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Abstract

To mitigate the detection performance drop caused by

domain shift, we aim to develop a novel few-shot adapta-

tion approach that requires only a few target domain im-

ages with limited bounding box annotations. To this end,

we first observe several significant challenges. First, the

target domain data is highly insufficient, making most ex-

isting domain adaptation methods ineffective. Second, ob-

ject detection involves simultaneous localization and clas-

sification, further complicating the model adaptation pro-

cess. Third, the model suffers from over-adaptation (similar

to overfitting when training with a few data example) and

instability risk that may lead to degraded detection perfor-

mance in the target domain. To address these challenges,

we first introduce a pairing mechanism over source and tar-

get features to alleviate the issue of insufficient target do-

main samples. We then propose a bi-level module to adapt

the source trained detector to the target domain: 1) the split

pooling based image level adaptation module uniformly ex-

tracts and aligns paired local patch features over loca-

tions, with different scale and aspect ratio; 2) the instance

level adaptation module semantically aligns paired object

features while avoids inter-class confusion. Meanwhile, a

source model feature regularization (SMFR) is applied to

stabilize the adaptation process of the two modules. Com-

bining these contributions gives a novel few-shot adaptive

Faster-RCNN framework, termed FAFRCNN, which effec-

tively adapts to target domain with a few labeled samples.

Experiments with multiple datasets show that our model

achieves new state-of-the-art performance under both the

interested few-shot domain adaptation(FDA) and unsuper-

vised domain adaptation(UDA) setting.

1. Introduction

Humans can easily recognize familiar objects from new

domains, while current object detection models suffer sig-

nificant performance drop in unseen environments due to

domain shift. Poor adaptability to new domains severely

limits the applicability and efficacy of these models. Pre-

Image level shift

Instance level shift

Figure 1. Illustration of our main idea. Middle row shows two

images from Cityscapes and Foggy Cityscapes respectively. Top

row shows background patches reflecting image level domain shift

and bottom row shows independent objects (cars) reflecting object

instance level domain shift.

vious works tackling domain shift issues for deep CNN

models [12, 42, 29, 1] are mainly targeted at the unsuper-

vised domain adaptation (UDA) setting, which requires a

large amount of target domain data and comparatively long

adaptation time. Only a few works consider the supervised

domain adaptation (SDA) [39, 7, 32] setting. However, as

UDA methods, they mainly focus on the simple task of clas-

sification, and may not apply well to more complex tasks

like object detection that involves localizing and classifying

all individual objects over high resolution inputs.

In this paper, we explore the possibility of adapting an

object detector trained with source domain data to target

domain with only a few loosely annotated target image sam-

ples (not all object instances are annotated). This is based

on our key observation that limited target samples can still

largely reflect major domain characteristics, e.g. illumina-

tion, weather condition, individual object appearance, as

shown in Fig. 1. Also, the setting is appealing in practice

as collecting a few representative data from a new domain

needs negligible effort, meanwhile can reduce the inevitable

noise brought by large amount of samples. However, it is

very challenging to learn domain invariant representation

with only a few target data samples, and detectors require
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fine-grained high resolution features for reliable localiza-

tion and classification.

To address this challenge, we proposed a novel frame-

work that consists of two level of adaptation modules cou-

pled with a feature pairing mechanism and a strong regu-

larization for stable adaptation. The pairing process pairs

feature samples into two groups to effectively augment lim-

ited target domain data, pairs in first group consist of one

sample from target domain and one from the source do-

main, and pairs in the second group are both from the source

domain. Similar approach has been used in [31] for aug-

menting image samples, while we augment local feature

patches and object features in the two adaptation module

respectively. With the introduced pairing mechanism, the

image-level module uniformly extracts and aligns paired

multi-grained patch features to address the global domain-

shift like illumination; the instance-level module semanti-

cally matches paired object features while avoids confu-

sion between classes as well as reduced discrimination abil-

ity. Both of these two modules are trained with a domain-

adversarial learning method. We further propose a strong

regularization method, termed source model feature reg-

ularization (SMFR), to stabilize training and avoid over-

adaptation by imposing consistency between source and

adapted models on feature response of foreground anchor

locations. The bi-level adaptation modules combined with

SMFR can robustly adapt source trained detection model to

new target domain with only few target sample data. The re-

sulted framework, termed few shot adaptive Faster R-CNN

(FAFRCNN), offers a number of advantages:

