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Abstract

Recently, global covariance pooling (GCP) has shown

great advance in improving classification performance of

deep convolutional neural networks (CNNs). However, ex-

isting deep GCP networks compute covariance pooling of

convolutional activations with assumption that activations

are sampled from Gaussian distributions, which may not

hold in practice and fails to fully characterize the statistics

of activations. To handle this issue, this paper proposes a

novel deep global generalized Gaussian network (3G-Net),

whose core is to estimate a global covariance of generalized

Gaussian for modeling the last convolutional activations.

Compared with GCP in Gaussian setting, our 3G-Net as-

sumes the distribution of activations follows a generalized

Gaussian, which can capture more precise characteristics

of activations. However, there exists no analytic solution for

parameter estimation of generalized Gaussian, making our

3G-Net challenging. To this end, we first present a novel

regularized maximum likelihood estimator for robust esti-

mating covariance of generalized Gaussian, which can be

optimized by a modified iterative re-weighted method. Then,

to efficiently estimate the covariance of generaized Gaus-

sian under deep CNN architectures, we approximate this

re-weighted method by developing an unrolling re-weighted

module and a square root covariance layer. In this way, 3G-

Net can be flexibly trained in an end-to-end manner. The

experiments are conducted on large-scale ImageNet-1K and

Places365 datasets, and the results demonstrate our 3G-Net

outperforms its counterparts while achieving very competi-

tive performance to state-of-the-arts.

1. Introduction

Deep convolutional neural networks (CNNs) have at-

tracted a great amount of attention in computer vision com-

munity, and demonstrated enormous advantages in many

tasks, especially in large-scale visual classification [26, 34,

35, 17, 21, 20]. However, most deep CNN architectures

∗Qinghua Hu is the corresponding author. We thank NVIDIA corpora-

tion for donating GPU.

(a) Input Image

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

ResNet50 + Covariance (Gaussian)

ResNet50 + GAP

(b) 6-th Channel

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

ResNet50 + Covariance (Gaussian)

ResNet50 + GAP

(c) 67-th Channel

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

ResNet50 + Covariance (Gaussian)

ResNet50 + GAP

(d) 125-th Channel

Figure 1. Illustration of histograms or distributions of the last con-

volutional activations given an input image (a). We show, in some

channels, histograms and fitting distributions of the last convolu-

tion activations in CNN models trained with global average pool-

ing (GAP) [17] (black bar) and covariance pooling [28] (red line),

respectively. Obviously, both of them have long tails and do not

obey strictly Gaussian distributions.

summarize the last convolutional activations only using

simple global first-order pooling methods, severely limit-

ing the representation ability of deep CNNs. To handle this

issue, researchers integrate some global covariance pooling

(GCP) methods with deep CNNs in an end-to-end manner,

which show great effectiveness to improve the classification

performance of deep CNNs [23, 32, 37, 28, 31, 27].

Among these GCP networks, Ionescu et al. [23] first in-

tegrate a second-order pooling (O2P) [4] layer into deep

CNNs, namely DeepO2P, and develop a matrix backprop-

agation theory for end-to-end training. A parallel work

is bilinear CNN (B-CNN) [32], which concerns the outer

product of the last convolutional activations extracted from

two CNN models, followed by element-wise power normal-

ization and ℓ2-normalization. When two CNN models are

identical, B-CNN reduces to a global second-order pool-

ing of convolutional activations. Wang et al. [37] and Li

et al. [28] insert respectively a global Gaussian distribution
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and matrix power normalized covariance pooling after the

last convolution layer of deep CNNs, which obtain better

performance by considering geometry of Gaussian distribu-

tion and robust estimation of covariance. Subsequently, im-

proved B-CNN [31] shows empirically matrix square root

normalization can improve B-CNN, and uses the modified

Denman-Beavers iteration [19] to speed up inference of

the networks. Li et al. [27] develop forward and back-

ward propagation methods based on Newton-Schulz itera-

tion [19] to accelerate both training and inference of matrix

square root normalized covariance pooling networks [28].

Although previous deep GCP networks [23, 32, 37, 28,

31, 27] have proven to improve the representation ability

of deep CNNs, these methods compute covariance pooling

with invariably assuming that convolutional activations fol-

low a Gaussian distribution. Such an assumption does not

always hold true in real scenarios. To verify it, we randomly

choose some images from ImageNet-1K [9], and compute

histograms of the last convolutional activations extracted

from pre-trained CNN model with global average pooling

(GAP) [17], as well as fitting distributions of ones extracted

from pre-trained GCP network [27]. Figure 1 plots the his-

tograms and distributions of activations for one example

(remaining others share similarity) in some channels. We

observe that either histograms of activations extracted from

GAP-based CNN or distributions of the ones extracted from

GCP network are long tailed, not strictly obeying Gaussian

distributions. Since Gaussian models fail to characterize

long-tailed distributions, covariance of Gaussian has lim-

ited capability to capture characteristics of activations.

