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Abstract

When labeled data is scarce for a specific target task,

transfer learning often offers an effective solution by utiliz-

ing data from a related source task. However, when trans-

ferring knowledge from a less related source, it may in-

versely hurt the target performance, a phenomenon known

as negative transfer. Despite its pervasiveness, negative

transfer is usually described in an informal manner, lack-

ing rigorous definition, careful analysis, or systematic treat-

ment. This paper proposes a formal definition of nega-

tive transfer and analyzes three important aspects thereof.

Stemming from this analysis, a novel technique is proposed

to circumvent negative transfer by filtering out unrelated

source data. Based on adversarial networks, the technique

is highly generic and can be applied to a wide range of

transfer learning algorithms. The proposed approach is

evaluated on six state-of-the-art deep transfer methods via

experiments on four benchmark datasets with varying lev-

els of difficulty. Empirically, the proposed method consis-

tently improves the performance of all baseline methods and

largely avoids negative transfer, even when the source data

is degenerate.

1. Introduction

The development of deep neural networks (DNNs) has

improved the state-of-the-art performance on a wide range

of machine learning problems and applications. How-

ever, DNNs often require a large amount of labeled data to

train well-generalized models and as more classical meth-

ods, DNNs rely on the assumption that training data and

test data are drawn from the same underlying distribution.

In some cases, collecting large volumes of labeled train-

ing data is expensive or even prohibitive. Transfer learn-

ing [20] addresses this challenge of data scarcity by utilizing

previously-labeled data from one or more source tasks. The

hope is that this source domain is related to the target do-

main and thus transferring knowledge from the source can

improve the performance within the target domain. This

powerful paradigm has been studied under various settings

[35] and has been proven effective in a wide range of appli-

cations [39, 16, 17].

However, the success of transfer learning is not always

guaranteed. If the source and target domains are not suffi-

ciently similar, transferring from such weakly related source

may hinder the performance in the target, a phenomenon

known as negative transfer. The notion of negative trans-

fer has been well recognized within the transfer learning

community [20, 35]. An early paper [24] has conducted

empirical study on a simple binary classification problem to

demonstrate the existence of negative transfer. Some more

recent work [7, 10, 3] has also observed similar negative

impact while performing transfer learning on more complex

tasks under different settings.

Despite these empirical observations, little research

work has been published to analyze or predict negative

transfer, and the following questions still remain open:

First, while the notion being quite intuitive, it is not clear

how negative transfer should be defined exactly. For exam-

ple, how should we measure it at test time? What type of

baseline should we compare with? Second, it is also un-

known what factors cause negative transfer, and how to ex-

ploit them to determine that negative transfer may occur.

Although the divergence between the source and target do-

main is certainly crucial, we do know how large it must be

for negative transfer to occur, nor if it is the only factor.

Third and most importantly, given limited or no labeled tar-

get data, how to detect and/or avoid negative transfer.

In this work, we take a step towards addressing these

questions. We first derive a formal definition of nega-

tive transfer that is general and tractable in practice. Here

tractable means we can explicitly measure its effect given

the testing data. This definition further reveals three under-

lying factors of negative transfer that give us insights on

when it could occur. Motivated by these theoretical ob-

servations, we develop a novel and highly generic tech-

nique based on adversarial networks to combat negative

transfer. In our approach, a discriminator estimating both

marginal and joint distributions is used as a gate to filter

potentially harmful source data by reducing the bias be-

tween source and target risks, which corresponds to the

idea of importance reweighting [5, 38]. Our experiments
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involving eight transfer learning methods and four bench-

mark datasets reveal the three factors of negative trans-

fer. In addition, we apply our method to six state-of-the-

art deep methods and compare their performance, demon-

strating that our approach substantially improves the perfor-

mance of all base methods under potential negative transfer

conditions by largely avoiding negative transfer.

2. Related Work

Transfer learning [20, 36] uses knowledge learned in the

source domain to assist training in the target domain. Early

methods exploit conventional statistical techniques such

as instance weighting [14] and feature mapping [19, 32].

Compared to these earlier approaches, deep transfer net-

works achieve better results in discovering domain invariant

factors [37]. Some deep methods [16, 27] transfer via distri-

bution (mis)match measurements such as Maximum Mean

Discrepancy (MMD) [14]. More recent work[9, 29, 3, 26]

exploit generative adversarial networks (GANs) [12] and

add a subnetwork as a domain discriminator. These meth-

ods achieve state-of-the-art on computer vision tasks [26]

and some natural language processing tasks [17]. However,

none of these techniques are specifically designed to tackle

the problem of negative transfer.

Negative transfer Early work that noted negative transfer

[24] was targeted at simple classifiers such as hierarchical

Naive Bayes. Later, similar negative effects have also been

observed in various settings including multi-source trans-

fer learning [7], imbalanced distributions [10] and partial

transfer learning [3]. While the importance of detecting

and avoiding negative transfer has raised increasing atten-

tion [35], the literature lacks in-depth analysis.

