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Abstract

In this paper, we address the problem of inferring the

layout of complex road scenes given a single camera as in-

put. To achieve that, we first propose a novel parameterized

model of road layouts in a top-view representation, which is

not only intuitive for human visualization but also provides

an interpretable interface for higher-level decision making.

Moreover, the design of our top-view scene model allows

for efficient sampling and thus generation of large-scale

simulated data, which we leverage to train a deep neural

network to infer our scene model’s parameters. Specifically,

our proposed training procedure uses supervised domain-

adaptation techniques to incorporate both simulated as well

as manually annotated data. Finally, we design a Condi-

tional Random Field (CRF) that enforces coherent predic-

tions for a single frame and encourages temporal smooth-

ness among video frames. Experiments on two public data

sets show that: (1) Our parametric top-view model is repre-

sentative enough to describe complex road scenes; (2) The

proposed method outperforms baselines trained on manually-

annotated or simulated data only, thus getting the best of

both; (3) Our CRF is able to generate temporally smoothed

while semantically meaningful results.

1. Introduction

Understanding complex layouts of the 3D world is a cru-

cial ability for applications like robot navigation, driver as-

sistance systems or autonomous driving. Recent success

in deep learning-based perception systems enables pixel-

accurate semantic segmentation [3, 4, 33] and (monocular)

depth estimation [9, 15, 32] in the perspective view of the

scene. Other works like [10, 23, 25] go further and rea-

son about occlusions and build better representations for

3D scene understanding. The representation in these works,

however, is typically non-parametric, i.e., it provides a se-

mantic label for a 2D/3D point of the scene, which makes

higher-level reasoning hard for downstream applications.

In this work, we focus on understanding driving scenarios

and propose a rich parameterized model describing com-

*Work done during an internship at NEC Laboratories America.

Figure 1: Our goal is to infer the layout of complex driving

scenes from a single camera. Given a perspective image (top

left) that captures a 3D scene, we predict a rich and inter-

pretable scene description (bottom right), which represents

the scene in an occlusion-reasoned semantic top-view.

plex road layouts in a top-view representation (Fig. 1 and

Sec. 3.1). The parameters of our model describe important

scene attributes like the number and width of lanes, and the

existence of, and distance to various types of intersections,

crosswalks and sidewalks. An explicit model of such pa-

rameters is beneficial for higher-level modeling and decision

making as it provides a tangible interface to the real world.

In contrast to prior art [7, 14, 17, 23, 24, 25], our proposed

scene model is richer, fully parameterized and can be in-

ferred from a single camera input with a combination of

deep neural networks and a graphical model.

However, training deep neural networks requires large

amounts of training data. Although annotating the scene

attributes of our model for real RGB images is possible, it

is also costly to do at a large-scale and, more importantly,

extremely difficult for certain scene attributes. While the

existence of a crosswalk is a binary attribute and is easy

to annotate, annotating the exact width of a side road re-

quires the knowledge of scene geometry, which is hard when

only given a perspective RGB image. We thus propose to

leverage simulated data. However, in contrast to rendering

photo-realistic RGB images, which is a difficult and time-
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consuming task [20, 21], we propose a scene model that

allows for efficient sampling and render semantic top-view

representations that obviate expensive illumination modeling

or occlusion reasoning.

Given simulated data with accurate and complete anno-

tations, as well as real images with potentially noisy and

incomplete annotations, we propose a hybrid training pro-

cedure leveraging both sources of information. Specifically,

our neural network design involves (i) a feature extractor that

aims to leverage information from both domains, simulated

and real semantic top-views from [23] (see Fig. 4), and (ii)

a domain-agnostic classifier of scene parameters. At test

time, we convert a perspective RGB image into a semantic

top-view representation using [23] and predict our scene

model’s parameters. Given the individual scene parameter

predictions, we further design a graphical model (Sec. 3.4)

that captures dependencies among scene attributes in single

images and enforces temporal consistency across a sequence

of frames. We validate our idea on two public driving data

sets, KITTI [8] and NuScenes [18] (Sec. 4). The results

demonstrate the effectiveness of the top-view representation,

the hybrid training procedure with real and simulated data,

and the importance of the graphical model for coherent and

consistent outputs. To summarize, our key contributions are:

• A novel parametric and interpretable model of com-

plex driving scenes in a top-view representation.