• Fast adaptation. For a source trained model, our

framework empirically only needs hundreds step of

adaptation updates to reach desirable performance un-

der all established scenarios. In contrast previous

methods under UDA setting [43, 5] requires tens of

thousands of steps to train.

• Less data collection cost. With only few represen-

tative data sample, the FAFRCNN model can greatly

boost source detector on target domain, drastically mit-

igating data collection cost. Under the devised loosely

annotation process, the amount of human annotating

time is reduced significantly.

• Training stability. Fine-tuning with limited target

data sample can lead to severe over-fitting. Also, do-

main adaptation approaches relying on adversarial ob-

jective might be unstable and sensitive to initialization

of model parameters. This issue greatly limits their ap-

plicability. The proposed SMFR approach enables the

model to avoid over-fitting and benefit from the few

target data samples. For the two adversarial adapta-

tion modules, although imposing SMFR could not sig-

nificantly boost their performance, the variance over

different runs is drastically reduced. Thus SMFR pro-

vides much more stable and reliable model adaptation.

To demonstrate the efficacy of the proposed FAFR-

CNN for cross-domain object detection, we conduct the

few-shot adaptation experiments under various scenarios

constructed with multiple datasets including Cityscapes,

SIM10K, Udacity self-driving and Foggy Cityscapes. Our

model significantly surpasses compared methods and out-

performs state-of-art method using full target domain data.

When applied to UDA setting, our method generates new

state-of-art result for various scenarios.

2. Related Work

Object Detection Recent years have witnessed remark-

able progress on object detection with deep CNNs and

various large-scale datasets. Previous detection architec-

tures are grouped into two- or multi-stage models like

R-CNN [15], Fast R-CNN [14], Faster R-CNN [37] and

Cascaded R-CNN [3], as well as single-stage models like

YOLO [35], YOLOv2 [36], SSD [28] and Retinanet [27].

However, all of them require a large amount of training data

with careful annotations, thus are not directly applicable to

object detection in unseen domains.

Cross-domain Object Detection Recent works on do-

main adaptation with CNNs mainly address the simple task

of classification [29, 11, 13, 2, 26, 18, 30], and only a few

consider object detection. [45] proposed a framework to

mitigate the domain shift problem of deformable part-based

model (DPM). [34] developed subspace alignment based

domain adaptation for the R-CNN model. A recent work

[20] used a two-stage iterative domain transfer and pseudo-

labeling approach to tackle cross-domain weakly super-

vised object detection. [5] designed three modules for un-

supervised domain adaptation of the object detector. In this

work, we aim at adapting object detectors with a few target

image samples and build a framework for robust adaptation

of state-of-the-art Faster R-CNN models under this setting.

Few-shot Learning Few-shot learning [9] was proposed

to learn a new category with only a few examples, just

as humans do. Many works are based on Bayesian infer-

ence [25, 24], and some leverage memory machines [17,

41]. Later, [19] proposed to transfer the base class feature

to a new class; a recent work [10] proposed a meta learn-

ing based approach which achieves state-of-the-art. Incor-

porating few-shot learning into object detection was pre-

viously explored. [8] proposed to learn an object detector

with a large pool of unlabeled images and only a few anno-

tated images per category, termed few-shot object detection

(FSOD); [4] tackled the setting of few-shot object detection

with a low-shot transfer detector (LSTD) coupled with de-

signed regularization. Our FDA setting differs in that target
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data distribution changed but task remain the same, while

few-shot learning aims at a new tasks.

3. Method

In this section, we elaborate on our proposed few-shot

domain adaptation approach for detection. To tackle the

issue brought by insufficient target domain samples, we in-

troduce a novel feature pairing mechanism built upon fea-

tures sampled by split pooling and instance ROI sampling.