3. Rethink Negative Transfer

Notation. We will use PS(X,Y ) and PT (X,Y ), respec-

tively, to denote the the joint distribution in the source and

the target domain, where X is the input random variable

and Y the output. Following the convention, we assume

having access to labeled source set S = {(xi
s, y

i
s)}

ns

i=1 sam-

pled from the source joint PS(X,Y ), a labeled target set

Tl = {(xj
l , y

j
l )}

nl

j=1 drawn from the target joint PT (X,Y ),

and an unlabeled target set Tu = {xk
u}

nu

k=1 from the target

marginal PT (X). For convenience, we define T = (Tl, Tu).

Transfer Learning. Under the notation, transfer learning

aims at designing an algorithm A, which takes both the

source and target domain data S, T as input, and outputs a

better hypothesis (model) h = A(S, T ), compared to only

using the target-domain data . For model comparison, we

will adapt the standard expected risk, which is defined as

RPT
(h) := Ex,y∼PT

[ℓ(h(x), y)] , (1)

with ℓ being the specific task loss. To make the setting

meaningful, it is often assumed that ns ≫ nl.

Negative Transfer. The notion of negative transfer lacks

a rigorous definition. A widely accepted description of neg-

ative transfer [20, 35] is stated as “transferring knowledge

from the source can have a negative impact on the target

learner”. While intuitive, this description conceals many

critical factors underlying negative transfer, among which

we stress the following three points:

1. Negative transfer should be defined w.r.t. the algorithm.

Specifically, the informal description above does not

specify what the negative impact is compared with. For

example, it will be misleading to only compare with the

best possible algorithm only using the target data, i.e.,

defining negative transfer as

RPT
(A(S, T )) > min

A′

RPT
(A′(∅, T )), (2)

because the increase in risk may not come from using

the source-domain data, but the difference in algorithms.

Therefore, to study negative transfer, one should focus

on a specific algorithm at a time and compare its perfor-

mance with and without the source-domain data. Hence,

we define the negative transfer condition (NTC)1 for any

algorithm A as

RPT
(A(S, T )) > RPT

(A(∅, T )). (3)

For convenience, we also define the negative transfer

gap (NTG) as a quantifiable measure of negative trans-

fer:
RPT

(A(S, T ))−RPT
(A(∅, T )), (4)

and we say that negative transfer occurs if the negative

transfer gap is positive and vice versa.

2. Divergence between the joint distributions is the root to

negative transfer. As negative transfer is algorithm spe-

cific, it is natural to ask the question that whether there

exists a transfer learning algorithm that can always im-

prove the expected risk compared to its target-domain

only baseline. It turned out this depends on the di-

vergence between PS(X,Y ) and PT (X,Y ) [11]. As

an extreme example, assume PS(X) = PT (X) and

PS(Y | x) is uniform for any x. In the case, there is

no meaningful knowledge in PS(X,Y ) at all. Hence,

exploiting S ∼ PS(X,Y ) will almost surely harm the

estimation of PT (Y | X), unless PT (Y | X) is uniform.

In practice, we usually deal with the case where there ex-

ists some “systematic similarity” between PS(X,Y ) and

PT (X,Y ). Then, an ideal transfer would figure out and

take advantage of the similar part, leading to improved

performance. However, if an algorithm fails to discard

the divergent part and instead rely on it, one can expect

1More discussion in the supplementary.
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negative transfer to happen. Thus, regardless of the al-

gorithm choice, the distribution shift is the actual root to

negative transfer.

3. Negative transfer largely depends on the size of the la-

beled target data. While the previous discussion focuses

on the distribution level, an overlooked factor of nega-

tive transfer is the size of the labeled target data, which

has a mixed effect.

On one hand, for the same algorithm and distribution di-

vergence, NTC depends on how well the algorithm can

do using target data alone, i.e. the RHS of Eq.(3). In

zero-shot transfer learning2 [8, 21] where there is no la-

beled target data (nl = 0), only using unlabeled target

data would result in a weak random model and thus NTC

is unlikely to be satisfied. When labeled target data is

available [24, 29, 17], a better target-only baseline can

be obtained using semi-supervised learning methods and

so negative transfer is relatively more likely to occur. At

the other end of the spectrum, if there is an abundance of

labeled target data, then transferring from a even slightly

different source domain could hurt the generalization.

Thus, this shows that negative transfer is relative.

On the other hand, the amount of labeled target data

has a direct effect on the feasibility and reliability of

discovering shared regularity between the joint distri-

butions. As discussed above, the key component of a

transfer learning algorithm is to discover the similarity

between the source joint PS(X,Y ) and the target joint

PT (X,Y ). When labeled target data is not available

(nl = 0), one has to resort to the similarity between

the marginals PS(X) and PT (X), which though has a

theoretical limitation [2]. In contrast, if one has a con-

siderable number of samples (xl, yl) ∼ PT (X,Y ) and

(xs, ys) ∼ PS(X,Y ), the problem would be manage-

able. Therefore, an ideal transfer learning algorithm may

be able to utilize labeled target data to mitigate the neg-

ative impact of unrelated source information.

With these points in mind, we next turn to the problem

of how to avoid negative transfer in a systematic way.