• A neural network that (i) predicts the parameters from

a single camera and (ii) is designed to enable a hybrid

training approach from both real and synthetic data.

• A graphical model that ensures coherent and temporally

consistent scene description outputs.

• New annotations of our scene attributes for the KITTI [8]

and NuScenes [18] data sets1.

2. Related Work

3D scene understanding is an important task in computer

vision with many applications for robot navigation [11], self-

driving [7, 14], augmented reality [1] or real estate [16, 27].

Scene understanding: Explicit modeling of the scene is

frequently done for indoor applications where strong pri-

ors about the layout of rooms can be leveraged [1, 16, 26].

Non-parametric approaches are more common for outdoor

scenarios because the layout is typically more complex and

harder to capture in a coherent model, with occlusion reason-

ing often being a primary focus. Due to the natural ability

to reflect orders, layered representations [10, 29, 31] have

been utilized in scene understanding to reason about ge-

ometry and semantics in occluded areas. However, such

intermediate representations are not desired for applications

where distance information is required. A top-view repre-

sentation [23, 25], in contrast, is a more detailed description

1http://www.nec-labs.com/~mas/BEV

for 3D scene understanding. Our work follows such a top-

view representation and aims to infer a parametric model of

complex outdoor driving scenes from a single input image.

A few parametric models have been proposed for out-

door environments too. Seff and Xiao [24] present a neural

network that directly predicts scene attributes from a single

RGB image. Although those attributes are automatically ac-

quired from OpenStreetMaps [19], they are not rich enough

to fully describe complex road scenes, e.g. curved road with

side-roads. A richer model that is capable of handling com-

plex intersections with traffic participants is proposed by

Geiger et al. [7]. To this end, they propose to utilize multiple

modalities such as vehicle tracklets, vanishing points and

scene flow. Different from their work, we focus more on

scene layouts and propose in Sec. 3.1 a richer model in that

aspect, including multiple lanes, crosswalks and sidewalks.

Moreover, our base framework is able to infer model pa-

rameters with a single perspective image as input. A more

recent work [14] proposes to infer a graph representation

of the road, including lanes and lane markings, from partial

segmentations of an image. Unlike our method that aims to

handle complex road scenarios, [14] focuses only on straight

roads. Máttyus et al. [17] propose an interesting parametric

model of roads with the goal of augmenting existing map

data with richer semantics. Again, this model only handles

straight roads and requires input from both perspective and

aerial images. Perhaps [23] is the closest work to ours. In

contrast to it, we propose a fully-parametric model that is

capable of reconstructing complex road layouts.

Learning from simulated data: Besides the scene model

itself, one key contribution of our work is the training pro-

cedure that leverages simulated data, where we also utilize

tools from domain adaptation [6, 30]. While most recent

advances in this area focus on bridging domain gaps between

synthetic and real RGB images [20, 21], we benefit from the

semantic top-view representation within which our model

is defined. This representation allows efficient modeling

and sampling of a variety of road layouts, while avoiding

the difficulty of photo-realistic renderings, to significantly

reduce the domain gap between simulated and real data.