Our proposed approach performs domain adaptation over

the paired features at both image and object-instance levels

through domain-adversarial learning, where the first level

alleviates global domain shift and the second level seman-

tically aligns object appearance shift while avoiding con-

fusion between classes. To stabilize the training and avoid

over-adaptation, we finally introduce the source model fea-

ture regurgitation technique. We apply these three novel

techniques to Faster R-CNN model and obtain the few-shot

adaptive Faster-RCNN (FAFRCNN), which is able to adapt

to novel domains with only a few target domain examples.

3.1. Problem Setup

Suppose we have a large set of source domain training

data (XS , YS) and a very small set of target data (XT , YT ),
where XS and XT are input images, YS denotes complete

bounding box annotation for XS , and YT denotes loose an-

notation for XT . With only a few object instances in the

target domain images annotated, our goal is to adapt a de-

tection model trained on source training data to the target

domain with minimal performance drop. We only consider

loose bounding box annotation to reduce annotation effort.

3.2. Image­level Adaptation

Inspired by the superior result of the patch based domain

classifier compared to its full image counterpart in previous

seminal works [21, 46] for image to image translation. We

propose split pooling (SP) to uniformly extract local feature

patches across locations with different aspect ratio and scale

for domain adversarial alignment.

Specifically, given grid width w and height h, the pro-

posed split pooling first generates random offsets sx and sy
for x- and y-axis ranging from 0 to the full grid width w and

height h respectively (i.e., 0<sx<w, 0<sy<h, sx, sy ∈ N),

as shown in the top left panel of Fig. 2. A random grid is

formed on the input image with the offset of (sx, sy) start-

ing from the top left corner of the input image. This random

sampling scheme gives a trade-off between static grid that

may generate biased sampling, and exhausting all grid loca-

tions that suffers redundancy and over-sampling.

The grid window width w and height h are set with scales

and ratios as anchor boxes in Faster R-CNN. We empiri-

cally choose 3 scales (large scale 256, medium scale 160,

and small scale 96, corresponding to feature size 16, 10

and 6 on relu 5 3 of VGG16 network) and 3 aspect ratios

(0.5, 1, 2), resulting in 9 pairs of w and h. For each pair,

gird is generated then non-border rectangles in the grid are

pooled into fixed sized features with ROI pooling. Pooling

enables different sized grids to be compatible with a single

domain classifier without changing the patch-wise charac-

teristics of the extracted features. Formally, let f be the

feature extractor and X be the set of input images. We

perform split pooling at three scales, result in the features

spl(f(X)), spm(f(X)), and sps(f(X)) respectively. We

separate them according to scales as we want to investigate

the contribution of different scales independently. These lo-

cal patch features can reflect image-level domain shifts like

varied illumination, weather change, etc. Since those shifts

spread on the whole image, the phenomenon is more evi-

dent for object detection as input images are usually large.

We then develop image-level adaptation module which

performs multi-scale alignment with paired local fea-

tures. Specifically, it tackles image-level shift by first pair-

ing the extracted local features from split pooling to form

two groups for each of the three scales. e.g., for the small

scale patch, Gs1 = {(gs, gs)}, Gs2 = {(gs, gt)}, where

gs ∼ sps(f(XS)) and gt ∼ sps(f(XT )). Here the pairs

within the first group Gs1 consist of samples from the

source domain only, and pairs within the second group Gs2

consist of one sample from source and another from the tar-

get domain. Such a pairing scheme effectively augments the

limited target domain feature samples.

