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Abstract

There has been an increasing research interest in age-

invariant face recognition. However, matching faces with

big age gaps remains a challenging problem, primarily due

to the significant discrepancy of face appearance caused

by aging. To reduce such discrepancy, in this paper we

present a novel algorithm to remove age-related compo-

nents from features mixed with both identity and age infor-

mation. Specifically, we factorize a mixed face feature into

two uncorrelated components: identity-dependent compo-

nent and age-dependent component, where the identity-

dependent component contains information that is useful

for face recognition. To implement this idea, we propose

the Decorrelated Adversarial Learning (DAL) algorithm,

where a Canonical Mapping Module (CMM) is introduced

to find maximum correlation of the paired features gener-

ated by the backbone network, while the backbone network

and the factorization module are trained to generate fea-

tures reducing the correlation. Thus, the proposed model

learns the decomposed features of age and identity whose

correlation is significantly reduced. Simultaneously, the

identity-dependent feature and the age-dependent feature

are supervised by ID and age preserving signals respec-

tively to ensure they contain the correct information. Ex-

tensive experiments have been conducted on the popular

public-domain face aging datasets (FG-NET, MORPH Al-

bum 2, and CACD-VS) to demonstrate the effectiveness of

the proposed approach.

1. Introduction

With the impressive advancement driven by deep learn-

ing [22, 36, 17, 47], current face recognition methods[37,

39, 38, 46, 42, 40, 28, 10] have achieved excellent perfor-

mance. Many of these models are even more accurate than

humans in various scenarios. However, identifying faces

across a wide range of ages remains under-exploring.

Recently, modern advances [41, 46, 28, 42, 40, 10] in-

troduce the margin-based metrics and normalization mech-

anism to train the models in order to improve the face recog-
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Figure 1. We show a typical example for AIFR, where the intra-

identity distance is greater than the inter-identity distance due to

the large age variations. As a result, many current face recognition

systems fail to identify faces across big age gaps.

nition performance. However, most of these methods usu-

ally lack the discriminating power for face identification in

the scenario of Age Invariant Face Recognition (AIFR). The

crucial challenge for AIFR is subject to the significant dis-

crepancy resulting from the aging process. Figure 1 shows

an example that face images have great variations within the

same identity across different ages, while those of different

identities share similar age-related information. As a result,

those faces with big age gaps serve as hard examples that the

current face recognition systems cannot identify correctly.

In particular, the intra-identity distance is increasing larger

if there are more faces of the child and the elderly.

In the meanwhile, increasing research attentions have

been attracted to the age-invariant face recognition (AIFR).

Recent research studies on AIFR mainly focus on the de-

sign of either generative models or discriminative models.

The generative methods [12, 23, 32] propose to synthesize

face images of different ages to assist the face recognition.

Very recently, several studies [53, 2, 11] aim at improving

the quality of generated aging faces by utilizing the power-

ful GAN-based models. However, accurately modeling the

aging process is difficult and complicated. The unstable ar-
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Figure 2. The face features are decomposed into the identity-

dependent component and the age-dependent component. Only

the identity features participate the testing of face recognition.

tifacts in the synthesized faces can significantly affect the

performance of face recognition. In contrast, discriminative

methods draw increasing interest in recent studies. For ex-

ample , the [13] separates the identity-related information

and the age-related information through the hidden factor

analysis (HFA). The [45] is based on similar analysis and

extends the HFA to the deep learning framework. More re-

cently, the OE-CNN [43] presents the orthogonal feature de-

composition to solve the AIFR. According to all these stud-

ies, feature decomposition plays a key role in invariant fea-

ture learning under the assumption that facial information

can be perfectly modeled by the decomposed components.

However, the decomposed components practically have la-

tent relationship with each other and the identity-dependent

component may still contain age information.

In this paper, we introduce a deep feature factoriza-

tion learning framework that factorizes the mixed face fea-

tures into two uncorrelated components: identity-dependent

component (xid) and age-dependent component (xage).