4. Proposed Method

As discussed in Section 3, the key to achieving success-

ful transfer and avoiding negative effects is to discover and

exploit shared underlying structures between PS(X,Y ) and

PT (X,Y ). In practice, there are many possible regulari-

ties one may take advantage of. To motivate our proposed

method, we first review an important line of work and show

how the observation in section 3 helps us to identify the

limitation.

2It is often referred to as unsupervised domain adaptation in literature.

4.1. Domain Adversarial Network

As a notable example, a recent line of work [16, 8, 30]

has successfully utilized a domain-invariant feature space

assumption to achieve knowledge transfer. Specifically, it

is assumed that there exists a feature space that is both

shared by both source and target domains and discrimina-

tive enough for predicting the output. By learning a feature

extractor F that can map both the source and target input to

the same feature space, classifier learned on the source data

can transfer to the target domain.

To find such a feature extractor, a representative solution

is the Domain Adversarial Neural Network (DANN) [9],

which exploits a generative adversarial network (GAN)

framework to train the feature extractor F such that the

feature distributions P (F (XS)) and P (F (XT )) cannot be

distinguished by the discriminator D. Based on the shared

feature space, a simple classifier C is trained on both source

and target data. Formally, the objective can be written as:

argmin
F,C

argmax
D

LCLF(F,C)− µLADV(F,D), (5)

LCLF(F,C) =Exl,yl∼TL
[ℓCLF(C(F (xl)), yl)]

+Exs,ys∼S [ℓCLF(C(F (xs)), ys)] , (6)

LADV(F,D) =Exu∼PT (X) [logD(F (xu))]

+Exs∼PS(X) [log(1−D(F (xs)))] . (7)

Intuitively, LCLF is the supervised classification loss on both

the target and source labeled data, LADV is the standard

GAN loss treating F (xu) and F (xs) as the true and fake

features respectively, and µ is a hyper-parameter balancing

the two terms. For more details and theoretical analysis, we

refer readers to the original work [8].

Now, notice that the DANN objective implicitly makes

the following assumption: For any xs ∈ Xs, there exists a

xt ∈ Xt such that

PS(Y |xs) = PT (Y |xt) = P (Y |F (xs)) = P (Y |F (xt)).

In other words, it is assumed that every single source sam-

ple can provide meaningful knowledge for transfer learning.

However, as we have discussed in Section 3, some source

samples may not be able to provide any knowledge at all.

Consider the case where there is a source input xs ∈ Xs

such that PS(Y | xs) 6= PT (Y | xt) for any xt. Since

P (F (Xs)) = P (F (Xt)) as a result of the GAN objective,

there exists a x′ ∈ Xt such that F (x′) = F (xs) and hence

P (Y | F (x′)) = P (Y | F (xs)). Then, if P (Y | F (xs)) is

trained on the source data to match PS(Y | xs), it follows

P (Y |F (x′)) = P (Y |F (xs)) = P (Y |xs) 6= P (Y |x′).

As a result, relying on such “unrelated” source samples can

hurt the performance, leading to negative transfer. Moti-

vated by this limitation, we next present a simple yet ef-
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Figure 1. The architecture of proposed discriminator gate, where

f is the extracted feature layer, ŷ and ℓCLF are predicted class label

and its loss, d̂ is the predicted domain label, Lgate

CLF is the classifi-

cation loss, Laug

ADV is the adversarial learning loss; GRL stands for

Gradient Reversal Layer and ⊙ is the Hadamard product.

fective method to deal with harmful source samples in a

systematic way.

4.2. Discriminator Gate

The limitation of DANN comes from the unnecessary

assumption that all source samples are equally useful. To

eliminate the weakness, a natural idea is to reweight each

source sample in some proper manner. To derive an appro-

priate weight, notice that the standard supervised learning

objective can be rewritten as

LSUP = Ex,y∼PT (X,Y ) [ℓCLF(C(F (x)), y)]

= Ex,y∼PS(X,Y )

[

PT (x, y)

PS(x, y)
ℓCLF(C(F (x)), y)

]

(8)

where the density ratio
PT (x,y)
PS(x,y) naturally acts as an impor-

tance weight [5, 38] for the source data. Hence, the problem

reduces to the classic problem of density ratio estimation.

Here, we exploit a GAN discriminator to perform the

density ratio estimation [31]. Specifically, the discriminator

takes both x and the paired y as input, and try to classify

whether the pair is from the source domain (fake) or the

target domain (true). At any point, the optimal discriminator

is given by D(x, y) = PT (x,y)
PT (x,y)+PS(x,y) , which implies

PT (x, y)

PS(x, y)
=

D(x, y)

1−D(x, y)
.

In our implementation, to save model parameters, we reuse

the feature extractor to obtain the feature of x and instantiate

D(x, y) as D(F (x), y). With the weight ratio, we modify

the classification objective (6) in DANN as

Lgate
CLF(C,F ) = Exl,yl∼TL

[ℓCLF(C(F (xl)), yl)]

+λExs,ys∼S [ω(xs, ys)ℓCLF(C(F (xs)), ys)] ,

ω(xs, ys) = SG

(

D(xs, ys)

1−D(xs, ys)

)

(9)

where SG(·) denotes stop gradient and λ is another hyper-

parameter introduce to scale the density ratio. As the den-

sity ratio acts like a gating function, we will refer to mech-

anism as discriminator gate.