To adapt the detection model, domain-adversarial learn-

ing objective is imposed to align the constructed two groups

of features. The domain-adversarial learning [11, 42, 43]

employs the principle in generative adversarial learning [16]

to minimize an approximated domain discrepancy distance

through adversarial objective on feature generator and do-

main discriminator. Thus the data distribution is aligned

and source task network can be employed for the target do-

main. Specifically the domain discriminator tries to classify

the feature to source and target domain while the feature

generator tries to confuse the discriminator. The learning

objective of small scale discriminator Dsps is to minimize

Lspsd
= −Ex∼Gs1

[logDsps(x)]

− Ex∼Gs2
[log(1−Dsps(x))],

such that the discriminator can tell clearly the source-source

feature pairs apart from source-target feature pairs. The ob-

jective of the generator is to transform the features from

both domains such that they are not distinguishable to the

discriminator, by maximizing the above loss.

We can similarly get losses for medium and large scale

discriminator as Lspmd
and Lspld

. We use 3 separate dis-

criminators for each scale. In addition, this module operates

requiring no supervision. Thus it can be used for unsuper-

vised domain adaptation (UDA). Together, the image level
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Figure 2. Framework of the proposed few shot adversarial adaptive Faster R-CNN model(FAFRCNN). We address the domain shift with

image level and instance level adaptation modules, the former with different grid size adapts multi-grained feature patches and latter seman-

tically aligns independent object appearance, the modules augmented with the proposed pairing mechanism result in effective alignment

of feature representation in such few shot scenario(refer to Section 3 for details), we further developed source model feature regulariza-

tion(SMFR) which dramatically stabilizes the adaptation process.

discriminator’s objective is to minimize:

Limd
= Lspsd

+ Lspmd
+ Lspld

,

and the feature generator’s objective is to maximize Limd
.

3.3. Instance­level Adaptation

To mitigate object instance level domain shift, we pro-

pose the instance-level adaptation module which semanti-

cally aligns paired object features.

Specifically, we extend the Faster R-CNN ROI sampling

to instance ROI sampling. The Faster R-CNN ROI sam-

pling scheme samples ROIs to create training data for clas-

sification and regression heads. It by default separates fore-

ground and background ROIs with an IOU threshold of

0.5 and samples them at a specific ratio (e.g., 1:3). Dif-

ferently, our proposed instance ROI sampling keeps all the

foreground ROIs with higher IOU threshold (i.e., 0.7 in our

implementation) to ensure the ROIs are closer to real ob-

ject regions and suitable for alignment. The foreground

ROI features of source and target domain images, accord-

ing to their class, are passed through the intermediate layers

(i.e., the layers after ROI pooling but before classification

and regression heads) to get sets of source object features

Ois and target object features Oit. Here i ∈ [0, C] is the

class label and C is the total number of classes. Then they

are further paired into two groups the same way as image

level patch features, resulting in Ni1 = {(nis, nis)} and

Ni2 = {(nis, nit)}. Here nis ∼ Ois and nit ∼ Oit. The

multi-way instance-level discriminator Dins has 2×C out-

puts with a following objective to minimize:

Linsd =

C∑

i=1

−Ex∼Ni1
[logDins(x)i1]

− Ey∼Ni2
[logDins(y)i2].

Here Dins(x)i1 denotes discriminator output over the i-th

class of first group. Correspondingly, the objective of fea-

ture generator is to minimize

Linsg =
C∑

i=1

−Ex∼Ni1
[logDins(x)i2]

− Ey∼Ni2
[logDins(y)i1],

which aims to confuse the discriminator between two do-

mains while avoid misclassification to other classes.

3.4. Source Model Feature Regularization

Training instability is a common issue for adversarial

learning and is more severe for cases of insufficient training

data, which may result in over-adaptation. Fine-tuning with

limited target data would also unavoidably lead to overfit-

ting. We resort to a strong regularization to address the in-

stability by forcing the adapted model to produce consistent

feature response on source input with the source model in

the sense of ℓ2 difference. The purpose is to avoid over-

updating learned representation towards limited target sam-

ples that degrades the performance. A similar form of ℓ2
penalty on the feature map was used in image to image

translation method [1, 21] to constrain content change.

Formally, Let fs and ft be the feature extractors of the

source model and the adapted model respectively. Then the
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source model feature regularization (SMFR) term is

Lreg = Exs∼XS

1

wh
||fs(xs)− ft(xs)||

2

2
,

where w and h are the width and height of the feature map.

