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Abstract

We present a self-supervision method for 3D hand pose

estimation from depth maps. We begin with a neural net-

work initialized with synthesized data and fine-tune it on

real but unlabelled depth maps by minimizing a set of data-

fitting terms. By approximating the hand surface with a set

of spheres, we design a differentiable hand renderer to align

estimates by comparing the rendered and input depth maps.

In addition, we place a set of priors including a data-driven

term to further regulate the estimate’s kinematic feasibility.

Our method makes highly accurate estimates comparable to

current supervised methods which require large amounts of

labelled training samples, thereby advancing state-of-the-

art in unsupervised learning for hand pose estimation.

1. Introduction

Deep learning has significantly advanced state-of-the-art

for 3D hand pose estimation. The improvement in the accu-

racy of learning-based approaches can be attributed to two

factors: choices in network design, and increased amounts

of labelled data [29, 49, 53]. However, acquiring accu-

rate 3D hand pose labels can be extremely difficult; current

methods require marker-based motion capture [13], 6DoF

sensors [53], or multi-view model-based tracking [45]. In

all of these cases, careful supervision and manual cleaning

of the labels is additionally necessary for high quality anno-

tations. A commonly proposed alternative is to synthesize

training samples – this is much easier, comes at virtually

no cost and a variety of viewpoints, poses, and hand shapes

can be generated. Unfortunately, the domain shift in terms

of appearance, hand shape, and pose from synthesized to

real data samples is highly non-trivial. As we show in our

experiments, models trained on synthetic data exhibit a sig-

nificant drop in accuracy when applied to real data.

A recent trend in hand pose estimation is to combine the

benefits of learning-based discriminative approaches with

model-based tracking methods [2, 13, 33, 43]. Model-based

tracking casts pose estimation as a frame-wise model-fitting

Figure 1. Method overview. (a) Outline of the proposed method;

(b) Rendered depth map from estimation through differentiable

renderer; (c) Corresponding input depth maps.

problem and requires no training data. Learning-based ap-

proaches can then be incorporated either by providing bet-

ter initialization [33, 43], or by supporting the fitting with

key-point estimations [2, 13] to reduce the risk of getting

trapped in local minima.

In this paper, we provide an alternative way to exploit

the complementary benefits of unsupervised model-fitting

and data-driven learning approaches. Specifically, we pro-

pose a self-supervision method for learning 3D hand pose

from depth maps. Note that our approach does not re-

quire any manual annotation, either from labelling key-

points [24, 54] or from manual initialization of a model-

based tracker [40, 45]. At the same time, we are able to

achieve accuracy comparable with current state-of-the-art

that requires large amounts of labeled data.

Our proposed method supervises itself with a set of care-

fully designed differentiable model-fitting terms. Follow-

ing a discriminative paradigm, hand poses are estimated

with a deep neural network. During training, the net-

work learns to make more accurate estimates by back-
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propagating model-fitting errors that update network pa-

rameters. Unlike conventional model-based tracking, the

hand poses in our method are not optimized in each frame

independently; instead, the model-fitting error is minimized

jointly over a large set of unlabelled images. As training

progresses, the network learns to generalize from previous

optimization results. We additionally feed the network with

synthesized labelled data to avoid local minima and regu-

larize the learning process. Interestingly, although we train

without any (human-provided) labels, our method exhibits

behaviour similar to traditional supervised methods: the ac-

curacy steadily improves with increasing amounts of avail-

able data. For inference, our method is highly efficient, with

only one forward pass through the network. In contrast,

model-based tracking may need several optimization steps,

especially in scenes with fast motions and large movements.

Our proposed model-fitting term penalizes the distance

between the estimated hand surface to 3D points from the

input depth map. For efficiency, we approximate the hand

surface with a set of spheres (see Fig. 2) as used in [30].

This enables a fast and differentiable computation of the

surface projection. For additional supervision, we train our

network under a multi-view setup and apply a consistency

loss term to overcome the ambiguities of self-occlusion. Fi-

nally, we penalize infeasible joint configurations by apply-

ing a variational auto-encoder (VAE) based prior.