On the other hand, we also augment the adversarial

learning objective (7) by incorporating terms for matching

the joint distributions:

Laug
ADV(F,D) = Exu∼PT (X) [logD(F (xu),nil)]

+ Exs∼PS(X) [log(1−D(F (xs),nil))]

+ Exl,yl∼TL
[logD(F (xl), yl)]

+ Exs,ys∼S [log(1−D(F (xs), ys))] ,

(10)

where nil denotes a dummy label which does not provide

any label information and it is included to enable the dis-

criminator D being used as both a marginal discriminator

and a joint discriminator. As a benefit, the joint discrim-

inator can utilize unlabeled target data since labeled data

could be scarce. Similarly, under this objective, the feature

network F will receive gradient from both the marginal dis-

criminator and the joint discriminator. Theoretically speak-

ing, the joint matching objective subsumes the the marginal

matching objective, as matched joint distribution implied

matched marginals. However, in practice, the labeled target

data TL is usually limited, making the joint matching objec-

tive itself insufficient. This particular design choice echos

our discussion about how the size of labeled target data can

influence our algorithm design in Section 3.

Combining the gated classification objective (9) and the

augmented adversarial learning objective (10), we arrive at

our proposed approach to transfer learning

argmin
F,C

argmax
D

Lgate
CLF(F,C)− µLaug

ADV(F,D). (11)

The overall architecture is illustrated in Figure 1. Finally,

although the presentation of the proposed method is based

on DANN, our method is highly general and can be applied

directly to other adversarial transfer learning methods. In

fact, we can even extend non-adversarial methods to achieve

similar goals. In our experiments, we adapt six deep meth-

ods [16, 27, 8, 30, 4, 26] of three different categories to

demonstrate the effectiveness of our method.

5. Experiments

We conduct extensive experiments on four benchmark

datasets to (1) analyze negative transfer and its three under-

lying aspects, and (2) evaluate our proposed discriminator

gate on six state-of-the-art methods.

5.1. Datasets

We use four standard datasets with different levels of dif-

ficulties: (1) small domain shift: Digits dataset, (2) moder-

ate domain shift: Office-31 dataset, and (3) large domain

shift: Office-Home and VisDA datasets.
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Digits contains three standard digit classification

datasets: MNIST, USPS, SVHN. Each dataset contains

large amount of images belonging to 10 classes (0-9).

This dataset is relatively easy due to its simple data dis-

tribution and therefore we only consider a harder case:

SVHN→MNIST. Specifically, SVHN [18] contains 73K

images cropped from house numbers in Google Street View

images while MNIST [15] consists of 70K handwritten dig-

its captured under constrained conditions.

Office-31 [25] is the most widely used dataset for vi-

sual transfer learning. It contains 4,652 images of 31 cate-

gories from three domains: Amazon(A) which contains im-

ages from amazon.com, Webcam(W) and DSLR(D) which

consist of images taken by web camera and SLR camera.

We evaluate all methods across three tasks: W→D, A→D,

and D→A. We select these three settings because the other

three possible cases yield similar results.

Office-Home [33] is a more challenging dataset that

consists of about 15,500 images of 65 categories that

crawled through several search engines and online image

directories. In particular, it contains four domains: Artis-

tic images(Ar), Clip Art(Cl), Product images(Pr) and Real-

World images(Rw). We want to test on more interesting and

practical transfer learning tasks involving adaptation from

synthetic to real-world and thus we consider three transfer

tasks: Ar→Rw, Cl→Rw, and Pr→Rw. In addition, we

choose to use the first 25 categories in alphabetic order to

make our results more comparable to previous studies [4].

VisDA [22] is another challenging synthetic to real

dataset. We use the training set as the synthetic source and

the testing set as the real-world target (Synthetic→Real).

Specifically, the training set contains 152K synthetic im-

ages generated by rendering 3D models and the testing set

contains 72K real images from crops of Youtube Bounding

Box dataset [23], both contain 12 categories.

5.2. Experimental Setup

To better study negative transfer effect and evaluate our

approach, we need to control the three factors discussed in

Section 3, namely algorithm factor, divergence factor and

target factor. In our experiments, we adopt the following

mechanism to control each of them.

Divergence factor: Since existing benchmark datasets

usually contain domains that are similar to each other, we

need to alter their distributions to better observe negative

transfer effect. In our experiments, we introduce two pertur-

bation rates ǫx and ǫy to respectively control the marginal

divergence and the conditional divergence between two do-

mains. Specifically, for each source domain data we inde-

pendently draw a Bernoulli variable of probability ǫx, and

if it returns one, we add a series of random noises to the

input image such as random rotation, random salt&pepper

noise, random flipping, etc (examples shown Figure 2). Ac-

cording to studies in [28, 1], such perturbation is enough to

cause misclassification for neural networks and therefore is

sufficient for our purpose. In addition, we draw a second

independent Bernoulli variable of probability ǫy and assign

a randomly picked label if it returns one.