However, object detection cares more about local fore-

ground feature regions while background area is usually

unfavorably dominant and noisy. We find directly impos-

ing the regularization on global feature map leads to severe

deterioration when adapting to the target domain. Thus we

propose to estimate those foreground regions on the fea-

ture map as the anchor locations that have IOU with ground

truth boxes larger than a threshold (0.5 is used in implemen-

tation). Denote M as the estimated foreground mask. Then

we modify the proposed regularization as follows:

Lreg = Exs∼XS

1

k
||(fs(xs)− ft(xs)) ∗M ||2

2
,

where k is the number of positive mask locations. This is

partially inspired by the “content-similarity loss” from [1]

that employs available rendering information to impose ℓ2
penalty on foreground regions of the generated image.

3.5. Training of FAFRCNN

The framework is initialized with the source model

and optimized by alternating between following objectives:

Step 1. Minimize the following loss w.r.t. full detection

model: Lg = α(Limg
+Linsg )+βLdet+λLreg , where Ldet

denotes Faster R-CNN detection training loss on source

data, α, β and λ are balancing hyperparameters controlling

interaction between losses. Step 2. Minimize following

loss w.r.t. domain discriminators: Ld = Limd
+ Linsd .

4. Experiments

In this section, we present evaluation results of the pro-

posed method on adaptation scenarios capturing different

domain shift constructed with multiple datasets. In experi-

ments, VGG16 network based Faster-RCNN is used as the

detection model.

4.1. Datasets and Setting

Datasets We adopt following four datasets to establish the

cross-domain adaptation scenarios for evaluating the adap-

tation ability of our model and comparing methods. The

SIM10K [23] dataset contains 10k synthetic images with

bounding box annotation for car, motorbike and person.

The Cityscapes dataset contains around 5000 accurately

annotated real world images with pixel-level category la-

bels. Following [5], we take box envelope of instance mask

for bounding box annotations. The Foggy Cityscapes [40]

dataset is generated from Cityscapes with simulated fog.

The Udacity self-driving dataset (Udacity for short) [44]

is an open source dataset collected with different illumina-

tion, camera condition and surroundings as Cityscapes.

Evaluation scenarios The established cross-domain

adaptation scenarios include Scenario-1: SIM10K to

Udacity (S → U); Scenario-2: SIM10K to Cityscapes

(S → C); Scenario-3: Cityscapes to Udacity (C → U);

Scenario-4: Udacity to Cityscapes (U → C); Scenario-5:

Cityscapes to Foggy Cityscapes (C → F). The first two sce-

narios capture synthetic to real data domain shift, which is

important as learning from synthetic data is very promising

way to address the lack of labeled training data [6, 38, 33];

Scenario-3 and Scenario-4 constructed with both real

world collected datasets mainly aim for domain shift like

illumination, camera condition, etc., which is important for

practical applications; And the last scenario captures the

extreme weather change of normal to foggy condition. We

sample from target train set and test on target val set, the

source model is trained with full source dataset.

Baselines We compare our method with following base-

lines: (1) Source training model. The model trained with

source data only and directly evaluated on target domain

data. (2) ADDA [43]. ADDA is a general framework for ad-

dressing unsupervised adversarial domain adaptation. Last

feature map is aligned in experiments. (3) Domain trans-

fer and Fine-tuning (DT+FT). The method has been used

as a module in [20] for adapting object detector to target

domain. In UDA setting, we use CycleGAN [46] to train

and transform source image to target domain. In FDA set-

ting, since very few target domain samples are available,

we employ method in [22] that needs only one target style

image to train the transformation. This baseline is denoted

as DTf+FT. (4) Domain Adaptive Faster R-CNN [5]. The

method is deliberately developed for unsupervised domain

adaptation, denoted as FRCNN UDA.

