations for the main experiment

Dataset #Classes
in LU (L)

#HCs (N )
#Classes for each HC

Random Compl. overlap.

ImageNet 20-50 10-20 5-15 = L

LSUN 5-10 3-7 2-5 = L

Places365 20-50 10-20 5-15 = L

In addition to the mentioned methods, we also include SD-

BS as the SD method with balanced soft labels, and SPV

as the method trained directly in a supervised fashion with

all training data of all Ci’s as a benchmark. For MF-LU-X

methods, we used λ = 0.01. All methods use tempera-

ture T = 3 to smooth the soft labels and logits (See (2)

and [17]).

4.1. Experiment on large image datasets

In this section, we describe our experiment on ImageNet,

LSUN, and Places365 datasets. First, we describe the ex-

periment protocols, providing details on the datasets, archi-

tectures used as Ci and CU , and the configurations of Ci.

Then, we discuss the results.

4.1.1 Experiment protocols

Datasets We use three datasets for this experiment. (i) Im-

ageNet (ILSVRC2012) [32], consisting of 1k classes with

~700 to 1300 training and 50 validation images per class, as

well as 100k unlabelled test images. In our experiments, the

training images are used as training data for the Ci’s, the un-

labelled test images as U , and the validation images as our

test set to evaluate the accuracy. (ii) LSUN [36], consisting

of 10 classes with ~100k to 3M training and 300 validation

images per class with 10k unlabelled test images. Here,

we randomly sample a set of 1k training images per class to

train the Ci’s, a second randomly sampled set of 20k images

per class also from the training data is used as U , and the

validation data is used as our test set. (iii) Places365 [37],

consisting of 365 classes with ~3k to 5k training and 100

validation images per class, as well as ~329k unlabelled test

images. We follow the same usage as in ImageNet, but with

100k samples from the unlabelled test images as U . We pre-

process all images by centre cropping and scaling to 64×64
pixels.

HC configurations We test the proposed methods un-

der two configurations of HCs (see summary in Table 1). (i)

Random classes. For ImageNet and Places365, in each trial,

we sample 20 to 50 classes as LU and train 10 to 20 Ci’s

where each is trained to classify 5 to 15 classes. For LSUN,

in each trial, we sample 5 to 10 classes as LU and train 3 to

7 Ci’s where each is trained to classify 2 to 5 classes. We

use this configuration as the main test for when Ci’s clas-

sify different sets of classes. (ii) Completely overlapping

classes. Here, we use the same configurations as in (i) ex-

cept all Ci’s are trained to classify all classes in LU . This

case is used to test our proposed methods under the common

configurations where all Ci and CU share the same classes.

Under both configurations, U consist of a much wider set

of classes than LU . In other words, a large portion of the

images in U does not fall under any of the classes in LU .

Models Each Ci is randomly selected from one of

the following four architectures with ImageNet pre-trained

weights: AlexNet [22], VGG16 [33], ResNet18, and

ResNet34 [16]. For AlexNet and VGG16, we fix the

weights of their feature extractor portion, replace their fc

layers with two fc layers with 256 hidden nodes (with

BatchNorm and ReLU), and train the fc layers with their

training data. Similarly in ResNet models, we replace their

fc layers with two fc layers with 256 hidden nodes as

above. In addition, we also fine-tune the last residual block.

As for CU , we use two models, VGG16 and ResNet34, with

similar settings as above.

For all datasets and configurations, we train each Ci with

50 to 200 samples per class; no sample is shared between

any Ci in the same trial. These Ci’s together with U are

then used to train CU . We train all models for 20 epochs

with SGD optimiser (step sizes of 0.1 and 0.016 for first

and latter 10 epochs with momentum 0.9). To control the

variation in results, in each trial we initialise instances of

CU ’s from the same architecture using the same weights

and we train them using the same batch order. In each trial,

we evaluate the CU ’s of all methods on the test data from all

classes in LU . We run 50 trials for each dataset, model, and

HC configuration combination. The results are reported in

the next section.

4.1.2 Results

Table 2 shows the results for this experiment. Each col-

umn shows the average accuracy of each method under each

experiment setting, where the best performing method is

shown in underlined bold. To test statistical significance,

we choose Wilcoxon signed-rank test over standard devia-

tion to cater for the vastly different settings (e.g., model ar-

chitectures, number of classes and HCs, etc.) across trials.

We run the test between the best performing method in each

experiment and the rest. Methods where the performance is

not statistically significantly different from the best method

at α = 0.01 are shown in bold.

First, let us observe the result for the random classes case

which addresses the main scenario of this paper, i.e., when

each HC is trained to classify different sets of classes. We

can make the following observations.