(a) Original (b) Perturbed

Figure 2. Example images before & after perturbation

Target factor: Similar to previous works, we use all la-

beled source data for training. For the target data, we first

split 50% as training set and the rest 50% for testing. In ad-

dition, we use all of target training data as unlabeled target

data and use L% percent of them as labeled target data. A

symmetric study of source data can be found in [34].

Algorithm factor: To provide a more comprehensive

study of negative transfer, we evaluate the performance of

eight transfer learning methods of five categories: TCA

[19], KMM [14], DAN [16], DCORAL [27], DANN

a.k.a RevGrad [8], ADDA [29], PADA [4], GTA [26].

Specifically, (1) TCA is a conventional method based on

MMD-regularized PCA, (2) KMM is a conventional sam-

ple reweighting method, (3) DAN and DCORAL are non-

adversarial deep methods which use a distribution measure-

ment as an extra loss, (4) DANN, ADDA and PADA use ad-

versarial learning and directly train a discriminator, (5) GTA

is a GAN based method that includes a generator to gen-

erate actual images in additional to the discriminator. We

mainly follow the default settings and training procedures

for model selection as explained in their respective papers.

However, for fair comparison, we use the same feature ex-

tractor and classifier architecture for all deep methods. In

particular, we use a modified LeNet as detailed in [26] for

the Digits dataset. For other datasets, we fine-tune from the

ResNet-50 [13] pretrained on ImageNet with an added 256-

dimension bottleneck layer between the res5c and fc layers.

To compare the performance of our proposed approach, we

adapt a gated version for each of the six deep methods (e.g

DANNgate is the gated DANN). Specifically, we extend

DANN, ADDA and PADA straightforwardly as described

in Section 4.2. For GTA, we extend the discriminator to

take in class labels and output domain label predictions as

gates. For DAN and DCORAL, we add an extra discrimi-

nator network to be used as gates but the general network

is not trained adversarially. For hyper-parameters, we set

λ = 1 and µ progressively increased from 0 to 1 in all our

experiments. For each transfer task, we compare the av-

erage classification accuracy over five random repeats. To
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Table 1. Classification accuracy (%) of DANN and DANNgate on tasks W→D and A→D. Perturbation rates are set equal, i.e. ǫ = ǫx = ǫy . NTG1 and

NTG2 are negative transfer gaps for DANN and DANNgate. ∆ is the performance gain of DANNgate compared to DANN.

W→D A→D

ǫ =0.0 ǫ =0.3 ǫ =0.7 ǫ =0.9 Avg ǫ =0.0 ǫ =0.3 ǫ =0.7 ǫ =0.9 Avg L%

DANN 99.1±0.8 83.2±1.4 47.2±2.7 32.2±3.5 65.4 76.2±1.5 40.9±1.1 21.3±2.7 12.9±3.7 37.8

0%

NTG1 -96.5 -80.3 -44.1 -28.3 -62.3 -73.7 -37.3 -17.2 -9.7 -34.5

DANNgate 98.9±0.6 83.3±2.1 48.4±2.5 32.1±3.1 65.7 76.0±1.2 41.0±1.6 21.5±3.1 13.2±2.4 37.9

NTG2 -96.3 -80.4 -45.3 -28.2 -62.6 -73.5 -37.4 -17.4 -10.0 -34.6

∆ ↓0.2 ↑0.1 ↑1.2 ↓0.1 ↑0.3 ↓0.2 ↑0.1 ↑0.2 ↑0.3 ↑0.1

DANN 99.5±0.4 86.8±2.8 73.1±3.3 48.8±4.3 77.0 78.6±2.7 54.8±3.1 49.6±2.1 32.3±2.6 53.8

10%

NTG1 -48.7 -37.8 -23.6 1.6 -27.1 -28.4 -4.4 1.2 18.4 -3.3

DANNgate 99.2±0.3 85.4±2.6 79.4±2.9 50.4±3.2 78.6 85.1±1.7 60.2±2.1 58.3±2.0 49.1±2.5 63.2

NTG2 -48.4 -36.4 -29.9 0.0 -28.7 -34.9 -9.8 -7.5 1.6 -12.7

∆ ↓0.3 ↓1.4 ↑6.3 ↑1.6 ↑1.6 ↑6.5 ↑5.4 ↑8.7 ↑16.8 ↑9.4

DANN 99.6±0.2 89.7±1.6 78.4±2.5 70.5±4.3 84.6 80.2±2.0 73.3±2.2 70.2±3.3 51.3±4.3 68.8

30%

NTG1 -18.5 -10.3 1.8 8.2 -4.7 -1.5 6.5 8.9 28.4 10.6

DANNgate 100.0±0.1 90.4±1.8 82.0±1.8 79.9±3.8 88.1 89.0±1.5 82.6±1.0 81.3±2.1 80.6±1.8 83.4