Figure 2 illustrates our feature factorization schema. We

implement such factorization through a residual mapping

module inspired by [4]. This means that, the age-dependent

embeddings are encoded through a residual mapping func-

tion xage = R(x). We have the following formulation:

x = xid +R(x), where x is the initial face feature, and

xid is the identity-dependent feature.

To reduce the mutual variations in the decomposed

components, we propose a novel Decorrelated Adversarial

Learning (DAL) algorithm that adversarially minimizes the

correlation between xid and xage. Specifically, a Canon-

ical Mapping Module is introduced to find maximum cor-

relations between xid and xage, while the backbone and

factorization module aims to reduce the correlation. In the

meanwhile, xid and xage are learned by the identity and

age classification signals respectively. Through the adver-

sarial training, we wish the xid and xage will be sufficiently

uncorrelated, and the age information in xid can be signifi-

cantly reduced.

Our major contributions are summarized as follows:

1. We propose a novel Decorrelated Adversarial Learn-

ing (DAL) algorithm based on the linear feature factoriza-

tion, in order to regularize the learning of decomposed fea-

tures. In this way, we wish to capture the ID-preserving

while age invariant features for AIFR. To the best of our

knowledge, this is the first work to introduce decorrelated

adversarial feature learning to AIFR.

2. We present the Batch Canonical Correlation Analysis

(BCCA), an extension of CCA in the fashion of stochastic

gradient decent optimization. The proposed BCCA can be

integrated to the deep neural networks for correlation regu-

larization.

3. The proposed method has significantly improved the

state-of-the-art performance on the AIFR datasets includ-

ing MORPH Album2[34], FG-NET[1] and CACD-VS[5],

which strongly demonstrates its effectiveness.

2. Related Work

Age-Invariant Face Feature Learning. Many prior

studies[15, 24, 26, 7, 25, 27, 5, 6, 13] in the literature ex-

tracted hand-craft features with heuristic methods. For ex-

ample, the [25] developed a multi-feature discriminant anal-

ysis method with local feature descriptions. The [13] pro-

posed the hidden factor analysis (HFA) to model the fea-

ture factorization and reduce the age variations in identity-

related features. The [15] introduced an effective maximum

entropy feature descriptor and a robust identity matching

framework for AIFR. Several recent methods [45, 55, 43]

are mainly based on deep neural networks. The [45] devel-

oped the Latent Factor guided Convolutional Neural Net-

work (LF-CNN) to improve the HFA. The [55] introduced

the Age Estimation guided CNN (AE-CNN) method for

AIFR. The OE-CNN [43] proposed the orthogonal embed-

ding decomposition such that the identity information is en-

coded in the angular space while the age information is rep-

resented in the radial direction. Our work presents a DAL

algorithm with the linear residual decomposition.

Canonical Correlation Analysis. Canonical Correla-

tion Analysis (CCA) [18] is a well-known algorithm to

measure the linear relationship between two multidimen-

sional variables. Some previous works have introduced this

method to face recognition in various scenarios. For exam-

ple, the [49] proposed a 2D-3D face matching method using

the CCA. The [14] developed a multi-feature CCA method

for face-sketch recognition. Compared to these typical CCA

based methods, our work presents the extension of CCA to

deep neural network as a regularization method for AIFR.

Adversarial Approaches. Generative adversarial net-

works (GAN) [16] have shown effective in various gen-
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erative tasks, such as face aging [53, 2, 11], face super-

resolution [51, 8], etc. Besides, the adversarial networks has

also been explored to the improve the discriminative mod-

els. For example, the [3] utilized GAN to generate high-

resolution of small faces in order to improve face detection.

The [9] developed an adversarial UV completion frame-

work (UV-GAN) to solve the pose invariant face recog-

nition problem. The [29] proposed to learn the identity-

distilled features and the identity-dispelled features in an

adversarial autoencoder framework. The [54] proposed an

adversarial network to generate hard triplet feature exam-

ples. In this work, we propose a decorrelated adversarial

learning method to significantly minimize the correlation

between the decoupled components of identity and age, thus

the identity-dependent features are age invariant.