3. Our Framework

The goal of this work is to extract interpretable attributes

of the layout of complex road scenes from a single cam-

era. Sec. 3.1 presents our first contribution, a parameterized

and rich model of road scenes describing attributes like the

topology of the road, the number of lanes or distances to

scene elements. The design of our scene model allows effi-

cient sampling and, consequently, enables the generation of

large-scale simulated data with accurate and complete anno-

tations. At the same time, manual annotation of such scene

attributes for real images is costly and, more importantly,

even infeasible for some attributes, see Sec. 3.2. The second
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Figure 2: Our scene model consists of several parameters that capture a variety of complex driving scenes. (Left) We illustrate

the model and highlight important parameters (A-I), which are grouped into three categories (middle): Lanes, to describe the

layout of a single road; Topology, to model various road topologies; Walkable, describing scene elements for pedestrians. Our

model is defined as a directed acyclic graph enabling efficient sampling and is represented in the top-view, making rendering

easy. These properties turn our model into a simulator of semantic top-views. (Right) We show rendered examples for each of

the above groups. A complete list of scene parameters and the corresponding graphical model is given in the supplementary.

contribution of our work, described in Sec. 3.3, is a deep

learning framework that leverages training data from both

domains, real and simulation, to infer the parameters of our

proposed scene model. Finally, our third contribution is a

conditional random field (CRF) that enforces coherence be-

tween related parameters of our scene model and encourages

temporal smoothness for video inputs, see Sec. 3.4.

3.1. Scene Model

Our model describes road scenes in a semantic top-view

representation and we assume the camera to be at the bottom

center in every frame. This allows us to position all elements

relative to the camera. On a higher level, we differentiate

between the “main road”, which is where the camera is, and

eventual “side roads”. All roads consist of at least one lane

and intersections are a composition of multiple roads. Fig. 2

gives an overview of our proposed model.

Defining two side roads (one on the left and one on the

right of the main road) along with distances to each one of

them gives us the flexibility to model both 3-way and 4-way

intersections. An additional attribute determines if the main

road ends after the intersection, which yields T-intersections.

The main road is defined by a set of lanes, one- or two-

way traffic, delimiters and sidewalks. We also define up

to six lanes on the left and right side of the camera, which

occupies the ego-lane. We allow different lane widths to

model special lanes like turn- or bike-lanes. Next to the outer

most lanes, optional delimiters of a certain width separate

the road from the optional sidewalk. At intersections, we

also model the existence of crosswalks at all four potential

sides. For side roads, we only model their width. Our final

set of parameters Θ is grouped into different types and we

count M b = 14 binary variables Θb, Mm = 2 multi-class

variables Θm and M c = 22 continuous variables Θc. The

supplemental material contains a complete list of our model

parameters. Note that the ability to work with a simple

simulator means we can easily extend our scene model with

further parameters and relationships.

3.2. Supervision from Real and Simulated Data

Inferring our model’s parameters from an RGB image

requires abundant training data. Seff and Xiao [24] leverage

OpenStreetMaps [19] to gather ground truth for an RGB

image. While this can be done automatically given the GPS

coordinates, the set of attributes retrievable is limited and

can be noisy. Instead, we leverage a combination of manual

annotation and simulation for training.

Real data: Annotating real images with attributes corre-

sponding to our defined parameters can be done efficiently

only when suitable tools are used. This is particularly true

for sequential data because many attributes stay constant

over a long period of time. The supplemental material con-

tains details on our annotation tool and process. We have

collected a data set Dr = {xr,Θr}N
r

i=1 of N r samples of

semantic top-views x
r and corresponding scene attributes

Θr. The semantic top-views x
r ∈ R

H×W×C , with spatial

dimensions H ×W , contain C semantic categories ("road",

"sidewalk", "lane boundaries" and "crosswalks") and are

computed by applying the framework of [23]. However, sev-

eral problems arise with real data. First, ground truth depth is

required at a reasonable density for each RGB image to ask

humans to reliably estimate distances to scene elements like

10327



Figure 3: Overview of our proposed framework: At train-time, our framework makes use of both manual annotation for

real data (blue) and automated annotation for simulated data (red), see Sec. 3.2. The feature extractors g convert semantic

top views from either domain into a common representation which is input to h. An adversarial loss (orange) encourages

a domain-agnostic output of g. At test-time, an RGB image in the perspective view is first transformed into a semantic

top-view [23], which is then used by our proposed neural network (see Sec. 3.3), h ◦ g, to infer our scene model (see Sec. 3.1).