NTG2 -18.9 -11.0 -1.8 -1.2 -8.2 -10.3 -2.8 -2.2 -0.9 -4.1

∆ ↑0.4 ↑0.7 ↑3.6 ↑9.4 ↑2.6 ↑8.8 ↑9.3 ↑11.1 ↑29.3 ↑14.6

DANN 100.0±0.0 92.2±1.7 85.8±2.3 78.2±4.8 89.1 84.5±1.9 77.6±3.8 70.6±4.9 65.4±6.3 74.5

50%

NTG1 -11.7 -3.2 3.8 10.4 -0.2 4.6 12.1 18.8 23.2 14.7

DANNgate 100.0±0.0 93.3±1.7 91.2±1.5 89.5±3.4 92.5 93.2±1.3 91.4±1.2 90.2±2.0 89.8±1.9 91.2

NTG2 -11.7 -4.3 -1.6 -0.9 -4.6 -4.1 -1.7 -0.8 -1.2 -2.0

∆ →0.0 ↑1.1 ↑5.4 ↑11.3 ↑4.5 ↑8.7 ↑13.8 ↑19.6 ↑24.4 ↑16.7

(a) L% fixed at 20% (b) ǫ fixed at 0.2

Figure 3. Incremental performance on task Pr→Rw. ResS and ResT are

ResNet-50 baselines trained using only source data and only target data.

Perturbation rates are set equal, i.e. ǫ = ǫx = ǫy .

test whether negative transfer occurs, we measure the nega-

tive transfer gap (NTG) as the gap between the accuracy of

target-only baseline and that of the original method. For

instance, for DANN, the target-only baseline is DANNT

which treats labeled target data as “source” data and uses

unlabeled data as usual. A positive NTG indicates the oc-

currence of negative transfer and vice versa.

5.3. Results and Analysis

5.3.1 Study of Negative Transfer

To reveal the three dependent factors, we study the effect

of negative transfer under different methods with varying

perturbation rates (ǫx, ǫy) and target labeled data (L%).

Divergence factor. The performance of DANN under

different settings of ǫ and L% on two tasks of Office-31 are

shown in Table 1. We observe an increasing negative trans-

fer gap as we increase the perturbation rate in all cases. In

some cases such as L% = 10%, we can even observe a

change in the sign of NTG. For a more fine-grained study,

we investigate a wider spectrum of distribution divergence

by gradually increasing ǫ from 0.0 to 1.0 in Figure 3(a). Al-

though DANN is better than DANNT when ǫ is small, its

performance degrades quickly as ǫ increases and drops be-

low DANNT , indicating the occurrence of negative transfer.

On the other hand, by fixing ǫy = 0 and using two domains

W and D that are known to be particularly similar, we study

negative transfer under the assumption of covariate shift in

Table 3, and observe that negative transfer does not occur

even with high ǫx and descent L%. These experimental re-

sults confirms that the distribution divergence is an impor-

tant factor of negative transfer.

Table 3. Classification accuracy (%) under the Covariate Shift assumption

on task W→D. ǫy is fixed at 0. Negative transfer gap is shown in brackets.

Method ǫx=0.7 L%=10% ǫx=1.0 L%=30%

DAN 81.2(-29.3) 85.8(-6.2)

DANN 83.0(-30.8) 86.1(-6.5)

GTA 85.5(-33.5) 88.1(-8.0)

Target factor. Fixing a specific ǫ, we observe that the

negative transfer gap increases as L% increases in Table 1.

In the extreme case of unsupervised adaptation (L% = 0%),

NTG stays negative even if two domains are far apart (ǫ =
0.9). In Figure 3(b), we fix ǫ = 0.2 and plot the perfor-

mance curve as L% increases. We can see that while both

DANN and DANNT perform better with more labeled tar-

get data, DANN is affected by the divergence factor and

outperformed by DANNT when L% becomes larger. This

observation shows that negative transfer is relative and it

depends on target labeled data.

Algorithm factor. In Table 2, we compare the results
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Table 2. Classification accuracy (%) of state-of-the-art methods on four benchmark datasets with negative transfer gap shown in brackets. Perturbation

rates are fixed at ǫx = ǫy = 0.7. Target labeled ratio is set at L% = 10% and we further enforce each task to use at most 3 labeled target samples per class.

Digits Office-31 Office-Home VisDA

Method SVHN→MNIST W→D A→D D→A Ar→Rw Cl→Rw Pr→Rw Synthetic→Real Avg

TCA[19] 58.7(18.2) 54.2(-4.2) 11.4(20.5) 13.1(18.4) - - - - 34.4(13.2)

KMM[14] 70.9(6.0) 58.7(-8.5) 18.5(13.4) 17.7(13.8) - - - - 41.5(6.2)

DAN[16] 78.5(-4.4) 76.3(-19.5) 55.0(-1.3) 39.2(4.9) 43.2(3.8) 30.2(5.8) 47.2(4.0) 28.4(7.2) 49.8(0.1)

DANgate 82.2(-8.1) 78.7(-21.9) 60.4(-6.7) 43.9(0.2) 46.8(0.2) 38.0(-2.0) 50.4(0.8) 36.2(-0.6) 54.6(-4.7)