3. Method

3.1. Feature Factorization

As faces contain intrinsic identity information and age

information, they can be jointly represented by the identity-

dependent features and the age-dependent features. Mo-

tivated by this, we design a linear factorization module

that decomposes the initial features into these two unre-

lated components. Formally, given an initial feature vector

x ∈ R
d that extracted from an input image p by a backbone

CNN F (i.e, x = F(p)), we define the linear factorization

as follows:

x = xid + xage, (1)

where xid denotes the identity-dependent component, and

xage denotes the age-dependent component. We design

a deep residual mapping module similar to [4] to imple-

ment this. Specifically, we obtain the age-dependent feature

through a mapping function R, and the residual part is re-

garded as the identity-dependent feature. We refer to this as

Residual Factorization Module (RFM), which is formulated

as:

xage = R (x),

xid = x−R (x).
(2)

At testing stage, only the identity-dependent features are

used for face recognition. It is desirable that xid encodes the

identity information while xage draws the age variations.

We simultaneously put the identity discriminating signal

and the age discriminating signal onto these two decoupled

features to respectively supervise the multi-task learning of

these two components. Figure 3 shows the overall frame-

work of our work. The resnet-like backbone extracts the

initial features, upon which we build the residual module

for feature factorization. Based on such factorization, we

propose the Decorrelated Adversarial Learning, which is in-

troduced in the following section.
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Figure 3. An overview of the proposed method. The initial features

are extracted by backbone net, followed by the residual factoriza-

tion module. The two factorized components xid and xage are

then used for classification and DAL regularization.

3.2. Decorrelated Adversarial Learning

Through feature factorization, it is crucial for AIFR that

the xid should be identity preserving and necessarily age-

invariant. Unfortunately, the xid and xage practically have

latent relationship with each other. For example, xid and

xage may have high linear correlation with each other.

Thus, the xid may partially involve the age variation, which

leads to negative effect on face recognition. On the other

hand, the xid and xage should be mutually uncorrelated to

force the non-trivial learning such that they both improve

themselves.

To this end, we design a regularization algorithm that is

helpful to reduce the correlation between the decomposed

features, namely Decorrelated Adversarial Learning (DAL).

The DAL basically calculates the canonical correlation be-

tween the paired features of the decomposed components.

Formally, given paired features xid,xage, we design

a linear Canonical Mapping Module (CMM) that maps

xid,xage to the canonical variables vid,vage:

∀t ∈ {id, age} : vt = C(xt) = wT
t xt, (3)

where the wid,wage are the learning parameters for canon-

ical mapping. After that, we define the canonical correlation

as:

ρ =
Cov(vid,vage)

√

Var(vid)Var(vid)
. (4)

Based on such definition, we first find maximum of |ρ| by

updating CMM with respect to wid,wage, and then try to

reduce the correlation by training the backbone and RFM.

That is, on the one hand, we freeze F ,R and train C in

the canonical correlation maximizing process. On the other

hand, we update F ,R with C fixed in the feature correlation

minimizing process. Obviously, they compete with each

other playing a two-player min-max game during the ad-

versarial training procedure. In this way, our goal is to min-

imize the correlation between xid,xage by always decreas-

ing their maximum canonical correlation. In other words,
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the optimal feature projections having maximum correla-

tion act as the primary target to be decorrelated. Thus, xid

and xage learns continuously to have small correlation and

finally they are significantly uncorrelated.

Overall, the objective function for DAL is formulated as:

LDAL = min
F,R

max
C

(|ρ(C(F(p)−R (F(p)), C(R (F(p)))|)

(5)

We believe the strong decorrelation enhanced by DAL will

encourage the xid and xage to be sufficiently invariant with

each other. Importantly, this will improve robustness of xid

for age-invariant face recognition.

3.3. Batch Canonical Correlation Analysis

In contrast to the typical canonical correlation analysis

(CCA) methods, our work introduces the canonical correla-

tion Analysis (BCCA) based on stochastic gradient decent

(SGD) optimization. Since the correlation statistics on the

entire dataset is practically impossible, we follow similar

strategy of batch normalization [20] to compute the correla-

tion statistics based on mini-batches. Thus, it naturally suits

the deep learning framework.