Compared with Gaussian models, multivariate general-

ized Gaussian models can better characterize complex dis-

tributions, especially long-tailed ones [2]. In terms of the

considerations above, this paper proposes a deep global

generalized Gaussian networks (3G-Net). The core of 3G-

Net is to summarize the statistics of the last convolutional

activations by computing a global covariance of generalized

Gaussian, which can capture more precise characteristics of

convolutional activations. However, different from covari-

ance estimation in Gaussian setting, there exists no analytic

solution for covariance estimation of generalized Gaussian,

making our 3G-Net challenging. To circumvent this diffi-

culty, inspired by [38], we first present a regularized max-

imum likelihood estimator, which allows us to robustly es-

timate covariance of generalized Gaussian distribution with

a modified iterative re-weighted method. According to this

estimator, we propose an unrolling re-weighted module and

a square root covariance layer for computing the covariance

of generalized Gaussian. The unrolling re-weighted module

is designed to iteratively estimate weight of each activation

in an approximative yet efficient manner. The square root

covariance layer is used to compute matrix square root of

the estimated covariance, which is resulted by our modified

iterative re-weighted method. In this way, our 3G-Net can

be flexibly trained in an end-to-end learning manner.

The overview of our proposed 3G-Net is illustrated in

Figure 2. The experiments are conducted on two large-scale

image benchmarks, i.e., ImageNet-1K [9] and Places365

[44]. The contributions of this paper can be concluded as

follows. (1) We propose a novel deep global generalized

Gaussian network (3G-Net) by estimating a global covari-

ance of generalized Gaussian to summarize the statistics of

the last convolutional activations, aiming at capturing pre-

cise characteristics of activations and further improving rep-

resentation ability of deep CNNs. (2) To our best knowl-

edge, we make the first attempt to robustly estimate covari-

ance of generalized Gaussian distribution under deep CNN

architectures. From a point of implementation view, we in-

troduce an unrolling re-weighted module and a square root

covariance layer based on the proposed robust estimator.

(3) The experimental results on large-scale ImageNet-1K

and Places365 demonstrate the proposed 3G-Net outper-

forms its counterparts under ResNet architectures [17], and

achieves state-of-the-art performance.

2. Related Work

Recently, integration of preferable pooling or encoding

methods into deep CNNs has shown effectiveness in im-

proving classification performance. In contrary to afore-

mentioned deep GCP networks [23, 32, 37, 28, 31, 27],

some researchers study to approximate covariance pooling

for obtaining lower-dimensional representations. Among

them, Gao et al. [13] and Kong et al. [25] propose compact

B-CNN and low-rank B-CNN methods, respectively. Dai

et al. [8] fuse additional first-order (mean) information into

the compact B-CNN [13] by simply concatenating them.

Gou et al. [15] approximate [37] by introducing homoge-

neous mapping and sub-matrix square-root layers followed

by compact B-CNN. Kernel pooling [7] extends the idea of

[13] to higher-order (number of order > 2) pooling for fine-

grained visual recognition. Cai et al. [3] suggest a com-

pact higher-order pooling based on polynomial kernel ap-

proximation and rank-1 tensor decomposition [24]. Mean-

while, some works [40, 30] incorporate local approximated

second-order statistics into convolution or fully-connected

layers of deep CNNs to increase the nonlinearity of net-

works. Additionally, the classical Bag-of-Words models

are also embedded into deep CNNs [1, 29]. Different from

above methods, our 3G-Net incorporates a global covari-

ance of generalized Gaussian into deep CNNs, obtaining

better representations and higher classification accuracy.

Our covariance of generalized Gaussian layer involves

an unrolling re-weighted module for computing iteratively

weights of activations. It shares the similarity with the re-

cently proposed self-attention mechanisms in deep CNNs

[20, 39, 11, 41, 12], among which Hu et al. [20] introduce
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Figure 2. Overview of the proposed deep global generalized Gaussian networks (3G-Net), where a global covariance of generalized Gaus-

sian is inserted after the last convolution block to summarize the statistics of activations. Based on the proposed robust covariance estimator,

our global covariance of generalized Gaussian layer consists of an unrolling re-weighted module and a square root covariance layer.

a Squeeze-and-Excitation module into convolution blocks,

performing channel-wise weighting on outputs of each con-

volution block. Going a step further, CBAM [41] extends

[20] by introducing an additional spatial attention module.

Wang et al. [39] and Du et al. [11] propose non-local blocks

and interaction-aware attention module to obtain better at-

tention maps, respectively. Fu et al. [12] propose an at-

tention proposal sub-network to iteratively generates multi-

scale region attention for obtaining representations. Many

recent works are concerned with integration of attention

modules into deep CNNs, and a comprehensive review on

these methods is beyond the scope of this paper. Differ-

ent from these methods, our unrolling re-weighted mod-

ule is proposed, based on a modified iterative re-weighted

method, for estimating covariance of generalized Gaussian.