All proposed methods perform significantly better

than SD. We can see that all methods in (A), (B), and (C)

6For MF-P-BP, we use 150× the rates as its loss has a smaller scale.
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Table 2. Average accuracy of UHC methods over different combinations of HC configurations, datasets, and unified classifier models.

(Underline bold: Best method. Bold: Methods which are not statistically significantly different from the best method.)

Random Classes Completely Overlapping Classes

Methods ImageNet LSUN Places365 ImageNet LSUN Places365

VGG16 ResNet34 VGG16 ResNet34 VGG16 ResNet34 VGG16 ResNet34 VGG16 ResNet34 VGG16 ResNet34

SPV (Benchmark) .7212 .6953 .6664 .6760 .5525 .5870 .7345 .7490 .6769 .7017 .5960 .6460

SD .5543 .5562 .5310 .5350 .4390 .4564 .7275 .7292 .7004 .7041 .6163 .6402

(A) Estimate q methods

CE-E .6911 .6852 .6483 .6445 .5484 .5643 .7276 .7290 .7002 .7036 .6162 .6406

MF-P-E .6819 .6747 .6443 .6406 .5349 .5488 .7280 .7297 .7012 .7052 .6167 .6406

MF-LV-E .6660 .6609 .6348 .6330 .5199 .5414 .7231 .7242 .7031 .7043 .6129 .6374

MF-LF-E .6886 .6833 .6490 .6458 .5441 .5609 .7265 .7279 .7015 .7057 .6161 .6397

(B) Backprop. methods

CE-BP .6902 .6869 .6520 .6439 .5466 .5669 .7275 .7288 .7003 .7040 .6161 .6400

MF-P-BP .6945 .6872 .6480 .6417 .5471 .5609 .7277 .7287 .6999 .7019 .6146 .6384

MF-LV-BP .6889 .6847 .6495 .6389 .5467 .5681 .7229 .7225 .7001 .7046 .6113 .6369

MF-LF-BP .6842 .6840 .6523 .6445 .5383 .5624 .7239 .7252 .7020 .7034 .6104 .6366

(C) Balanced soft labels

SD-BS .6629 .6574 .6343 .6345 .5283 .5433 .7217 .7214 .6979 .7017 .6094 .6320

CE-BS .6928 .6856 .6513 .6464 .5548 .5687 .7215 .7213 .6979 .7018 .6094 .6323

MF-P-BS .6851 .6756 .6474 .6450 .5455 .5546 .7243 .7252 .6996 .7041 .6124 .6355

MF-LV-BS .6772 .6682 .6388 .6357 .5346 .5497 .7168 .7173 .7014 .7028 .6063 .6301

MF-LF-BS .6935 .6865 .6549 .6485 .5544 .5692 .7210 .7215 .6998 .7035 .6101 .6330

of Table 2 outperform SD by a large margin of 9-15%. This

shows that simply setting probability of undefined classes in

each HC to 0 may significantly deteriorate the accuracy. On

the other hand, our proposed methods achieve significantly

better results and almost reach the same accuracy as SPV

with a gap of 1-4%. This suggests the soft labels from HCs

can be used for unsupervised training at a little expense of

accuracy, even though U contains a significant proportion

of images that are not part of the target classes. Still, there

are several factors that may affect the capability of CU from

reaching the accuracy of SPV, e.g., accuracy of Ci, their ar-

chitectures, etc. We look at some of these in the sensitivity

analysis section.

MF-LF-BS performs well in all cases. We can see that

different algorithms perform best under different settings,

but MF-LF-BS always performs best or has no statistical

difference from the best methods. This suggests MF-LF-

BS could be the best method for solving UHC. At the same

time, CE methods offer a good trade-off between high accu-

racy and ease of implementation, which makes them a good

alternative for the UHC problem.

Besides these main points, we also note the following

small but consistent trends.

Balancing soft labels helps improve accuracy. While

the improvement may be marginal (less than 1.5%), we can

see that ‘BS’ methods in (C) consistently outperform their

‘E’ counterparts in (A). Surprisingly, SD-BS, which is SD

with balanced soft labels, also significantly improved over

SD by more than 10%. These results indicate that it is a

good practice to use balanced soft labels to solve UHC.

Note that while SD-BS received significant boost, it still

generally underperforms compared to CE and MF methods,

suggesting that it is important to incorporate the relation be-

tween {pi} and q into training.

Nonconvex losses perform better with ‘BP’. Methods

with suffixes ‘E’ and ‘BS’ in (A) and (C) are based on es-

timating q before training CU , while ‘BP’ in (B) directly

perform backpropagation from the loss function. As seen

in Sec. 3, the losses of CE and MF-LF are convex in their

variables while MF-P and MF-LV are nonconvex. Here, we

observe a small but interesting effect that methods with non-

convex losses perform better with ‘BP’. We speculate that

this is due to errors in the estimation of q trickling down

to the training of CU if the two steps are separated. Con-

versely in ‘BP’, where the two steps are merged into a single

step, such issue might be avoided. More research would be

needed to confirm this speculation. For convex losses (CE

and MF-LF), we find no significant patterns between ‘E’ in

(A) and ‘BP’ in (B).