Given a mini-batch size of m, we have two sets of

the decomposed features: Bid = {x1,...,m
id } and Bage =

{x1,...,m
age }. Thus, the canonical correlation can be written

as:

ρ =
1
m
Σm

i=1(v
i
id − µid)(v

i
age − µage)

√

σ2
id + ǫ

√

σ2
age + ǫ

. (6)

Here, the µid and σ2
id are the mean and variance of vid re-

spectively, and similarly for µage and σ2
age. The ǫ is a con-

stant parameter for numerical stability.

Equation 6 serves as the objective function for BCCA

and we leverage the SGD based algorithm to optimize it.

Note that the canonical correlation |ρ| is demanded to be

necessarily maximized when updating the C., while being

minimized when training the F ,R. The derivation of gra-

dients are:

∂ρ

∂vi
id

=
1

m
(

vi
age − µage

√

σ2
id + ǫ

√

σ2
age + ǫ

−
(vi

id − µid) · ρ

σ2
id + ǫ

),

∂ρ

∂vi
age

=
1

m
(

vi
id − µid

√

σ2
id + ǫ

√

σ2
age + ǫ

−
(vi

age − µage) · ρ

σ2
age + ǫ

).

(7)

Thus, the optimization consists of a forward propagation

that outputs the ρ, and a backward propagation that calcu-

late the gradients for updating. The detailed learning algo-

rithm of BCCA is described in Algorithm 1.

Algorithm 1 Learning algorithm of BCCA for each itera-

tion.

Input: Bid = {x1,...,m
id }; Bage = {x1,...,m

age };

Output: the canonical correlation ρ for forward pass; the

gradients for backward pass.

1: for each t ∈ {id, age} do

2: CMM forward: vit = wT
t x

i
t for i = 1 . . .m;

3: Compute means: µt =
1
m
Σm

i=1v
i
t;

4: Compute variances: σ2
t = 1

m
Σm

i=1(v
i
t − µt)

2;

5: end for

6: Forward propagation: Compute ρ with Equation 6.

7: for each t ∈ {id, age} do

8: Compute ∂ρ
∂vt

with Equation 7;

9: CMM backward: ∂L
∂xi

t

= wi
t
∂L
∂vi

t

; for i = 1 . . .m;

10: CMM backward: ∂L
∂wi

t

= xi
t
∂L
∂vi

t

; for i = 1 . . .m;

11: end for

3.4. Multi­task Training

In this section, we describe the multi-task training strat-

egy to supervise the learning of the decomposed features.

As shown in Figure 3, there are three basic supervision

modules: age discriminator, identity discriminator and DAL

regularizer.

Age Discriminator. For the learning of age information,

we feed xage into an age discriminator to ensure the age

discriminating information. Since age labels are rough with

uncertain noises in practice, we follow [13, 45] and per-

form classifications on ages by dividing them into different

groups. We use the softmax layer with cross-entropy loss

for the age classification.

Identity Discriminator. Following the recent [42, 40],

we utilize the CosFace loss to supervise the learning of xid

and ensure the identity-preserving information. The Cos-

Face loss is formulated as:

LID =
1

N

∑

i

− log
es(cos(θyi,i

)−m)

es(cos(θyi,i
)−m) +

∑

j 6=yi
escos(θj,i)

,

(8)

where N is the number of identities, yi is the correspond-

ing identity label, cos(θj, i) =
WT

j

‖Wj‖
·

xi
id

‖xi
id
‖

is the cosine

of angle between the i-th feature xi
id and the j-th weight

vector Wj of the classifier. The m a constant margin term

controlling the cosine margin and the s is a constant scal-

ing factor s. The CosFace loss aims to introduce much

strict constraints to the identity classification such that the

learned features are encouraged to be separated by a margin

between different identities. A properly large m will en-

courage powerful discriminating information in the learned

features for face recognition.