3. Proposed Method

In this section, we will introduce our proposed 3G-Net.

Firstly, we briefly recall definition of multivariate gener-

alized Gaussian distribution and its parameter estimation.

Then, we construct the trainable covariance of generalized

Gaussian layer. Finally, we describe implementation of 3G-

Net based on the covariance of generalized Gaussian layer.

3.1. Multivariate Generalized Gaussian Distribu
tion

To summarize the statistics of the last convolutional acti-

vations X ∈ Rd×N = {x1, . . . ,xN} with N samples of d-

dimension, we propose to employ a multivariate generalized

Gaussian distribution (MGGD) with zero mean [33] (i.e.,

covariance of MGGD), which takes the following form:

p(xi;Σ;β; δ) =
Γ(d/2)

πd/2Γ(d/2β)2d/2β
β

δd/2|Σ|1/2
(1)

exp

(
−

1

2δβ
(xiΣ

−1xT
i )

β

)
,

where β and δ are shape and scale parameters of MGGD,

respectively; Σ is covariance matrix of MGGD, and Γ is a

Gamma function.

Note that Eqn. (1) will reduce respectively to the Gaus-

sian and Laplacian distributions when β = 1 and β = 0.5.

Clearly, MGGD is able to characterize more complex dis-

tributions, in comparison to Gaussian models. Moreover,

MGGD has the ability to model long-tailed distributions,

more suitable for convolutional activations (as shown in

Figure 1). However, there is no closed-form solution for pa-

rameter estimation of MGGD. As shown in [43], maximum

likelihood estimation (MLE) for Σ of MGGD is defined by

argmin
Σ

N∑

n=1

(xT
nΣ

−1xn)
β +N log |Σ|. (2)

Based on above MLE (2), covariance Σ of MGGD can be

estimated by a fixed point algorithm (or iterative reweighed

method) [33, 43]. Correspondingly, estimation of Σ in t-
iteration is described as:

Σt =
1

N

N∑

n=1

Nd

ytn + (ytn)
1−β

∑
j 6=n(y

t
j)

β
· xnx

T
n , (3)

where ytn = xT
nΣ

−1
t−1xn, δ =

(
β
dN

∑
j 6=n(y

t
j)

β

) 1

β

and β

can be estimated by Newton-Raphson procedure [33], i.e.,

βt = βt−1 − f(βt−1)/f
′

(βt−1). (4)

Here f
′

(βt−1) is the partial derivative of f(βt−1), and

f(βt−1) is a function associated with yt, βt−1 and a

digamma function (refer to [33, Eqn. (13)] for details). As

proven in [33], parameter estimation of MGGD based on

Eqns. (3) and (4) can converge to a stationary point.

3.2. Trainable Covariance of Generalized Gaussian
Layer

To construct our trainable covariance of generalized

Gaussian layer, we first introduce a regularized MLE for

robustly estimating covariance of generalized Gaussian.

Then, we achieve this estimator by developing an unrolling

re-weighted module and a square root covariance layer.
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3.2.1 Robust Covariance Estimation of Generalized

Gaussian

Recent works [38, 28] show classical MLE for covariance

of Gaussian is not robust under deep architectures, while ro-

bust estimator helps to improve performance. So we extend

similar idea to estimate covariance of generalized Gaussian.

As suggested in [38], we introduce the von Neumann diver-

gence [10] between Σ and identity matrix I as a regularizer

into the MLE (2). After some manipulations, we have

argmin
Σ

1

N

N∑

n=1

(yn)
β + log |Σ|+ λtr(Σ− log(Σ)), (5)

where yn = xT
nΣ

−1xn and λ is a regularizing constant.

Analogous to [38], Eqn. (5) allows a robust estimator for co-

variance of generalized Gaussian under deep architectures.

However, the objective function in Eqn. (5) has no an-

alytic solution. For its optimization, we develop a modi-

fied iterative re-weighted method so that we can obtain the

analytic expression of unique optimal solution for each it-

eration. Let Σt be 1
N

∑N
n=1 w(xn,Σt−1) · xnx

T
n , where

w(xn,Σt−1) indicate weights of xn in Eqn. (3) and Σt−1

is estimated covariance in (t-1)-th iteration. The solution of

Eqn. (5) can be concluded in the following theorem.

Theorem 1 Let Σt = UDiag(σd)U
T be the singular

value decomposition (SVD) of Σt, where Diag(σd) and U
are diagonal and orthogonal matrices consisting of singu-

lar values σd and eigenvectors, respectively. Then, objec-

tive function (5) can be optimized iteratively as

Σt =
1

N

N∑

n=1

w(xn,Σt−1) · xnx
T
n , (6)

Σ̂t = UDiag

(√(
1− λ

λ

)2

+
σd

λ
−

1− λ

λ

)
UT ,

which is the unique optimal solution in t-th iteration.