The graphical model defined in Sec. 3.4 ensures a coherent final output.

intersections or crosswalks. Second, there is always a limit

on how much diverse data can be annotated cost-efficiently.

Third, and most importantly, not all desired scene attributes

are easy or even possible to annotate at a large-scale, even if

depth information is available. For these reasons, we explore

simulation as another source of supervision.

Simulated data: Our proposed scene model defined in

Sec. 3.1 can act as a simulator to generate training data with

complete and accurate annotation. First, by treating each

attribute as a random variable with a certain hand-defined

(conditional) probability distribution and relating them in a

directed acyclic graph, we can use ancestral sampling [2]

to efficiently sample a diverse set of scene parameters Θs.

Second, we render the scene defined by the parameters Θs

into a semantic top-view x
s with the same dimensions as

x
r. It is important to highlight that rendering is easy, com-

pared to photo-realistic rendering of perspective RGB im-

ages [20, 21], because our model (i) works in the top-view

where occlusion reasoning is not required and (ii) is defined

in semantic space making illumination or photo-realism ob-

solete. We generate a data set Ds = {xs,Θs}N
s

i=1 of N s sim-

ulated semantic top-views xs and corresponding Θs. Fig. 2

(right) gives a few examples of rendered top-views.

3.3. Training and Inferring the Scene Model

We propose a deep learning framework that maps a se-

mantic top-view x into the scene model parameters Θ. Fig. 3

provides a conceptual illustration. To leverage both sources

of supervision (real and simulated data) during training, we

define this mapping as

Θ = f(x) = (h ◦ g)(x) , (1)

where ◦ defines a function composition and h and g are

neural networks, with weights γh and γg respectively, that

we want to train. The architecture of g is a 6-layer con-

volutional neural network (CNN) that converts a semantic

top-view x ∈ R
H×W×C into a 1-dimensional feature vector

fx ∈ R
D. Then, the function h is defined as a multi-layer

perceptron (MLP) predicting the scene attributes Θ given

fx. Specifically, h is implemented as a multi-task network

with three separate predictions ηb, ηm and ηc for each of the

parameter groups Θb, Θm and Θc of the scene model.

Our objective is that h ◦ g works well on real data, while

we want to leverage the rich and large set of annotations from

simulated data during training. The intuition behind our de-

sign is to have a unified g that maps semantic top-views x

of different domains into a common feature representation,

usable by a domain-agnostic classifier h. To realize this intu-

ition, we define supervised loss functions on both real and

simulated data and leverage domain adaptation techniques

to minimize the domain gap between the output of g given

top-views from different domains.

Loss functions on scene attribute annotation: Given

data sets Dr and Ds of real and simulated data, we define

Lsup = λr · Lr
sup + λs · Ls

sup (2)

as supervised loss. The scalars λr and λs weigh the impor-

tance between real and simulated data and

L{r,s}
sup =

N{r,s}∑

i=1

BCE(Θ
{r,s}
b,i , η

{r,s}
b,i )

+ CE(Θ
{r,s}
m,i , η

{r,s}
m,i )

+ ℓ1(Θ
{r,s}
c,i , η

{r,s}
c,i ) ,

(3)
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Figure 4: Unpaired examples of simulated semantic top-

views (top) and real ones from [23] (bottom).

where (B)CE is the (binary) cross-entropy loss and {Θ, η}·,i
denotes the i-th sample in the data set. For regression, we

discretize continuous variables into K bins by convolving a

dirac delta function centered at Θc with a Gaussian of fixed

variance, which enables easier multi-modal predictions and

is useful for the graphical model defined in Sec. 3.4. We

ignore scene attributes without manual annotation for Lr
sup.