DAL Regularizer. The proposed DAL regularization
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also participants the joint supervision to guide the feature

learning such that the correlations between the paired de-

composed features can be significantly reduced. Through

the joint supervision, the model simultaneously learns to

encourage both the discriminating power of xid, xage, and

decorrelation information between of these two decom-

posed components.

In summary, the training is supervised by the following

combined multi-task loss:

L = LID(xid) + λ1LSM (xage) + λ2LDAL(xid,xage),
(9)

where LID denotes the CosFace loss, LSM denotes the soft-

max with cross-entropy loss, λ1 and λ2 are scalar hyper-

parameters to balance these three losses. In the testing

phase, we extract the identity-dependent features xid for

AIFR evaluations.

3.5. Discussion

The proposed method has the following advantages.

First, the DAL regularization on features is helpful to en-

courage the uncorrelated and co-invariant information be-

tween the decomposed components. Related works such

as HFA[13], LF-CNN[45] and OE-CNN[43] have neglected

the underlying correlation. Instead, we aim to minimize the

classification error as well as the correlation effect simulta-

neously. Second, the BCCA provides an extension of CCA

that is inserted to the deep learning framework such that the

entire model can be trained in an end-to-end process. Fi-

nally, our method can be easily generalized to other compo-

nents factorization model, such as pose, illumination, emo-

tion, etc. To the best of our knowledge, we are the first to

develop the decorrelated adversarial regularization frame-

work to AIFR.

4. Experiments

4.1. Implementation Details

Network Architecture. (1) Backbone: our backbone

network is a 64-layer CNN similar to [43] . It consists

of 4 stages with respectively 3, 4, 10, 3 stacked residual

blocks. Every residual block has 3 stacked units of “3x3

Conv + BN + ReLU”. Finally, a FC layer outputs the initial

face features of 512 dimension. (2)Residual factorization

Module (RFM): the initial face features are mapped to form

the age-dependent feature through 2 “FC +ReLU”, and the

residual part is regarded as the identity-dependent feature.

(3) Age discriminator: we stack 3 “FC +ReLU” upon xage,

and perform age classification. (4) Identity discriminator:

we directly use xid for identification by CosFace loss. (5)

DAL regularizer: we feed the xage and xid into the FC lay-

ers respectively and output their linear combinations, which

are then used for the BCCA calculation and optimization.
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Figure 4. The age distribution of our small training dataset. It

contains 0.5M face images covering large age variations.

Data Preprocessing. We use MTCNN [52] to detect

face areas and facial landmarks on both the training and

testing sets. Then, similarity transformation is performed

according to the 5 facial key points (two eyes, nose and two

mouth corners) in order to crop the face patch to 112×96

. Finally, each pixel ([0,255]) of the cropped face patch is

normalized by subtracting 127.5 then divided by 128.

Training Details. Our training data includes the Cross-

Age Face (CAF) dataset provided by [43] and other com-

mon face datasets such as CASIA-WebFace [50], VGG

Face [33] and celebrity+ [30]. It totally contains about

1.7M images from 19.9k individuals, which is similar to

[43]. Meanwhile, we build a subset containing about 0.5M

images from 12k individuals following [43] in order to con-

duct fair experimental comparisons. We refer to this subset

as small training dataset and our whole training dataset as

large training dataset for clarify. We adopt the pre-trained

age estimation model [35] to generate predicted age labels

for the face images of the entire training set. Note that

only those predicted ages with relatively high confidence

(i.e. more likely to be true label) are considered valid and

will participate the age-classification. After that, the pre-

dicted ages are divided into 8 groups: 0-12, 13-18, 19-25,

26-35, 36-45, 46-55, 56-65, ≥ 66. The grouped age labels

are then used for the age-classification training. The joint

supervision in Equation 9 guides the DALtraining process

in an adversarial manner. More specifically, in an adversar-

ial loop, we alternately run the canonical correlation maxi-

mizing process for 20 iterations and then change to feature

correlation minimizing process for 50 iterations. The em-

pirically setting of hyper-parameters λ1 and λ2 in Equation

9 are: λ1 = 0.1, λ2 = 0.1, m = 0.35, s = 64. All our

experiment models are trained through stochastic gradient

descent (SGD), with batch size of 512. The whole train-

ing procedure is about 40-th epochs and the learning rate is
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Figure 5. The distribution of the cosine similarity between features and their class center at different age groups. Our DAL model

consistently increases the cosine similarity compared against the baseline model without DAL across all the age groups, which demonstrates

the effectiveness of our method to encourage less intra-identity variations. Best viewed in colors.