We observe that previous methods which parameterize

poses with joint angles [6, 55] tend to be sensitive to errors

in parent node estimation. Further difficulty is introduced if

one attempts to solve these angles via regression. As such,

we directly estimate the 3D coordinates of the sphere cen-

ters. This conveniently allows us to work within a detection

framework of fully convolutional networks (FCNs), which

are used in many state-of-the-art methods [14, 41] and are

more accurate than regression approaches. In contrast,

Our contributions can be summarized as follows:

• We propose a self-supervised method for 3D hand pose

estimation from depth maps. Without any manual la-

bels, the method achieves results comparable to state-

of-the-art that requires large amounts of annotation.

• We propose a novel approach to couple unsupervised

model-based fitting with supervised discriminative ap-

proaches for hand pose estimation.

• We provide a way to regularize kinematic feasibility

in FCNs by placing a set of carefully designed priors,

including a data-driven term learned by a VAE.

2. Related Works

Discriminative approaches. As a general trend, ever

deeper and more sophisticated neural network architectures

are dominating hand pose estimation methods. They are

highly accurate [4, 5, 9, 11, 12, 20, 23, 31, 50] when trained

with large amounts of labeled samples. However, given that

accurate 3D annotations are extremely difficult to obtain, a

number of works approach the problem with deep genera-

tive models to leverage unlabelled data [1, 3, 21, 28, 29, 36,

49]. Synthesizing depth maps ensures accurate annotations

and seem to be a promising alternative but methods that rely

only on synthesized data suffer from the large domain shift

and actually perform much worse than when trained on less

accurate real data [31, 34, 6]. To reduce the domain gap,

Rad et al. [31] have proposed a domain adaptation method

that tries to minimize feature differences from synthesized

versus real images.

Simulated and unsupervised approaches. One line of

work [6, 34] considers the more challenging setting of not

using any manual labels. These models are trained on la-

beled but synthesized data and unlabeled real data. Shrivas-

tava et al. [34] train a generative adversarial network with

unlabelled depth maps to augment synthetic inputs with

more realistic noise patterns. While the synthesized images

better resemble images from real depth cameras, the domain

gap beyond appearance, especially in hand pose and shape

remain unsolved.

Dibra et al. [6] fine-tune a network trained on synthe-

sized depth maps with unlabeled real data by minimizing a

differentiable model-fitting error. While the fine-tuning im-

proves the initial network accuracy, current state-of-the-art

still outperforms the fine-tuned network by a large margin.

Our approach is similar to [6] in that we also initialize the

network with synthetic data and fine-tune with a data-fitting

error. However, our method has several key differences in-

cluding the hand model and model parameterization. We

discuss the differences in detail in Section 4.3.

Hybrid approaches. Conventional model-based track-

ers incorporate discriminative models either for robust ini-

tialization [33, 43] or to augment the observation-based

fit [2, 37]. Tompson et al. [45] estimates accurate hand

poses with an expensive offline tracker and trains a network

with those estimations for efficient online inference. More

recently, focus has shifted to the integration of differentiable

kinematic model representations such as forward kinemat-

ics [6, 16, 55] and linear blend skinning [6] into neural net-

works for end-to-end training.

Self supervision. A growing body of work tries to train

neural networks without any human supervision. Com-

mon strategies include leveraging spatial or temporal con-

text [7, 27], colour [18, 48], alignment [8] and privileged

information from other modalities[26]. Recently, supervi-

sion from multiple views has been applied successfully to

object key-point discovery [42], 3D reconstruction [47, 46],

body pose estimation [32], and hand pose estimation [35].

We follow this line of work using multi-view supervision

to resolve self-occlusions of the hand. In addition, beyond
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Figure 2. Hand model used during model fitting. Left: Our hand

model approximation with 41 spheres; Middle: Real depth map;

Right: Rendered depth map from differentiable ray-tracing.

enforcing multi-view consistency as in [32, 35], our differ-

entiable depth renderer enables a dense and more detailed

consistency error term by projecting hypotheses from one

viewpoint to another.

3. Method

3.1. Hand model

We approximate the 3D hand surface with N=41 spheres

(11 for the palm, 6 for each finger, see Figure 2(a)) similar

to [30, 38, 39]. The sphere model M is parameterized as

M = {m(0) · · ·m(N)}, where m(i) = (x(i), y(i), z(i), r(i))
is the ith sphere centered at (x(i), y(i), z(i)) with radius r(i).

The radii are predefined and remain unchanged during train-

ing. To this end, hand pose estimation is formulated as esti-

mating a set of 3D key point coordinates.