Note that we set λ to 1 throughout all the experiments, as

λ = 0.5 ∼ 1 achieve the similar performance, and λ = 1
is easier to be implemented. According to Theorem 1,

our regularized iterative re-weighted method robustly esti-

mates covariance of generalized Gaussian with iteratively

re-weighting activations and computing matrix square root

of covariance. Due to page limit, complete proof of Theo-

rem 1 is given in the supplementary material.

3.2.2 Unrolling Re-weighted Module

According to Eqn. (6), our robust estimator needs to com-

pute the weights of activations in each iteration. Specifi-

cally, the weight associated with each activation xn in t-th

1

ˆ
t−

X

X

⊕

1x1 Conv
Element-wise 

Multiplication ⊕
Element-wise 

Addition
Sigmoid

c⋅

⋅

⋅⊕

1

ˆ
t−

X

Figure 3. Diagram of a re-weighted block in our unrolling re-

weighted module.

iteration can be computed as

w(xn,Σt−1) =
Nd

ytn + (ytn)
1−β

∑
j 6=n(y

t
j)

β
, (7)

where ytn = xT
nΣ

−1
t−1xn, Σt−1 = X̂t−1X̂

T
t−1, and X̂t−1

indicates the weighted activations in (t-1)-th iteration. Since∑
j 6=n(y

t
j)

β is independent of xn, we can rewrite Eqn. (7)

as

w(xn,Σt−1) =
Nd

ytn + cn(ytn)
1−β

. (8)

Here cn is a postive constant [33, Remark II.3]. Given a set

of activations X = {x1, · · · ,xN}, we can compute weights

of X as:

wt = Nd/
([
Λ(Yt−1)

]
+ c⊙

[
Λ(Yt−1)

]1−β)
, (9)

where Yt−1 = XTΣ−1
t−1X, c = [c1, . . . , cN ], and

Λ(Yt−1) extracts the diagonal elements of matrix Yt−1.

⊙ and / indicate element-wise multiplication and division,

respectively.

However, Eqn. (9) involves matrix inversion, which

is not suitable for GPU parallel implementation, slowing

down the training of network. To handle this issue, we em-

ploy Newton-Schulz Iteration [19] and the idea of tensor

approximation [24] to develop a re-weighted block, as il-

lustrated in Figure 3, which can approximate Eqn. (9) in

an efficient manner. Firstly, to avoid computing inversion

of Σt−1, we decompose Σ−1
t−1 into Σ

−1/2
t−1 Σ

−1/2
t−1 . Then

Yt−1 can be computed by
(
Σ

−1/2
t−1 X

)T (
Σ

−1/2
t−1 X

)
. Given

Q0 = Σt−1 and P0 = I, Σ
−1/2
t−1 can be computed with the

following Newton-Schulz iteration method [19]:

Qk =
1

2
Qk−1(3I−Pk−1Qk−1),

Pk =
1

2
(3I−Pk−1Qk−1)Pk−1. (10)

After K iterations, QK and PK will converge to Σ
1/2
t−1 and

Σ
−1/2
t−1 , respectively. Previous works [31, 27] have demon-

strated Eqn. (10) can achieve satisfying performance with
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only one iteration. It motivates us to approximate Σ
−1/2
t−1

with one-step Newton-Schulz iteration, i.e., Σ
−1/2
t−1 ≈

P1 =
1

2
(3I−Σt−1). So Yt−1 is approximated as

Yt−1 ≈
1

4
ZTZ, Z = (−X̂t−1X̂

T
t−1 + 3I)X. (11)

So far, we compute Λ(Yt−1) in Eqn. (9) requiring

Λ(ZTZ) and X̂t−1X̂
T
t−1, both of which are second-order

tensors. Following the idea of tensor approximation [30,

3, 40], we approximate them using learnable 1×1 convolu-

tions followed by element-wise product. Given a W×H×d
tensor X̂t−1, which can be reshaped to X̂t−1 with N =
W ×H , we can efficiently implement Λ(Yt−1) as follows:

Λ(Yt−1) ≈ ĉonv1×
(
conv1×(Zt−1)⊙ conv1×(Zt−1)

)
,

Zt−1 ≈ [conv1×(X̂t−1)⊙ conv1×(X̂t−1)]⊕ conv1×(X ),
(12)

where conv1× and ĉonv1× denotes one and a group of 1×1
convolutions, respectively; ⊕ means element-wise addition.