Model
FG-NET

(MF1)

FG-NET

(MF2)

FG-NET

(leave-

one-out)

MORPH

Album 2

CACD

-VS

Baseline 55.86% 58.85% 93.4% 98.21% 99.07%

+Age 55.84% 58.64% 93.6% 98.11% 99.05%

+Age+DAL 57.92% 60.01% 94.5% 98.93% 99.40%

Table 1. Comparison of our method against the baseline models.

The evaluation results are rank-1 face identification rate on FG-

NET, under protocols of MF1, MF2 and leave-one-out.

initially set to 0.1 and reduced by a factor of 0.1 at 22-th,

33-th, 38-th epoch.

Testing Details. We conduct evaluation experiments on

the well-known public AIFR face datasets: FG-NET[1],

MORPH Album 2[34] and CACD-VS[5]. In the testing

process, we extract the identity-dependent features and con-

catenate features of the original image and the flipped im-

age to form the final representation. The cosine similarity

of these representations are then used to conduct face veri-

fication and identification.

4.2. Ablation Study

In this subsection, we study the different variants of the

proposed models to show the effectiveness of our method.

Visualization of Cosine Similarity. For a better under-

standing of the DAL and its ability to improve the identity-

preserving information, we conduct an experiment to vi-

sualize the cosine similarities across different age groups.

Given the learned identity-dependent features xid, we first

calculate their class centers by clustering every identity in

the identity feature space, and then compute the cosine sim-

ilarity between each sample and its class center. After that,

we plot the distribution of cosine similarity across differ-

ent age groups. In this study, we conduct such visualiza-

tion analysis on the small training dataset which contains

0.5M face images covering various age differences. Fig-

ure 4 shows the age distribution of this dataset. We present

a comparison between the “w/o DAL” model (trained by

the joint supervision signals of age and identity but without

DAL) and our proposed DAL model. As shown in Figure

5, compared against the “w/o DAL” model, the DAL model

consistently increases the cosine similarity between xid and

its class center across all the age groups. This observation

proves that our method encourages features to have small

intra-identity variations and thus the samples of the same

identity but different ages are pulled together in the feature

space. Thus, the discriminating power of the learned iden-

tity features can be effectively improved by the proposed

DAL method.

Quantitative Evaluation. To show the impact of the

joint learning framework with our proposed DAL method,

we conduct the ablative evaluations on several public AIFR

datasets including FG-NET, MORPH Album 2 and CACD-

VS. Moreover, we also test our models on FG-NET follow-

ing the protocols of Megaface challenge 1 (MF1) [21] and

Megaface challenge 2 (MF2) [31]. Both the MF1 and the
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Method #Test Subjects Rank-1

HFA [13] 10,000 91.14%

CARC [5] 10,000 92.80%

MEFA [15] 10,000 93.80%

MEFA+SIFT+MLBP [15] 10,000 94.59%

LPS+HFA [24] 10,000 94.87%

LF-CNNs [45] 10,000 97.51%

OE-CNNs 10,000 98.55%

Ours 10,000 98.93%

GSM [26] 3,000 94.40%

AE-CNNs [55] 3,000 98.13%

OE-CNNs [43] 3,000 98.67%

Ours 3,000 98.97%

Table 2. Evaluation results on the MORPH Album 2 dataset.

MF2 include an additional distractor set respectively that

contains 1 million face distractors, making the benchmarks

much more difficult. The MF2 provides a training dataset

such that all the evaluation methods should be trained on

the same dataset and without any additional training data.