3.2. Pose estimation network

Given a depth map, the pose estimation network tries

to estimate the 3D coordinates of all N sphere centers. To

adapt the FCN for 3D coordinate estimation, we follow the

strategy of [14, 41, 42]. More specifically, the FCN re-

gresses a heatmap h2D of the 2D projections of the 3D

points and a latent depth map hdepth encoding the point’s

depth information. The 3D coordinates are then recovered

by integrating over the heatmap and latent depth map:

(x, y)=
∑

xi

∑

yi

(xi, yi)softmax(αh2D)(xi, yi) (1)

z=
∑

xi

∑

yi

hdepth(xi, yi)softmax(αh2D)(xi, yi) (2)

where xi and yi are the ith pixel’s coordinates on the 2D

grid and α is the annealing factor. We set as α = 10 in rest

of the paper. The softmax function serves as an approxi-

mation to argmax. We refer the reader to [14, 41, 42] for

more details. We use the hourglass network[22] as our FCN

architecture.

3.3. Network initialization

We initialize the network by training on a synthesized

dataset. Depth maps are synthesized from the hand model

provided by [45] according to the sampling strategy of [33]

for generating random hand poses. More details are pro-

vided in the Supplementary Materials. During training, 20

million synthesized depth maps with different poses and

view points are generated online and fed to the network.

The training loss is formulated as a mean squared error

between the estimated 3D coordinates integrated from h2D

and hdepth (see Equations 1 and 2), and the ground truth

coordinates, similar to [14, 19, 41]. Alternatively, as done

in [42], supervision can be provided directly at the level

of h2D and hdepth. The jth 3D ball’s label for h
(j)
2D is a

2D heatmap centered around the 2D projection of the ball.

h
(j)
depth at the vth column and the uth row is generated as

h
(j)
depth(v, u) =

{

dj if h
(j)
2D(v, u) > 0,

0 others;
(3)

where dj is the depth of the jth joint. In preliminary ex-

periments we found that both strategies perform similarly

and for the rest of the paper, we use the latter strategy to be

analogous to [42].

3.4. Selfsupervision by model fitting

For a given depth map of a hand, we begin by estimat-

ing the spheres’ center coordinates. From these coordinates

we render the spheres and evaluate how well the they fit

with the input depth map according to an energy function.

We use a differentiable rendering process that allows back-

propagation of errors from the energy function for gradual

fine-tuning of the estimations.

At first glance, our overall process resembles conven-

tional model-based tracking. However, our method is fun-

damentally different in that we are optimizing over neural

network parameters rather than pose parameters. We share

the benefits of data-driven approaches because we minimize

the model-fitting error over an entire set of unlabeled depth

maps, rather than fitting frames independently as done in

model-based tracking. As shown in our experiments (see

section 4.2), the joint optimization over a set of data gives

rise to accuracy improvements when the set size increases.

In this context, the model-fitting energy can be directly in-

terpreted as a self-supervised training loss. The trained net-

work generalizes from previously estimated samples while

still leveraging supervision from synthesized labeled data.

Moreover, the method enables efficient inference, using

only one forward pass, whereas model-based tracking needs

initialization and multiple iterations of optimization.

The self-supervised training loss, composed of data and
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prior terms, is defined as follows,

L(θ)=Lm2d(θ) + λ1Ld2m(θ) + λ2Lmultiview(θ)
︸ ︷︷ ︸

data terms

+λ3Lvae(θ) + λ4Lbone length(θ) + λ5Lcollision
︸ ︷︷ ︸

prior terms

(θ),
(4)

where θ are network parameters.

3.4.1 Data terms

The model to data term Lm2d aligns the spheres as close as

possible to the surface points in the depth map. We define it

as the L1 distance between the input depth map Di and the

rendered depth map

Lm2d(θ) =
∑

i

|G(f(Di|θ))−Di| , (5)

where f(·|θ) estimates the coordinates of sphere centers

from input depth map and G(·) renders the estimate to a

depth map. The L1 loss makes the training robust to holes

in the input depth map. The rendered depth map is a com-

posite of all the spheres rendered independently followed by

a min pooling in the z dimension across the spheres. The

min pooling serves as a depth buffer check in a standard

rendering pipeline. For each pixel on the rendered image,

the rendering process checks if the corresponding ray inter-

sects with the sphere and calculates the depth at the point

of intersection. We apply an orthographic projection for the

rendering. The rays are perpendicular to the image plane,

and the depth at pixel (u, v) for jth sphere m(j) with radius

r(j) centered at (x(j), y(j), z(j)) w.r.t. the camera coordi-

nate frame is calculated as

g(m(j))uv =

{

z(j)−
√

(r(j))2 − d2(u, v) if d(u, v) ≤ r,

dfar others,

(6)