Given Λ(Yt−1), the weights wt are computed with

Nd/
(
Λ(Yt−1) + c ⊙ Λ(Yt−1)

1−β
)
. Here, Nd/(·) can

be regarded as a normalization on estimated weights and

c ⊙ Λ(Yt−1) is a Hadamard product, where we use a

Sigmoid function and one 1 × 1 convolution for imple-

mentation, respectively. Finally, we compute wt using the

following formulation:

wt−1 ≈ φ
(
Λ(Yt−1)⊕ conv1×1((Λ(Yt−1))

1−β)
)
, (13)

where φ is a Sigmoid function. In terms of Eqns. (12) and

(13), we can implement our re-weighted block using basic

1 × 1 convolutions, element-wise operations and Sigmoid
function, endowing its efficiency and straightforward back-

propagation. To estimate covariance of generalized Gaus-

sian, we need to compute Eqn. (9) repeatedly. To this

end, as illustrated in Figure 2, we propose an unrolling

re-weighted module. It consists of multiple consecutive

re-weighted blocks, each of which aims at implementing

Eqn. (9). By stacking multiple re-weighted blocks, we can

flexibly construct our unrolling re-weighted module.

3.2.3 Square Root Covariance Layer

As shown in Eqn. (6), for optimizing the regularized MLE

(5), we need to compute matrix square root of covariance

once the weights are estimated. Here we construct a square

root covariance layer to achieve it. Let weighted activations

be X̂, we can compute square root covariance of X̂ as

Σ̂ = (X̂X̂T )1/2 = Σ1/2 = ÛΛ̂
1

2 ÛT , (14)

where Σ = ÛΛ̂ÛT is SVD of Σ. Λ̂ and Û are the eigen-

values and eigenvectors of Σ, respectively. Λ̂
1

2

indicates

element-wise square root of the eigenvalues. It is easy to

see that computation of Eqn. (14) heavily dependents on

SVD or eigenvalues decomposition (EIG).

However, SVD or EIG is limitedly supported on GPU,

slowing down the training speed of square root covariance

layer [27]. Eqn.(10) gives the form of Newton-Schulz It-

eration [19], which shows Σ̂ can be approximated by QK

with K iterations and initialization of Q0 = Σ and P0 = I.
Compared with matrix square root via SVD (14), Eqn. (10)

only involves matrix multiplication, suitable for GPU im-

plementation. Here we employ the recently proposed train-

able iterative method [27] based on Eqn. (10) to make better

use of multi-GPU and accelerate the training of network. As

suggested in [27], additional pre-normalization (i.e., Q0 =
1

tr(Σ)Σ) and post-compensation (i.e., Σ̂ =
√

tr(Σ)QK)

are employed. Thus, the partial derivative of loss function l
with respect to X̂ can be derived based on matrix backprop-

agation [23].

Specifically, backpropagation formula of post-

compensation takes the following form:

∂l

∂QK
=

√
tr(Σ)

∂l

∂Σ̂
;

∂l

∂Σ

∣∣∣
p
=

tr
((

∂l/∂Σ̂
)T

QK

)

2
√
tr(Σ)

I.

(15)

According to Eqn. (10), the gradients of k-th iteration are

∂l

∂Qk−1
=
1

2

( ∂l

∂Qk

(
3I−Qk−1Pk−1

)
−Pk−1

∂l

∂Pk
Pk−1

−Pk−1Qk−1
∂l

∂Qk

)
,

∂l

∂Pk−1
=
1

2

((
3I−Qk−1Pk−1

) ∂l

∂Pk
−Qk−1

∂l

∂Qk
Qk−1

−
∂l

∂Pk
Pk−1Qk−1

)
, (16)

∂l

∂Q0
=
1

2

( ∂l

∂Q1

(
3I−Q0

)
−

∂l

∂P1
−Q0

∂l

∂Q1

)
.

Considering Eqn. (15), the gradient of l with respect to Σ
can be computed as

∂l

∂Σ
=
tr
((

∂l/∂Q0

)T

Σ
)

−(tr(Σ))2
I+

∂l/∂Q0

tr(Σ)
+

∂l

∂Σ

∣∣∣
p
. (17)

Finally, the partial derivative of l with respect to X̂ is

∂l

∂X̂
= X̂

(
∂l

∂Σ
+

(
∂l

∂Σ

)T)
, (18)

Given ∂l/∂X̂ in Eqn. (18), we can complete backpropaga-

tion of square root covariance layer.

5084



3.3. Deep Global Generalized Gaussian Networks

As suggested in previous methods [23, 32, 37, 28], we

construct our deep global generalized Gaussian networks

(3G-Net) by inserting the proposed covariance of general-

ized Gaussian layer after the last convolution block. In this

paper, we employ ResNet-50 and ResNet-101 [17] as back-

bone models. Following the settings in [28], we add one

1 × 1 convolution with 256 filters between the last con-

volution block and the proposed covariance of generalized

Gaussian layer, and remove downsampling in the last stage.

As such, dimension of last convolutional activations is re-

duced from 2048 to 256, while their size increases from

7× 7 to 14× 14, balancing efficiency and effectiveness.