Bridging the domain gap: Since our goal is to leverage

simulated data during the training process, our network de-

sign needs to account for the inherent domain gap. We thus

define separate feature extraction networks gr and gs with

shared weights γg that take as input semantic top-views from

either domain, i.e., xr or xs, and compute respective features

fxr and fxs . We then explicitly encourage a domain-agnostic

feature representation by employing an adversarial loss func-

tion Ladv [6]. We use an MLP d(fx) with parameters γd
as discriminator, that takes the feature representations from

either domain, i.e., fxr or fxs , as input and makes a binary

prediction into "real" or "fake". As in standard generative

adversarial networks, d has the goal to discriminate between

the two domains, while the rest of the model aims to confuse

the discriminator by providing inputs fxr,s indistinguishable

in the underlying distribution, i.e., a domain-agnostic repre-

sentation of the semantic top-view maps xr,s. Fig. 4 shows

unpaired examples of simulated and real top-views to illus-

trate the domain gap. Note that we chose domain adaptation

on the feature-level over our initial attempt on the pixel-level

with a modified version of [35] due to a simpler design and

higher accuracy. However, we refer to the supplementary

for a discussion of our pixel-level approach, which provides

insights into the role of domain adaptation and further visu-

alizations on overcoming the domain gap.

Optimization: We use ADAM [13] to estimate the param-

eters of our neural network model by solving:

max
γd

min
γg,γh

Lsup + λadvLadv. (4)

Figure 3 provides an overview of our framework.

3.4. CRF for Coherent Scene Understanding

We now introduce our graphical model for predicting

consistent layouts of road scenes. We first present our CRF

for single frames and then extend it to the temporal domain.

Single image CRF: Let us first denote the elements of

scene attributes and corresponding predictions as Θ[·] and

η[·], where we use indices i ∈ {1, ...,M b}, p ∈ {1, ...,Mm}
and m ∈ {1, ...,M c} for binary, multi-class and continuous

variables, respectively. We then formulate scene understand-

ing as the energy minimization problem

E(Θ|x) =Eb(Θb) + Em(Θm) + Ec(Θc)

+ Es(Θb,Θm) + Eq(Θb,Θc)

+ Eh(Θb,Θm,Θc) ,

(5)

where E∗ denotes energy potentials for the associated scene

attribute variables (Θb, Θm and Θc). We will describe the

details for each of those potentials in the following.

For binary variables Θb, our potential function Eb con-

sists of two terms,

Eb(Θb) =
∑

i

φb(Θb[i]) +
∑

i 6=j

ψb(Θb[i],Θb[j]) . (6)

The unary term φb(·) specifies the cost of assigning a label

to Θi
b and is defined as − logPb(Θb[i]), where Pb(Θb[i]) =

ηb[i] is the probabilistic output of our neural network h. The

pairwise term ψb(·, ·) defines the cost of assigning Θb[i]
and Θb[j] to i-th and j-th variable as ψb(Θb[i],Θb[j]) =
− logMb(Θb[i],Θb[j]), where Mb is the co-occurrence ma-

trix and Mb(Θb[i],Θb[j]) is the corresponding probabil-

ity. For multi-class variables, our potential is defined as

Em(Θm) =
∑

p φm(Θm[p]), where φm(·) = − logPm(·)
and Pm(Θm[p]) = ηm[p]. Similarly, we define the potential

for continuous variables as Ec(Θc) =
∑

m φc(Θc[m]) with

φc(Θc[m]) being the negative log-likelihood of ηc[m].
For a coherent prediction, we further introduce the po-

tentials Es, Eq and Eh to model correlations among scene

attributes. Es and Eq enforce hard constraints between cer-

tain binary variables and multi-class or continuous variables,

respectively. They convey the idea that, for instance, the

number of lanes of a side-road is consistent with the actual

existence of that side-road. We denote the set of pre-defined

pairs between Θb and Θm as S = {(i, p)} and between Θb

and Θc as Q = {(i,m)}. Potential Es is then defined as

Es(Θb,Θm) =
∑

(i,p)∈S

∞× ✶[Θb[i] 6= Θm[p]] , (7)

where ✶[ ∗ ] is the indicator function. Potential Eq is defined

likewise but using the set Q and variables Θc. In both cases,

we give a high penalty to scenarios where two types of

predictions are inconsistent.
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Finally, the potential Eh of our energy defined in Eq. (5)

models higher-order relations between Θb, Θm and Θc. The

potential takes the form

Eh(Θb,Θm,Θc) =
∑

c∈C

∞×fc(Θb[i],Θm[p],Θc[m]) , (8)

where c = (i, p,m) and fc(·, ·, ·) is a table where conflicting

predictions are set to 1. The supplementary gives a complete

definition of C which contains the relations between scene

attributes and the constraints we enforce on them.