where

d(u, v) = ‖(x(j), y(j))−Π−1(u, v)‖2 (7)

measures the distance between the ray and sphere center

and Π−1(u, v) is the inverse orthographic projection. The

rendering process G of an estimated set of spheres Mi can

be formulated as

G(Mi) = min
j

g(m
(j)
i ). (8)

Note that the entire rendering process is fully differen-

tiable and can be implemented easily with any deep learn-

ing framework. The rendered primitive depth map and its

input depth map counterpart are shown in Fig.2.

The data to model term Ld2m is a registration loss be-

tween the estimated model and input depth map. Since there

are no gradients on the background of the rendered depth

map according to Equation 6, the modle to data term Lm2d

alone cannot push the model towards unexplained points on

the input depth map. This is taken care of by Ld2m which

works in the spirit of ICP by minimizing the distance be-

tween every point p from the depth map Di and its projec-

tion on to the estimated hand model surface Mi,

Ld2m(θ) =
∑

i

∑

p∈Di

d(p,ΠMi
(p)). (9)

The distance d(p,ΠMi
(p)) is estimated as the distance to

every single sphere m(j) with radius r(j) centered at c(j) as

d(p,m(j)) = abs(‖p− c(j)‖2 − r(j)) (10)

and takes the minimum among all balls as

d(p,ΠMi
(p)) = min

j
d(p,m(j)). (11)

The multi-view consistency term Lmultiview provides su-

pervision from multiple viewpoints; this mitigates the ambi-

guities and errors that arise from the frequent self-occlusion

of hands. For training we assume a calibrated multi-camera

set-up and maintain consistency between the viewpoints in

two ways. Firstly, as shown in Figure 3, we project the cen-

ters of spheres estimated from view vi to view vj and eval-

uate Ld2m and Lm2d with respect to the depth map captured

from view vj . To further propagate estimations from dif-

ferent viewpoints, an additional multi-view term is defined

as:

Lmultiview(θ) =
∑

i

∑

j

∑

v

‖Tv(c
(j,v)
i )− c̄

(j)
i ‖22, (12)

where c
(j,v)
i is the center of jth sphere estimated from the ith

depth map with the vth camera. Tv(·) projects points from

view v to a canonical frame while c̄
(j)
i is the correspond-

ing robust average from the multi-view estimations in the

canonical frame. The robust average c̄
(j)
i can be either the

median or a selected c
j
i based on the heat map with mini-

mal variance. In preliminary tests, we found both strategies

perform equally well and we use the median for our ex-

periments. In contrast, simply averaging over the multiple

views degrades results as the mean is sensitive to outliers.

3.4.2 Prior terms

Because we do not have a skeleton model, we cannot en-

force conventional kinematic constraints such as joint an-

gle ranges. As an alternative, we adopt a data-driven ap-

proach to encourage the estimated sphere positions to form

a kinematically feasible pose. More specifically, we apply a

vae term Lvae which aims to maximize the likelihood lower

410856



bound of the hand pose configuration. Since the sphere po-

sitions inherently populate only a subspace, we train a vari-

ational auto-encoder (VAE)[17] over the estimated sphere

centers to learn this latent space. The pose training samples

of the VAE are generated by the same kinematics model and

sampling strategy as used in Section 3.3 and is therefore un-

supervised. We use the standard variational lower bound to

ensure that the estimated pose parameters lie in the learned

subspace as follows,

Lvae(θ) =
∑

i

Ez∼Q[logP
(
f(Di|θ)|z

)
]−DKL[Q(z)||P (z)],

(13)

where f(·|θ) is the pose estimation network. We refer the

reader to [17] for more details on learning and inference in

the VAE. The VAE is trained in advance and its weights

remain unchanged during training.