To accomplish our unrolling re-weighted module, chan-

nel numbers of input and output of conv1× in the Eqn. (12)

both are set to 256. ĉonv1× is composed of two consecutive

1×1 convolutions, where the channel numbers of input and

output in the first convolution are respectively set to 256 and

64, while ones of the second convolution are set to 64 and

1, respectively. We discard the element-wise power oper-

ation of Eqn. (13) in the re-weighted block, as the experi-

mental results show it has little effect on performance. For

guaranteeing efficiency of our 3G-Net, we run respectively

the Newton-Schulz Iteration (10) within one iteration and

five iterations in unrolling re-weighted module and the fi-

nal square root covariance layer, albeit more iterations may

bring further improvement. By performing matrix triangu-

lation, our covariance of generalized Gaussian layer outputs

a 256(256 + 1)/2-dimensional vector for final prediction.

Note that, our 3G-Net will bring about additional 0.34× T
M parameters (T indicates number of iterations), compar-

ing with existing deep global covariance pooling networks

in Gaussian setting [23, 32, 28, 27].

4. Experiments

To evaluate the effectiveness of our proposed 3G-Net, we

conduct experiments on widely used ImageNet-1K [9] and

Places365 [44] datasets. We first describe training details of

our 3G-Net, and make ablation study to analyze effects of

key components using ImageNet-1K. Finally, we compare

with state-of-the-arts on both ImageNet-1K and Places365.

4.1. Training Details

To train our 3G-Net, we adopt the same data augmen-

tation strategy with [34, 17, 28]. Specifically, all training

images with mean subtraction and standard color augmenta-

tion are resized with their shorter side randomly sampled on

[256, 512], and a 224×224 patch is randomly cropped from

each resized image. The random horizontal flip is used. Fol-

lowing the settings in [17], we optimize the network param-

eters using SGD with a mini-batch size of 256, a momentum

of 0.9 and a weight decay of 0.0001. The learning rate is

T
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Figure 4. Effect of number of iterations (T ) on the proposed 3G-

Net with ResNet-50 architecture on ImageNet-1K.

initialized to 0.1, and is divided by 10 every 30 epochs. We

adopt respectively single center crop and 10-crop predic-

tions on ImageNet-1K and Places365, and report top-1 and

top-5 error rates on validation sets for comparison. All pro-

grams are implemented using PyTorch package1, and run

on a PC equipped with four Titan Xp GPUs and 64G RAM.

4.2. Ablation Study on ImageNet1K

Impact of Iteration Number Number of iterations (T )

of our modified iterative re-weighted method (i.e., number

of blocks in unrolling re-weighted module) plays a key role

in covariance estimation of generalized Gaussian. To as-

sess the effect of parameter T on our 3G-Net, we employ

ResNet-50 as a backbone model and conduct experiments

on ImageNet-1K dataset. It contains about 1.28M training

images and 50K validation images, collected from 1,000

object categories. Top-1 errors of our 3G-Net with differ-

ent numbers of iterations are shown in Figure 4, where we

also compare with baseline methods, i.e., ResNet-50 with

GAP [17] and iSQRT-COV [27]. Note that ResNet-50 with

iSQRT-COV [27] can be regarded as a special case of our

3G-Net without re-weighting activations, i.e., estimating

covariance in Gaussian setting. Increasing number of itera-

tions can achieve lower classification errors, and the perfor-

mance of our 3G-Net saturates with T = 3 (21.31% in Top-

1 error). The larger number of iterations brings negligible

gain but more computational and memory costs. Compared

with baseline methods, our 3G-Net outperforms ResNet-50

based on GAP and iSQRT-COV over 2.6% and 0.64% in

Top-1 error, respectively. Based on the above results, we

set T to 3 throughout the following experiments for balanc-

ing effectiveness and efficiency.

Effectiveness of Re-weighted Module To verify the ef-

fectiveness of our unrolling re-weighted module, we com-

pare with its two variants. The first one only employs

ĉonv1× in Eq. (12) (i.e., two consecutive 1 × 1 convolu-

1The source code and network models will be available at https:

//github.com/csqlwang/3G-Net
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1x1 Conv
Element-wise 

Multiplication
Sigmoid⋅

⋅

(a) URM-v1 (b) URM-v2

Figure 5. Illustration of two variants of our unrolling re-weighted

module, i.e., (a) URM-v1 and (b) URM-v2.

Method Top-1 error Top-5 error

None 21.95 6.17
URM-v1 21.97 6.17
URM-v2 21.89 6.14
3G-Net with T = 1 (Ours) 21.64 5.81
3G-Net with T = 3 (Ours) 21.31 5.61

Table 1. Results (in %) of 3G-Net with different re-weighted mod-

ules on ImageNet-1K.

Method Top-1 err. Top-5 err.