We consider the following models for ablative comparison

in this study: (1) Baseline: the baseline model is trained by

the identification loss only and without any extra age super-

vision. (2) +Age: this model is trained by the joint super-

vision of the identification signal and the age classification

signal. (3) +Age+DAL: our proposed model that is trained

simultaneously by the DAL regularization and the joint su-

pervision signals. As reported in Table 1, without DAL the

joint supervision model achieves comparable results with

the baseline model. On the contrary, our “+Age+DAL”

model improves the performance of FG-NET on all the

schemes. The improvement on FG-NET with the scheme

of MF2 is relatively limited compared with that of MF1 and

’leave-one-out’, mainly due to the less aging variations of

MF2 training dataset. Nevertheless, the consistently perfor-

mance improvement demonstrates the effectiveness of our

method. Moreover, our method improves the baseline mod-

els by more than 0.7% on MORPH Album 2, and more than

0.3% on CACD-VS, which are remarkable improvements at

the high accuracy level above 98% and 99%.

4.3. Experiments on the MORPH Album 2 Dataset

The MORPH Album 2 dataset consists of 78,000 face

images of 20,000 individuals across different ages. For fair

comparison, we follows [43] and conduct evaluations under

two benchmark schemes where the testing set consists of

10,000 subjects and 3,000 subjects respectively. In the test-

ing sets, two face images of each subjects with the largest

age gaps are selected to compose the probe set and the

gallery set. We train the model with our proposed DAL on

the large training dataset(1.7M images). Note that we have

not conducted any training or finetuning on the MORPH

Album 2.

Method Acc. AUC.

High-Dimensional LBP [7] 81.6% 88.8%

HFA [13] 84.4% 91.7%

CARC [5] 87.6% 94.2%

LF-CNNs [45] 98.5% 99.3%

Human, Average [6] 85.7% 94.6%

Human, Voting [6] 94.2% 99.0%

Softmax 98.4% 99.4%

A-Softmax 98.7% 99.5%

OE-CNNs [43] 99.2% 99.5%

Ours 99.4% 99.6%

Table 3. Evaluation results on the CACD-VS dataset.

Method Rank-1

Park et al. [32] (2010) 37.4%

Li et al. [25] (2011) 47.5%

HFA [13] (2013) 69.0%

MEFA [15] (2015) 76.2%

CAN [48] 86.5%

LFCNNs [11] 88.1%

Ours 94.5%

Table 4. Evaluation results on the FG-NET dataset under the pro-

tocol of leave-one-out.

In this experiment, we compare our DAL model against

the recently AIFR algorithms in the literature. As shown in

Table 2, the proposed method has effectively improved the

rank-1 identification performance. Particularly, our method

outperforms the recent top-performing AIFR methods by a

clear margin, setting new state-of-the-art on the MORPH

Album 2 database.

4.4. Experiments on the CACD­VS Dataset

As a public released dataset for AIFR, the CACD dataset

is composed of 163,446 images from 2,000 celebrities with

age variations. The collected face images also include dif-

ferent illumination, various poses and makeup. The sub-

set CACD-VS consists of 4000 face image pairs for face

verification, and the face pairs are divided into 2,000 pos-

itive pairs and 2,000 negative pairs. In our experiment,

we strictly follow [5, 43] to perform the 10-fold cross-

validation for fair comparisons. We use the same trained

models in Sec 4.3 to evaluate the performance on the

CACD-VS Dataset. Table 3 shows the verification accu-

racy of our models compared against the other state-of-the-

art AIFR methods. Not surprisingly, the proposed DAL

model obtains consistent improvement over the prior meth-

ods, demonstrating the superiority of our method again.
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Method Protocol Rank-1

FUDAN-CS SDS [44] Small 25.56%

SphereFace [28] Small 47.55%

TNVP [11] Small 47.72%

Softmax Small 35.11%

A-Softmax Small 46.77%

OE-CNNs [43] Small 52.67%

Ours small 57.92%

Table 5. Evaluation results on the FG-NET dataset under the pro-

tocol of MF1.