The bone length term Lbone length ensures that distances

between two bone end points remain unchanged:

Lbone length =
∑

i,j,k

max(djki −ljkmax, 0)
2+max(ljkmin−d

jk
i , 0)2,

(14)

where

d
jk
i = ‖c

(j)
i − c

(k)
i ‖2 (15)

measures the estimated bone length with the estimated end

points c
(j)
i and c

(k)
i from the ith input.

[
l
jk
min, ljkmax

]
are pre-

defined ranges based on different skeleton sizes.

The collision term Lcollision penalizes self collisions be-

tween the jth and kth sphere as follows,

Lcollision =
∑

i,j,k

max(r(j) + r(k) −‖c
(j)
i − c

(k)
i ‖22, 0). (16)

4. Experimentation

We evaluate our method on the NYU Hand Pose

Dataset [45], which is currently the only publicly available

multi-view depth dataset. The dataset, captured by 3 cal-

ibrated and synchronized PrimeSense depth cameras, con-

sists of 72757× 3 training frames and 8252× 3 for testing.

NYU is a challenging dataset with a wide coverage of hand

poses. We apply the ground-truth annotation only to calcu-

late camera extrinsics. In addition, we synthesize a dataset

of 20K depth maps to evaluate how well the trained network

can generalize to (new) synthesized samples.

We quantitatively evaluate with two standard metrics:

mean joint position error (in mm) averaged over all joints

and frames, and the percentage of successful frames, i.e.

those in which all joint predictions are within a certain

threshold [44]. Qualitative results of the estimated hand

poses and their sphere model renderings from other view-

points by the differentiable renderer are shown in Figure 3.

By default, we report the result using a single stack hour-

glass network.

One should note that in our self-supervised scenario, the

pose estimation error on the training set is fundamentally

different than the training error in standard supervised train-

ing. In self-supervised learning, we are minimizing a data-

fitting error, which should be correlated with pose estima-

tion accuracy, but there are no guarantees that lower errors

will give rise to more accurate pose estimates.

4.1. Training with only synthesized data

We first evaluate how a network trained on purely syn-

thesized data generalizes to new synthesized samples and as

well as real depth maps. Table 1 (synth, synth(test on test)

) and Figure 5 (cyan dotted line) shows that this network

is highly accurate on unseen synthesized samples; 78% of

frames have maximum errors less than 20mm and the mean

joint error is only 6.76mm. However, the accuracy deteri-

orates dramatically when testing on real-world depth maps

– the mean average joint error increases almost four-fold to

27.85mm. If we augment the synthesized depth maps with

random noise (synth, aug. with noise), we can reduce the

mean joint error to 22.65mm. This shows that the neural

network easily over-fits to certain local patterns; we specu-

late that it is likely rasterization artifacts on the synthesized

depth maps. We use the network trained from synthesized

depth maps augmented with noise as the initial network for

subsequent experiments in this section.

4.2. Ablation studies

Impact of multi-view supervision. To what extent do

multiple viewpoints help with self-supervision? We first de-

sign a single-view baseline (100% single view in Figure 6

and Table 1) without the multi-view consistency term and

without projecting the pose estimates to other viewpoints.

Since we use the median as the robust average in measuring

multi-view consistency (see Equ. 12), using only 2 views is

not applicable. In the subsequent experiments, we denote

the setting of using 3 views, all prior terms, and the data

fitting losses Lm2d and Ld2m, as ‘multi-view’.

When comparing to the results of training under a multi-

view set up (100% multi-view in Figure 6 and Table 1),

accuracy degenerates for both mean joint error and per-

centage of successful frames within the error threshold be-

low 50mm. This baseline shows that our current self-

supervision strategy under a monocular setup is insufficient

to resolve the hand’s self-occlusions – which can be quite

extreme. Yet when comparing with the initial results of

training from synthetic data, there is significant improve-

ment. The mean average error decreases from 22.65mm to

17.79mm (see Table 1), which validates the effectiveness of

our single view’s self-supervision terms.