GAP [17] 24.6 7.7
GAP (Re-implement) 23.91 7.15
Plain COV 26.41 9.09
B-CNN [32] 23.18 6.96
G2DeNet [37] 22.77 6.55
MPN-COV [28] 22.73 6.54
iSQRT-COV [27] 22.14 6.22
iSQRT-COV (Re-implement) 21.95 6.17
3G-Net w/o Estimator (5) 25.17 8.14
3G-Net (Ours) 21.31 5.61

Table 2. Results (in %) of different global pooling methods under

ResNet-50 architecture on ImageNet-1K.

tions), which is a commonly used method to generate spa-

tial attention maps [41]. The second one introduces an addi-

tional conv1×(X̂t−1)⊙conv1×(X̂t−1) into the first variant

of module. These two variants can be seen as two subdivi-

sions of our unrolling re-weighted module, namely URM-

v1 and URM-v2, respectively. The illustrations of URM-v1

and URM-v2 are shown in Figure 5. Table 1 lists the results

of our method with different re-weighted modules, from it

we can see that both URM-v1 and URM-v2 achieve no or

negligible gain, while our single re-weighted block outper-

forms URM-v1 and URM-v2 by 0.36% and 0.33% in Top-5

error, respectively. The unrolling re-weighted module con-

sisting of 3 blocks achieves further improvement, showing

the effectiveness of our unrolling re-weighted module.

Robust Estimator We evaluate effect of robust estima-

tion (5) on our 3G-Net. It brings no extra parameters, and

is on par with non-robust one in space/time complexity. As

compared in Tables 2 and 3, 3G-Net without (w/o) robust

estimation (5) is superior to Plain COV, but is clearly in-

ferior to the one with robust estimator. Additionally, 3G-

Net under ResNet-50 with or w/o robust estimation obtain

43.07/13.34 vs. 45.47/15.00 on Places365. Above results

clearly show the significance of our robust estimation.

Comparison of Various Global Pooling We compare

Method Backbone Models Top-1 Top-5

FBN [30]

ResNet-50

24.0 7.1
SORT [40] 23.82 6.27
ResNeXt [42] 22.11 5.90
SE [20] 23.29 6.62
CBAM [41] 22.66 6.31
A2-Nets [6] 23.0 6.5
DropBlock [14] 21.87 5.98
iSQRT-COV [27] 22.14 6.22
3G-Net (Ours) 21.31 5.61
GAP [17]

ResNet-101

23.6 7.1
ResNeXt [42] 21.2 5.6
SE [20] 22.38 6.07
CBAM [41] 21.51 5.69
iSQRT-COV [27] 21.21 5.68
3G-Net w/o Estimator (5) 24.23 7.58
3G-Net (Ours) 20.37 5.17
ResNet-152 [17] 23.0 6.7
ResNet-152 + SE [20] 21.57 5.73
ResNet-200 [18]> 21.7 5.8
PyramidNet-200 [16]> 20.1 5.4
DenseNet-264 [21] 22.15 6.12

Table 3. Comparison of errors (in %) with state-of-the-art methods

on ImageNet-1K. All methods employ single 224× 224 crop pre-

diction, and the competing results are duplicated from the original

papers. >The results are copied from [20].

our 3G-Net with several existing global pooling methods

using ResNet-50, including the original GAP [17], Plain co-

variance (COV) pooling (i.e., XXT ), B-CNN [32], MPN-

COV [28], G2DeNet [37] and iSQRT-COV [27]. The re-

sults of GAP, MPN-COV and iSQRT-COV are copied from

the original papers. We implement Plain COV, B-CNN and

G2DeNet by ourselves, and we also re-implement GAP and

iSQRT-COV. For fair comparison, we adopt the same set-

tings of network and hyperparameters for all competitors.

Note that we insert a BN layer [22] after B-CNN model

for stable and rapid convergence. The results of different

methods on ImageNet-1K are given in Table 2. All second-

order pooling methods except Plain COV outperform the

original GAP. Plain COV achieves unsatisfactory result in

this case. G2DeNet and MPN-COV obtain similar results,

which are superior to B-CNN. Our 3G-Net achieves the

best performance, demonstrating covariance of generalized

Gaussian is more effective than the ones based on Gaussian

[32, 28, 27, 37]. Our 3G-Net outperforms iSQRT-COV by

0.56% in Top-5 error, which is a non-trivial improvement,

since iSQRT-COV is a very strong baseline while iSQRT-

COV under ResNet-101 with much more parameters just

achieves 0.54% gain over iSQRT-COV with ResNet-50.