∆DAN ↑3.7 ↑2.4 ↑5.4 ↑4.7 ↑3.6 ↑7.8 ↑3.2 ↑7.8 ↑4.8

DCORAL[27] 75.2(-1.2) 75.7(-18.9) 53.8(-0.4) 37.4(5.0) 44.0(3.7) 32.4(4.1) 48.0(2.2) 30.5(5.7) 49.6(0.0)

DCORALgate 81.0(-7.0) 78.2(-21.4) 59.0(-5.6) 43.2(-0.8) 48.5(-0.8) 40.0(-3.5) 51.6(-1.4) 35.8(0.4) 54.7(-5.1)

∆DCORAL ↑5.8 ↑2.5 ↑5.2 ↑5.8 ↑4.5 ↑7.6 ↑3.6 ↑5.3 ↑5.1

DANN[8] 68.3(7.7) 75.0(-19.2) 51.0(2.3) 38.2(5.6) 42.8(4.2) 28.5(7.7) 42.0(10.0) 29.9(6.0) 47.0(3.0)

DANNgate 78.1(-2.1) 80.2(-24.4) 61.8(-8.5) 48.3(-4.5) 51.2(-4.2) 43.8(-7.6) 55.2(-3.2) 40.5(-4.6) 57.4(-7.4)

∆DANN ↑9.8 ↑5.2 ↑10.8 ↑10.1 ↑9.4 ↑14.7 ↑13.2 ↑10.6 ↑10.4

ADDA[30] 63.2(12.2) 74.5(-18.1) 49.9(2.2) 38.3(5.1) 41.4(6.0) 25.2(13.5) 43.2(7.2) 28.0(7.3) 45.5(4.4)

ADDAgate 79.4(-4.0) 82.9(-26.5) 64.2(-12.1) 47.7(-4.3) 52.2(-4.8) 48.0(-9.3) 58.2(-7.8) 43.0(-7.7) 59.5(-9.6)

∆ADDA ↑16.2 ↑8.4 ↑14.3 ↑9.4 ↑10.8 ↑22.8 ↑15.0 ↑15.0 ↑14.0

PADA[4] 69.7(6.5) 75.5(-19.0) 50.2(1.9) 38.7(5.1) 43.2(3.8) 30.1(5.5) 43.4(6.6) 32.2(5.5) 47.9(2.0)

PADAgate 81.8(-5.6) 81.6(-25.1) 62.1(-10.0) 44.8(-1.0) 52.8(-5.8) 45.2(-9.6) 54.5(-4.5) 41.4(-5.7) 58.0(-8.1)

∆PADA ↑12.1 ↑5.9 ↑11.9 ↑6.1 ↑9.6 ↑15.1 ↑11.1 ↑11.2 ↑10.1

GTA[26] 81.2(-6.8) 78.9(-20.5) 58.4(-7.2) 42.2(2.8) 48.2(1.0) 33.1(5.1) 50.2(-0.1) 31.2(4.2) 52.9(-2.7)

GTAgate 83.3(-8.9) 85.8(-27.4) 66.7(-15.5) 48.5(-3.5) 55.0(-5.8) 44.9(-6.7) 58.0(-7.7) 43.8(-8.4) 60.8(-10.6)

∆GTA ↑2.1 ↑6.9 ↑8.3 ↑6.3 ↑6.8 ↑11.8 ↑7.8 ↑12.6 ↑7.9

∆Avg ↑8.3 ↑5.2 ↑8.1 ↑7.1 ↑7.5 ↑13.3 ↑8.9 ↑10.4

of all methods under a more practically interesting scenario

of moderately different distributions and limited amount of

labeled target data. We observe that some methods are

more vulnerable to negative transfer then the other even

using the same training data. For conventional methods,

instance-reweighting method KMM achieves smaller NTG

compared to feature selection method TCA, possibly be-

cause KMM can assign small weights to source instances

with dissimilar input features. For deep methods, we find

GTA to be the most robust method against negative transfer

since it takes both label information and random noises as

inputs to the generator network. More interestingly, we ob-

serve that methods based on distribution measurement such

as MMD (e.g. DAN) achieve smaller NTG than methods

based on adversarial networks (e.g. DANN), even though

the later tends to perform better when distributions are sim-

ilar. This is consistent with findings in previous works [3]

and one possible explanation is that adversarial network’s

better capability of matching source and target domains

leads to more severe negative transfer. Similarly, ADDA

has better matching power by using two separate feature

extractors, but it results in larger NTG compared to DANN.

5.3.2 Evaluation of Discriminator Gate

We compare our gated models with their respective state-of-

the-art methods on the benchmarks in Table 2. Even using

limited amount of labeled target data, our proposed method

consistently improves the performance for all deep meth-

ods on all tasks. More importantly, our method can largely

eliminate the negative impact of less related source data and

Table 4. Ablation Study on task A→D. DANNgate-only applies

only the discriminator gate while DANNlabel-only only uses la-

bel information without the gate. DANNjoint is a variant of

DANNgate where the feature network only matches the joint dis-

tribution (last two lines of Eq.10), DANNmarginal only matches

the marginal distribution, and DANNnone matches none of them.