Requiring multi-view setups can limit data capture sce-

narios; they cannot be applied to egocentric views and are

hard to apply when the user moves within a large area. This
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Figure 3. Qualitative results. (a) Success cases. 3 right columns: estimated poses rendered from different viewpoints by the differentiable

renderer. (b) Failure cases. 3 right columns: rendered estimaties (top rows) from different views and corresponding depth map)

Figure 4. Synthesized depth maps.(a) Synthesized depth map

from polygonal mesh (Sec. 3.3); (b) Synthesized depth maps aug-

mented with random noise; (c) Estimation of unseen synthesized

depth maps; (d) Estimation of real depth maps. The network is

trained with synthesized data augmented with noise in (c) and (d).
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Figure 5. Impact of training data. Percentage of successful

frames with different error thresholds, trained on different train-

ing set. The “synth (test on synth)” is tested on a 20k synthetic

dataset and the rest methods are all tested on the NYU[45] test set.

begs the question whether we can design a more flexible

learning scheme to use a mixture of both multi-view and

single-view depth maps. To that end, we halve the dataset,

where the first half has multiple views and the second half

has only a single view and apply these to two additional

baselines. The first baseline is trained only on the first half

(50% multi-view) and while the second baseline is trained

on both (50% multi-view + 50% single view). As shown

in Figure 6, the additional single-view training data can im-

prove the percentage of successful frames with threshold of

20mm from 22.5% to 35.0% and decreases the mean aver-

age error from 13.77mm to 13.33mm.

We conclude that multi-view set up is critical in self-

supervision to resolve (self) occlusions. Meanwhile, our

single-view self-supervision terms help improve accuracy,

offering flexibility for setups where it is not possible to cap-

ture data from multiple views.

Impact of prior terms. We study the individual con-

tributions of the three priors by training and testing the net-

work without the Lvae (“without vae loss”), Lcollision (“with-

out collision loss”) and Lbone length (“without bone length

loss”) terms. Figure 7 shows that without regulating the

estimated pose with any of these priors, there is a dramatic

decrease on the percentage of successful frames, especially

in the range of error thresholds form 20mm to 40mm. This

validates each of the priors in enforcing kinematically feasi-

ble pose estimates. The corresponding mean joint position

error increases similarly, as shown in Table 1. Interestingly,

the pose estimation is worse in the absence of Lbone length,
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Figure 6. Impact of multi-view supervision. Percentage of suc-

cessful frames within different error thresholds, trained on differ-

ent training set. All methods are tested on the NYU [45] test set.

even if it is still constrained by Lvae. In theory, the learned

VAE should already encode the bone length constraints as

part of the prior. This reveals that the Lvae term alone is in-

sufficient to ensure kinematic feasibility. We note however,

that the current prior terms are just that – they are priors.

They cannot guarantee that pose estimates will meet strict

kinematic constraints, e.g. the same subject has a constant

bone length, or that joint angles do not exceed a predefined

range. If this is desired, inverse kinematics can be added as

a post processing step [45, 52].

Variation in training data. We investigate how differ-

ent training data influences the resulting network with two

baselines. First, we train only with the 8252×3 testing sam-

ples to check how well self-supervision might (over-)fit the

network to training data. We then trained with a combina-

tion of both the testing and training samples. Finally, we

compare these two setups with our conventional baseline

of training and testing on the originally designated training

and test splits.

Interestingly enough, training directly on the test sam-

ples alone results in a higher mean joint error than when

training on the training samples (14.53mm vs 12.62mm er-

ror on the test samples, see Table 1). Similarly, the per-

centage of successful frames is only 22.5% as opposed to

40.7% at the 20mm error threshold (see Figure 5). We at-

tribute this to the current model fitting terms and optimiza-

tion with back-propagation; it cannot give rise to highly ac-

curate pose estimates with only small amounts of training

data. However, if the amount of training data increases, then

so does the accuracy. These benefits justify a data-driven

based self-supervision approach over conventional model-

based tracking which optimizes each frame independently.

Sure enough, when training with the combined training and

test set, we further improve (marginally, since we only add

about 10% more data), by decreasing mean joint position

error from 12.62mm to 12.31mm and by increasing the per-

centage of successful frames from 40.7% to 44.3%.
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Figure 7. Impact of prior terms. The percentage of successful

frames with different error thresholds, trained with different prior

terms. All methods are tested on the NYU [45] test set.

Method Mean joint error

ours (100% multiple view) 12.62 mm

100% single view 17.79 mm

50% multi-view 13.77 mm

50% multi-view + 50% single view 13.33 mm

without vae loss 14.17 mm

without bone length loss 14.56 mm

without collision loss 13.73 mm

50% multi-view 13.77 mm

50% multi-view + 50% single view 13.33 mm

synth(aug. with noise) 22.65 mm

synth 27.85 mm

synt(test on synth) 6.76 mm

train on test 14.53 mm

train on test + train 12.31 mm
Table 1. Ablation study and self comparison. We report mean

joint error averaged over all joints and frames.
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Figure 8. Comparison to state-of-arts. We report the result on

NYU[45] testing set and plot the percentage of frames in which

all joints are below a threshold.