4.3. Comparison on ImageNet1K

Here we compare our 3G-Net, under both ResNet-50

and ResNet-101 architectures, with several state-of-the-art

methods on ImageNet-1K. The top-1 and top-5 errors of

different methods are listed in Table 3, where the results

of ResNet-200 [18], PyramidNet-200 [16] and remaining

competing methods are duplicated from [20] and the origi-

nal papers, respectively. As shown in Table 3, our 3G-Net
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Method ResNet-50 [17] △ ResNet-50+B-CNN [32] ResNet-50+iSQRT-COV [27] ResNet-50+3G-Net (Ours) ResNet-101+3G-Net (Ours)

Top-1 err. 44.82 44.24 43.68 43.07 42.77
Top-5 err. 14.71 14.27 13.73 13.34 13.12

Method GoogLeNet [35]△ ResNet-152 [17] △ ResNet-101 [17] ResNeXt-101 [42]♣ CRU-Net-116 [5]♣

Top-1 err. 46.37 45.26 44.09 43.79 43.40
Top-5 err. 16.12 14.92 13.93 13.75 13.45

Table 4. Results (in %) of different methods with 10-crop prediction on Places365. △The results are duplicated from https://github.

com/CSAILVision/places365. ♣The results are copied from [5].

obtains the best performance among all competing meth-

ods under ResNet-50 architecture. Compared with deep

local second-order statistics networks, i.e., FBN [30] and

SORT [40], our 3G-Net achieves a clear improvement.

Meanwhile, 3G-Net is superior to ResNeXt [42], which

employs much wider convolution filters. Compared with

deep CNNs based on various advanced self-attention meth-

ods [20, 41, 6], 3G-Net obtains 1.98%, 1.35%, 1.69% and

1.01%, 0.7%, 0.89% gains in top-1 and top-5, respectively.

Our 3G-Net obtains 0.83% in top-1 (0.61% in top-5) gains

over the top deep covariance pooling network [27].

When ResNet-101 is used as a backbone model, the pro-

posed 3G-Net improves the original ResNet-101 with GAP

by a large margin. In like manner, our 3G-Net is supe-

rior to ResNeXt-101 over 0.89% in top-1 (0.43% in top-5).

Meanwhile, it outperforms respectively SE-Net and CBAM

[20, 41] about 2.01% and 1.14% in top-1 (0.9% and 0.52%
in top-5). The proposed 3G-Net improves iSQRT-COV over

0.84% and 0.51% in top-1 and top-5, respectively. Note

that our 3G-Net based on ResNet-50 is slightly superior to

iSQRT-COV with ResNet-101 in top-5 error, while our 50-

layer 3G-Net outperforms 152-layer ResNet [17] and 152-

layer ResNet with SE module [20]. Furthermore, 50-layer

3G-Net performs better than 200-layer ResNet [18] while

101-layer 3G-Net is slightly superior to 200-layer pyrami-

dal ResNet [16] in top-5 error. Our 50-layer 3G-Net also

outperforms DenseNet [21] of 264 layers. Above results

clearly suggest the competitiveness of our 3G-Net.

4.4. Comparison on Places365

Finally, we evaluate our 3G-Net on standard Places365

dataset, which includes about 1.8M and 36.5K images

of 365 scene classes for training and validation, respec-

tively. Compared with ImageNet-1K, each sample image

in Places365 involves of more objects, leading more ambi-

guity. Using ResNet-50 and ResNet-101 as backbone mod-

els, we compare with three global pooling methods (i.e.,

GAP [17], B-CNN [32] and iSQRT-COV [27]) and four

deep CNN architectures (i.e., GoogLeNet [35], ResNet-152

[17], ResNeXt-101 [42] and CRU-Net-116 [5]). We adopt

10-crop prediction in comparison to the existing results.

The results of different methods are given in Table 4,

where we implement B-CNN by ourselves, and implement

iSQRT-COV using the source code released by the authors.

We adopt exactly the same parameter settings for fair com-

parison. Compared with other three global pooling meth-

ods under ResNet-50 architectures, our 3G-Net obtains the

lower classification error. The proposed 3G-Net is signif-

icantly better than the original GAP, and outperforms B-

CNN and iSQRT-COV by 1.17% and 0.61% in top-1 er-

ror, respectively. Our 3G-Net can achieve further improve-

ment using ResNet-101, and obtains the best results. It

demonstrates the effectiveness of our global covariance of

generalized Gaussian layer. Compared with the advanced

deep CNN architectures, our 3G-Net clearly outperforms

GoogLeNet and ResNet-152, while achieving better results

than CRU-Net-116 and ResNeXt-101, although they are

much deeper and wider.

5. Conclusion

In this paper, we proposed a novel 3G-Net, which ro-

bustly estimates a global covariance of generalized Gaus-

sian distribution to summarize the last convolutional acti-

vations, since distributions of convolutional activations are

complex and have long tails, which can not be fully charac-

terized by Gaussian models. Our 3G-Net assumes distribu-

tion of convolutional activations obey a generalized Gaus-

sian model, capturing characteristic of activations more pre-

cisely. The experimental results on large-scale ImageNet-

1K and Places365 datasets demonstrated our 3G-Net can

achieve higher classification accuracy than deep CNNs with

either GAP or global covariance of Gaussian. The effective-

ness of 3G-Net suggests more precise characterization of

convolutional activations is helpful to improve performance

of deep CNNs. In future, we will apply the proposed 3G-

Net to action or video classification, and investigate integra-

tion of more diverse distributions (e.g., exponential families

[36]) into deep CNNs for further improvements.
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