Next, we discuss the completely overlapping case.

All methods perform rather well. We can see that all

methods, including SD, achieve about the same accuracy

(within ~1% range). This shows that our proposed methods

can also perform well in the common cases of all Ci’s being

trained to classify all classes and corroborates the claim that

our proposed methods are generalisations of distillation.

Not balancing soft labels performs better. We note that

balancing soft labels tends to slightly deteriorate the accu-

racy. This is the opposite result from the random classes

case. Here, even SD-BS which receive an accuracy boost in

the random classes case also performs worse than its coun-

terpart SD. This suggests not balancing soft labels may be a
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Figure 3. Sensitivity analysis results. (a) Size of unlabelled set. (b) Temperature. (c) Accuracy of HCs.

better option for overlapping classes case.

Distillation may outperform its supervised counter-

parts. For LSUN and Places365 datasets, we see that many

times distillation methods performs better than SPV. Espe-

cially for the case of VGG16, we see SPV consistently per-

form worse than other methods by 1 to 3% in most of the

trials. This shows that it is possible that distillation-based

methods may outperform their supervised counterparts.

4.2. Sensitivity Analysis

In this section, we perform three sets of sensitivity anal-

ysis on the effect of size of the transfer set, temperature pa-

rameter T , and accuracy of HCs. We use the same settings

as the ImageNet random classes experiment in the previous

section with VGG16 as CU . We run 50 trials for each test.

We evaluate the following five methods as the representa-

tive set of SD and top performing methods from previous

section: SD, SD-BS, MF-P-BP, MF-LF-BS, and CE-BS.

Size of transfer set We use this test to evaluate the effect

of the number of unlabelled samples in the transfer set U .

We vary the number of samples from 103 to 105. The result

is shown in Fig. 3a. As expected, we can see that all meth-

ods deteriorate as the size of transfer set decreases. In this

test, MF-P-BP is the most affected by the decrease as its ac-

curacy drops fastest. Still, all other methods perform better

than SD in the whole test range, illustrating the robustness

to transfer sets with different sizes.

Temperature In this test, we vary the temperature T
used for smoothing the probability {pi} (see (2) or [17]) be-

fore using them to estimate q or train CU . The values evalu-

ated are T = 1, 3, 6, and 10. The result is shown in Fig. 3b.

We can see that the accuracies of SD and SD-BS drop sig-

nificantly when T is set to high and low values, resp. On

the other hand, the other three methods are less affected by

different values of T .

HCs’ accuracies In this test, we evaluate the robustness

of UHC methods against varying accuracy of Ci. The test

protocol is as follows. In each trial, we vary the accuracy of

all Ci’s to 40-80%, obtain pi from the Ci’s, and use them to

perform UHC. To vary the accuracy of each Ci, we take 50
samples per class from training data as the adjustment set,

completely train each Ci from the remaining training data,

then inject increasing Gaussian noise into the last fc layer

until its accuracy on the adjustment set drops to the desired

value. If the initial accuracy of Ci is below the desired value

then we simply use the initial Ci. The result of this evalu-

ation is shown in Fig. 3c. We can see that the accuracy of

all methods increase as the Ci’s perform better, illustrating

that the accuracy of Ci is an important factor for the per-

formance of UHC methods. We can also see that MF-P-BP

is most affected by low accuracy of Ci while MF-LF-BS is

the most robust.

Based on the sensitivity analysis, we see that MF-LF-BS

is the most robust method against the number of samples

in the transfer set, temperature, and accuracy of the HCs.

This result provides further evidence that MF-LF-BS should

be the suggested method for solving UHC. We provide the

complete sensitivity plots with all methods in the supple-

mentary material.

5. Conclusion

In this paper, we formalise the problem of unifying

knowledge from heterogeneous classifiers (HCs) using only

unlabelled data. We proposed cross-entropy minimisation

and matrix factorisation methods for estimating soft labels

of the unlabelled data from the output of HCs based on a

derived probabilistic relationship. We also proposed two

extensions to directly backpropagate the loss for neural net-

works and to balance estimated soft labels. Our extensive

experiments on ImageNet, LSUN, and Places365 show that

our proposed methods significantly outperformed a naive

extension of knowledge distillation. The result together

with additional three sensitivity analysis suggest that an ap-

proach based on matrix factorization in logit space with bal-

anced soft labels is the most robust approach to unify HCs

into a single classfier.
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