DANNoracle excludes perturbed source data via human oracle.

Setting (ǫ,L%)

Method 0.7, 30% 0.7, 10% 0.3, 30% 0.3, 10% Avg

DANN 70.4 49.4 72.5 54.3 61.7

DANNT 79.5 50.7 80.3 50.1 65.2

DANNoracle 81.6 58.5 89.1 85.4 78.7

DANNgate-only 76.3 53.8 78.0 55.7 66.0

DANNlabel-only 74.4 52.5 77.5 55.0 64.9

DANNjoint 82.3 57.6 83.1 59.4 70.6

DANNmarginal 80.6 56.5 81.5 58.6 69.3

DANNnone 79.6 52.4 79.7 57.5 67.3

DANNgate 82.5 58.7 82.7 60.7 71.2

avoid negative transfer (e.g. DANNgate achieves negative

average NTG while DANN gets positive NTG). Specifi-

cally, our method achieves larger accuracy gains on harder

tasks such as synthetic to real-world tasks in Office-Home

and VisDA. This is mainly because source domains in these

tasks tend to contain more unrelated samples. This find-

ing is also consistent with results in Table 1 and Figure 3(a)

where we can observe larger performance gains as pertur-

bation rates increase. In the extreme case where the source

domain is degenerate (ǫ = 1.0 in Figure 3(a)), the gated

model achieves comparable results to those of DANNT . On

the other hand, the results of DANN and DANNgate are

similar when source domain is closely related to the target

(ǫ = 0.0 on task W→D in Table 1). This indicates that the

discriminator gate can control the trade-off between maxi-
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(a) DANN (b) DANNgate (c) DANNgate (source data with

large weights)

(d) Source Sample Weights

(e) DANN (f) DANNgate (g) DANNgate (source data with

large weights)

(h) Left: DANN Right:DANNgate

Figure 4. Visualization on A→W, with ǫ = 0.7, L% = 30%. Left: The t-SNE visualization. First row shows domain info with red for

source samples (yellow for weights > 0.4) and blue for target samples. Second tow shows corresponding class info. Right: Top shows the

histogram of discriminator weights for source samples. Bottom shows average weights for perturbed and unperturbed samples.

mal transfer and alleviating negative impact.

Ablation Study. We report the results of ablation study in

Table 4 and analyze the effects of several components in

our method subject to different settings of transfer tasks.

First, both DANNgate-only and DANNlabel-only perform

better than DANN but worse than DANNgate, showing

that the discriminator gate and estimating joint distribu-

tions can both improve performance but their combina-

tion yields full performance benefit. Second, DANNjoint
obtains higher accuracy results than DANNmarginal and

DANNnone since matching joint distributions is the key

to avoid negative transfer when both marginal and con-

ditional distributions shift. However, while DANNjoint
achieves comparable results as DANNgate when L% =

30%, it performs worse than DANNgate when L% = 10%.

This shows that utilizing unlabeled target data to match

marginal distributions can be beneficial when labeled tar-

get data is scarce. Lastly, it is inspiring to see DANNgate
outperforms DANNoracle when perturbation rate is high.

This is because less unperturbed source data are used for

DANNoracle but DANNgate can utilize perturbed source

data that contain related information. This further shows

the effectiveness of our approach.

Feature Visualization. We visualize the t-SNE embed-

dings [6] of the bottleneck representations in Figure 4. The

first column shows that, when perturbation rate is high,

DANN cannot align the two domains well and it fails to dis-

criminate both source and target classes as different classes

are mixed together. The second column illustrates the dis-

criminator gate can improve the alignment by assigning less

weights to unrelated source data. For instance, we can see

some source data from different classes mixed in the yel-

low cluster at the center right but they get assigned smaller

weights. The third column shows the embeddings after we

remove source data with small discriminator weights (<

0.4). We can observe that target data are much better clus-

tered compared to that of DANN. These in-depth results

demonstrate the efficacy of discriminator gate method.

Statistics of Instance Weights. We illustrate the discrim-

inator output (
PT (xi

s
,yi

s
)

PT (xi
s
,yi

s
)+PS(xi

s
,yi

s
) ) for each source data in

Figure 4(d). We can observe that DANN fails to discrimi-

nate unrelated source data as all weights concentrate around

0.5 in the middle. On the other hand, DANNgate assigns

smaller weights to a large portion of source data (since per-

turbation rate is high) and thus filters out unrelated infor-

mation. Figure 4(h) further shows that DANN assign sim-

ilar average weights for perturbed and unperturbed source

data while DANNgate outputs much smaller values for per-

turbed data but higher ones for unperturbed data.

6. Conclusion

In this work, we analyze the problem of negative transfer

and propose a novel discriminator gate technique to avoid it.

We show that negative transfer directly relates to specific al-

gorithms, domain divergence and target data. Experiments

demonstrate these factors and the efficacy of our method.

Our method consistently improves the performance of base

methods and largely avoids negative transfer. Understand-

ing negative transfer in more complex transfer tasks and set-

tings should be addressed in a future research.
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