Temporal CRF: Given videos as input, we propose to

extend our CRF to encourage temporally consistent and

meaningful outputs. We extend the energy function from

Eq. (5) by two terms that enforce temporal consistency of

binary and multi-class variables and smoothness for contin-

uous variables. Due to space limitations, we refer to the

supplementary for details of our formulation.

Learning and inference on CRF: We use QPBO [22] for

inference in both CRF models. Since ground truth is not

available for all frames, we do not introduce per-potential

weights. However, our CRF is amenable to piece-wise [28]

or joint learning [5, 34] if ground-truth is provided.

4. Experiments

To evaluate the quality of our scene understanding ap-

proach we conduct several experiments and analyze the im-

portance of different aspects of our model. Since we do

have manually-annotated ground truth, we can quantify our

results and compare with several baselines that demonstrate

the impact of two key contributions: the use of top-view

maps and simulated data for training. We also put an em-

phasis on qualitative results in this work for two reasons:

First, not all attributes of our model are actually contained

in the manually-annotated ground truth and can thus not be

quantified but only qualitatively verified. Second, there is

obviously no prior art showing results on this novel set of

ground truth data, which makes the analysis of qualitative

results even more important.

Datasets: Since our focus is on driving scenes and our ap-

proach requires semantic segmentation and depth annotation,

we choose to work with the KITTI [8] and the newly released

NuScenes [18]2 data sets. Although both data sets provide

laser-scanned data for depth ground truth, note that depth su-

pervision can also come from stereo images [9]. Also, since

NuScenes [18] does not provide semantic segmentation, we

reuse the segmentation model from KITTI. For both data

sets, we manually annotate a subset of the images with our

scene attributes. Annotators see the RGB image as well as

the depth ground truth and provide labels for 22 attributes

2At the time of conducting experiments, we only had access to the

pre-release of the data set.

of our model. We refer to the supplementary for details on

the annotation process. In total, we acquired around 17000

annotations for KITTI [8] and 3000 for NuScenes [18].

Evaluation metrics: Since the output space of our predic-

tion is complex and consists of a mixture of discrete and

continuous variables, which require different handling, we

use multiple different metrics for evaluation.

For binary variables (like the existence of side roads)

and for multi-class variables (like the number of lanes), we

measure accuracy as Accu.-Bi = 1
14

∑14
k=1[pk = Θbk] and

Accu.-Mc = 1
2

∑2
k=1[pk = Θmk]. For regression variables

we use the mean squard error (MSE).

Besides these standard metrics, we also propose another

metric that combines all predicted variables and outputs into

a single number. We take the predicted parameters and ren-

der the scene accordingly. For the corresponding image,

we take the ground truth parameters (augmented with pre-

dicted values for variables without ground truth annotation)

and render the scene, which assigns each pixel a semantic

category. For evaluation, we can now use Intersection-over-

Union (IoU), a standard measure in semantic segmentation.

While being a very challenging metric in this setup, it implic-

itly weighs the attributes by their impact on the area of the

top-view. For instance, predicting the number of lanes incor-

rectly by one has a bigger impact than getting the distance

to a sideroad wrong by one meter.

4.1. Single Image Evaluation

Our main experiments are conducted with a single image

as input. In the next section, we separately evaluate the

impact of temporal modeling as described in Sec. 3.4.