4.3. Comparison to stateoftheart

We first compare our result with, to the best of our

knowledge, the only other unsupervised method [6]. Sim-

ilar to us, [6] uses a CNN and pretrains their network with
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synthesized depth maps. This followed by a model-fitting

based fine-tuning. As can be seen in Figure 8, our network

outperforms [6] by a large margin for the percentage of suc-

cessful frames at error thresholds higher than 25mm. We

achieve a much higher accuracy for two reasons. First, our

method exploits the benefits of an FCN, while [6] directly

regressed joint angles; secondly there are no gradients in

their depth term (Eq. 6 in [6]) associated with unexplained

points from the depth map which we handle with Ld2m.

Next, we compare our results to state-of-the-art [4, 10,

11, 12, 20, 23, 25, 49, 50, 51, 55] which train with ground-

truth annotations. Surprisingly, our result outperforms all

of them in terms of percentage of successful frames when

thresholds are larger than 30mm. This again validates self-

supervision and supports the possibility of learning robust

and accurate pose estimation systems without labels.

One drawback of our current model is that under more

stringent error criteria, e.g. when thresholds are 20mm or

less, our accuracy is no longer as good as state-of-the-art.

We attribute this to two causes. First, approximating the

hand surface with only spheres is insufficient and cannot

capture smaller fitting errors. To improve the accuracy, one

will need to use finer models such as a more personalized

hand mesh model though this comes at greater computa-

tional expense [2, 15]. Secondly, the current prior terms,

because they do not place strict kinematic constraints, likely

give rise to small offsets over the joints.

When comparing in terms of the average joint posi-

tion error, our method falls short of current state-of-the-art.

However, we note that the mean joint error, as a mean, can

be slightly biased, in the sense that certain joints are “easier”

to estimate. The finger roots, palm center and wrist, are less

sensitive to larger offsets than the finger tips, even though

the tips are more critical for good user experience in real-

world applications. Actually, our finger-tip accuracy, with

11.77mm(ours) / 12.39mm(ours stack=2), is higher than the

mean joint error once the roots, palm center and wrist joints

are included (12.26mm(ours) / 12.62mm(ours stack=2)).

Currently, [31] reports the highest accuracy to date

(see Table 2 by using domain adaptation techniques to

leverage synthesized data together with labelled real data.

Such a technique is complementary to our proposed self-

supervision strategy; the two combined together are likely

to lead to even higher accuracies in pose estimates.

5. Conclusion

We present a self-supervision method for 3D hand pose

estimation from single depth maps. Our method does not

require any manual annotation yet can produce highly accu-

rate estimates with results competitive to current supervised

state-of-arts. We formulate the training loss of the pose es-

timation network in terms of a data-fitting error whereby

the hand surface is approximated with a set of spheres. By

Method mean joint error

ours (stack = 1) 12.6 mm

ours (stack = 2) 12.3 mm

FeatureMapping [31] 7.4 mm

V2V [20] 8.4 mm

Point-to-Point[11] 9.0 mm

DenseReg [50] 10.2 mm

DeepPrior++ [23] 12.2 mm

Pose-REN [4] 11.8 mm

Ren [12] 12.7 mm

3DCNN [10] 14.1 mm

Lie-X [51] 14.5 mm

CrossingNet [49] 15.5 mm

Feedback [25] 15.9 mm

DeepModel [55] 17.0 mm
Table 2. Comparison with state-of-the-art. Mean joint error av-

eraged over all joints and frames. All methods are tested on the

NYU[45] test set.

parameterizing the pose directly as the sphere centers, our

method exploits the benefits of FCNs and avoids the dif-

ficulties of direct angular regression. In addition to data

terms, we place priors, including a data-driven term from a

trained VAE to encourage kinematic feasibility.

Through our model, we are able to jointly benefit from

model-based tracking, which requires no supervision,

and from data-driven approaches, in which the accuracy

steadily improves given more training data, even without

labels. In the future, we look forward to incorporating our

unsupervised approach with domain adaptation methods

to further improve the accuracy with available labelled data.
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