Method Protocol Rank-1

GRCCV Large 21.04%

NEC Large 29.29%

3DiVi Large 35.79%

GT-CMU-SYSU Large 38.21%

OE-CNNs [43] Large 53.26%

Ours Large 60.01%

Table 6. Evaluation results on the FG-NET dataset under the pro-

tocol of MF2

4.5. Experiments on the FG­NET Dataset

Compared to MORPH Album 2 and CACD-VS, the FG-

NET dataset is much more challenging containing a wide

covering of ages from 0 to 69. It has 1002 face images from

82 individuals.The dataset includes lots of face images at

the age phase of the child and the elderly. We conducted ex-

periments under three different evaluation schemes for over-

all fair benchmark comparison: leave-one-out, MegaFace

challenge 1 (MF1) and MegaFace challenge 2 (MF2).

Evaluation with leave-one-out. We directly use the

DAL model trained on the small training set (0.5M images)

and test on the FG-NET dataset. The evaluation is con-

ducted by leave-one-out. It is noticeable that we have not

used any data of FG-NET for training or finetuning. The

performance comparisons are given in Table . We can see

that our method has improved the priors [13] by a signifi-

cant margin.

Evaluation with MF1. The MF1 [21] contains 1 million

distractor images from 690K different individuals. Accord-

ing to [21], evaluations are conducted under the two proto-

cols: large or small training set. The training set less than

0.5M is considered small. We strictly follow the protocol

of small training set to train the model and conduct eval-

uations on FG-NET. The experimental results are reported

in Table 5. The performance improvement over the other

methods strongly demonstrates the effectiveness of the pro-

posed DAL method.

Evaluation with MF2. We also conducte experiments

on the MF2 [31], which has 1 million distractors as well.

But the distractors of MF1 and MF2 are totally different.

Method LFW MF1-Facescrub

SphereFace[28] 99.42% 72.73%

CosFace[42] 99.33% 77.11%

OE-CNNs[43] 99.35% N/A

Ours 99.47% 77.58%

Table 7. Evaluation results on LFW and MF1-Facescrub dataste.

The reported results are verification rate for LFW, and rank-1 iden-

tification rate for MF1-Facescrub.

Unlike the MF1, the MF2 requires that all the models should

be trained on the same training set, thus yields very fair

comparisons. The training set provided by MF2 contains

4.7 million faces from 672K identities. Following this pro-

tocol, we train our models and conduct evaluations on the

MF2. Table 6 shows the performance comparisons between

ours and the previous methods. Again, our DAL method

significantly improves the identification accuracy and set

new state-of-the-art on the MF2 dataset.

4.6. Experiments on the General Face Recognition
Datasets

To compare against the state-of-the-art methods in Gen-

eral Face Recognition(GFR), we further conduct experi-

mental evaluations on the LFW and the MegaFace Chal-

lenge 1 Facescrub (MF1-Facescrub) datasets. The LFW

[19] is a public benchmark for GFR that has 13,233 face

images from 5,749 subjects. The MF1-Facescrub [21] in-

cludes the Facescrub (containing 106,863 face images from

530 celebrities) as a probe set and contains a million dis-

tractors in the gallery set. We strictly follow the same train-

ing and evaluation procedure in OE-CNNs [43]. That is, our

training data contains 0.5M images that are the same as OE-

CNNs [43]. Table 7 reports the verification rate on LFW and

the rank-1 identification rate in MF1-Facescrub. Our model

outperforms the [43] as well as the state-of-the-art General

Face Recognition (GFR) models [28, 42] on both datasets,

which demonstrates the strong generalization ability of our

proposed approach.

5. Conclusion

In this paper, we propose the decorrelated adversarial

learning method for AIFR. Our model learns to minimize

the correlation between the paired decomposed features of

identity and age in an adversarial process. We present the

BCCA algorithm as an extension of CCA in deep learning.

Besides the DAL, we simultaneously train the model with

the joint supervision of identification and age classification.

In the testing, only the identity features are used for face

recognition. Evaluations conducted on the AIFR bench-

marks demonstrate the superiority of our method.
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