Baselines: Since we propose a scene model of roads with

new attributes and corresponding ground truth annotation,

there exist no previously reported numbers. We thus choose

appropriate baselines that are either variations of our model

or relevant prior works extended to our scene model:

• Manual-GT-RGB (M-RGB): A classification CNN

(ResNet-101 [12]) trained on the manually-annotated

ground truth. Seff and Xiao [24] have the same setup

except that we use a network with more parameters and

train for all attributes simultaneously in a multi-task setup.

• Manual-GT-RGB+Depth (M-RGB+D): Same as M-

RGB but with the additional task of monocular depth

prediction (as in our perception model). The intuition

is that this additional supervision aids predicting certain

scene attributes, e.g., distances to side roads, and renders

a more fair comparison point to our model.

• Manual-GT-BEV (M-BEV): Instead of using the per-

spective RGB image as input, this baseline uses the output

of [23], which is a semantic map in the top-view, also re-

ferred to as bird’s eye view (BEV). We train the function f

with the manually annotated ground truth. Thus, M-BEV

can be seen as an extension of [23] to our scene model.

10330



Figure 5: Illustrations of all the models we compare in the quantitative evaluation in Tab. 1.

KITTI [8] NuScenes [18]

Method Accu.-Bi. ↑ Accu.-Mc. ↑ MSE ↓ IOU ↑ Accu.-Bi. ↑ Accu.-Mc. ↑ MSE ↓ IOU ↑

M-RGB [24] .811 .778 .230 .317 .846 .604 .080 .316

M-RGB [24]+D .799 .798 .146 .342 .899 .634 .021 .335

M-BEV [23] .820 .777 .141 .345 .852 .601 .022 .269

M-BEV [23] +GM .831 .792 .136 .350 .852 .601 .036 .338

S-BEV .694 .371 .249 .239 .790 .366 .162 .155

S-BEV+DA .818 .677 .222 .314 .753 .568 .103 .171

S-BEV+DA+GM .847 .683 .230 .320 .723 .568 .081 .160

H-BEV .816 .756 .152 .342 .783 .569 .039 .345

H-BEV+DE .830 .776 .158 .381 .854 .626 .042 .423

H-BEV+DA .845 .792 .108 .398 .856 .545 .028 .346

H-BEV+DA+GM .849 .805 .098 .371 .855 .626 .033 .450

Table 1: Main results on road scene layout estimation on both data sets KITTI [8] and NuScenes [18].

• Simulation-BEV (S-BEV): This baseline uses the same

architecture as M-BEV but is trained only in simulation.

• Simulation-BEV+DomainAdapt (S-BEV+DA): Same

as S-BEV, but with additional domain adaptation loss

as proposed in our model.

We denote our approach proposed in Sec. 3, according to

the nomenclature above, as Hybrid-BEV+DomainAdapt

(H-BEV+DA) and further explore two variants of it. First,

H-BEV does not employ the discriminator d but still trains

from both domains. Second, H-BEV+DE also avoids the

discriminator but uses a separate set of weights γr
g and γs

g

for the feature extraction network g. The intuition is that

the supervised losses from both domains and the separate

domain-specific encoding (thus, "+DE") already provide

enough capacity and information to the model to find a

domain-agnostic representation of the data. Please refer to

Fig. 5 for an overview of the different models we compare.

For the best models among each group (M-, S- and H-), we

report numbers with the graphical model (+GM).

Quantitative results: Tab. 1 summarizes our main results

for both data sets and we can draw several conclusions. First,

when comparing the groups of methods by supervision type,

i.e., manual (M), simulation (S) and hybrid (H), we can

clearly observe the benefit of hybrid methods leveraging both

domains. Second, within the group of manual annotation, we

can see that adding depth supervision to the approach of [24]

significantly improves results, particularly for continuous

variables. Predicting the scene attributes directly from the

top-view representation of [23] is slightly better than M-

KITTI [8] NuScenes [18]

Method seman.↓ temp.↓ seman.↓ temp.↓

S-BEV+DA 2.82 5.32 1.08 2.09

M-BEV [23] 2.65 3.99 1.09 1.27

H-BEV+DA 5.59 6.01 1.08 1.05

+GM 1.77 1.93 0.11 0.42

Table 2: Main results on consistency measurements.

RGB+D on KITTI and worse on NuScenes, but has the

crucial advantage that augmentation with simulated data in

the top-view becomes possible, as illustrated with all hybrid

variants. Third, within the group of simulated data, using

domain adaptation techniques (S-BEV+DA) has a significant

benefit. We want to highlight the competitive overall results

of S-BEV+DA, which is an unsupervised domain adaptation

approach requiring no manual annotation. Forth, also for

hybrid methods, explicitly addressing the domain gap (H-

BEV+DE and H-BEV+DA) enables higher accuracy. Finally,

all models improve with our graphical model put on top.

Qualitative results: We show several qualitative results

in Fig. 6 and Fig. 7 and again highlight their importance to

demonstrate the practicality of our approach qualitatively.

We can see from the examples that our model successfully

describes a diverse set of road scenes.

4.2. Evaluating consistency of our model

We now analyze the impact of the graphical model on

the consistency of our predictions, for which we define the

following metrics:
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Figure 6: Qualitative results of H-BEV+DA+GM on individual frames from KITTI. Each example shows perspective RGB,

ground truth and predicted semantic top-view, respectively. Our representation is rich enough to cover various road layouts

and handles complex scenarios, e.g., rotation, existence of crosswalks, sidewalks, side-roads and curved roads.

Figure 7: Qualitative results comparing H-BEV+DA and H-BEV+DA+GM in consecutive frames of two example sequences

of the KITTI validation set. In each column, we have visualized the perspective RGB image, prediction from H-BEV+DA and

that of H-BEV+DA+GM from left to right. Each row shows a sequence of three frames. We can observe more consistent

predictions, e.g., width of side-road and delimiter width, with the help of the temporal CRF.

• Semantic consistency: we measure the conflicts in at-

tribute predictions w.r.t. their semantic meanings. Specifi-

cally, we count a conflict if predicted attributes are not fea-

sible in our scene model. The average number of conflicts

is reported as our semantic consistency measurement.

• Temporal consistency: for each attribute prediction among

a video sequence, we measure the number of changes in

the prediction. We report the average number of predic-

tion changes as the temporal consistency. The lower the

number is, the more stable prediction we would obtain.

Note that consistency itself cannot replace the accuracy

since a prediction can also be consistently wrong.

As for the temporal consistency, we visualize qualitative

results of consecutive frames in two validation sequences

from KITTI in Fig. 7. The graphical model successfully

enforces temporal smoothness, especially for number of

lanes, delimiter width and the width of side-roads.

Finally, we show in Tab. 2 quantitative results for the

temporal consistency metrics defined above on both KITTI

and NuScenes data sets. We compare representative models

from each group of different forms of supervision (M-, S-

and H-) with the output of the graphical model applied on H-

BEV+DA. We can clearly observe a significant improvement

in consistency for both data sets. Together with the superior

results in Tab. 1, this clearly demonstrates the benefits of the

proposed graphical model for our application.

5. Conclusion

In this work, we present a scene understanding framework

for complex road scenarios. Our key contributions are: (1)

A parameterized and interpretable model of the scene that

is defined in the top-view and enables efficient sampling

of diverse scenes. The semantic top-view representation

makes rendering easy (compared to photo-realistic RGB

images in perspective view), which enables the generation of

large-scale simulated data. (2) A neural network design and

corresponding training scheme to leverage both simulated as

well as manually-annotated real data. (3) A graphical model

that ensures coherent predictions for a single frame input and

temporally smooth outputs for a video input. Our proposed

hybrid model (using both sources of data) outperforms its

counterparts that use only one source of supervision in an

empirical evaluation. This confirms the benefits of the top-

view representation, enabling simple generation of large-

scale simulated data and consequently our hybrid training.
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