4.2. Quantitative Results

We evaluate the proposed method by conducting exten-

sive experiments on the established scenarios. To quantify

the relative effect of each step, the performances of are ex-

amined with different configurations. We also evaluate pro-

posed split pooling based image level adaptation in the un-

supervised domain adaptation (UDA) setting, where large

amount of unlabeled target images are available.

Specifically, for the few-shot domain adaptation (FDA)

setting, we perform the following steps for each run: (1)

Randomly sample fixed number of target domain images,

ensure that needed class are presented; (2) Simulate loosely

annotating process to get annotated target domain images,

i.e., only randomly annotate fixed number of object in-

stances; (3) Gradually combine each component of our

method, run the adaptation and record performance (AP);

(4) Run compared methods on the same sampled images

and record performance. For the UDA setting, only pro-

posed split pooling based adaptation component is used as

no annotation is available in the target domain.
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sps spm spl ins ft S→U S →C

Source 34.1 33.5

FDA setting

ADDA [43] 34.3±0.9 34.4±0.7

DTf+FT 35.2±0.3 35.6±0.6

FRCNN UDA [5] 33.8±1.0 33.1±0.4

Ours

X 35.1±0.6 35.4±0.8

X 34.9±0.6 34.8±0.5

X 36.0±1.0 34.8±0.8

X X 35.2±1.0 35.8±0.6

X X X 36.8±0.6 37.0±0.9

X 37.2±0.9 37.1±0.6

X X X X 38.8±0.3 39.2
±0.5

X 34.8
±0.4 34.6

±0.5

X X X X X 39.3
±0.3 39.8

±0.6

UDA setting

ADDA [43] 35.2 36.1

DT+FT 36.1 36.8

FRCNN UDA [5] 36.7 38.9

Ours (SP only) 40.5 41.2

Table 1. Quantitative results of our method on Scenario-1 and

Scenario-2, in terms of average precision for car detection. UDA

denotes traditional setting where large amount of unlabeled target

images are available, and FDA indicates the proposed few shot do-

main adaptation setting. sps, spm and spl denote small, medium

and large scale split pooling respectively. “ins” indicates object

instance level adaptation and “ft” denotes adding fine-tuning loss

with available target domain annotations. For FDA setting, both

S→U and S→C samples 8 images per experiment round and an-

notate 3 car objects per image.

Results for Scenario-1 As summarized in Table 1, un-

der FDA setting, comparing to source training model, the

three different scaled image level adaptation modules inde-

pendently provide favourable gain. Further combining them

gives higher improvement (2.7 AP gain on mean value), in-

dicating the complementary effect of alignments at differ-

ent scales. The object instance level adaptation component

independently generates 3.1 AP improvement. Combining

image level components with instance level module further

enhance the detector by 1.6 AP over instance level module

only and 2.0 AP over the image level adaptation only, sug-

gesting complementing effect of the two modules. Fune-

tuning with the limited loosely annotated target samples

brings minor improvement, but the gain is orthogonal to the

adversarial adaptation modules. The combination of all pro-

posed components brings 5.2 AP boost over the raw source

model, which already outperforms state-of-art method [5]

under UDA setting.

It is clearly observable that baseline methods generate

less improvement. The ADDA [43] and FRCNN UDA [5]

sps spm spl ins ft C→U U→C

Source only 44.5 44.0

FDA setting

ADDA [43] 44.3±0.9 44.2±1.2

DTf+FT 44.9±0.6 45.1±0.5

FRCNN UDA [5] 43.0±0.8 43.3±0.8

Ours

X 45.9±0.7 47.2±0.3

X 46.1±0.4 47.6±0.5

X 45.3±0.4 48.1±0.7

X X 45.9±0.6 48.0±0.5

X X X 46.8±0.3 48.8±0.9

X 46.4±0.5 47.1±0.7

X X X X 47.8±0.4 49.2±0.4

X 45.5±0.8 45.0
±0.6

X X X X X 48.4±0.4 50.6
±0.6

UDA setting

ADDA [43] 46.5 47.5

DT+FT 46.1 47.8

FRCNN UDA[5] 47.9 49.0

Ours (SP only) 48.5 50.2

Table 2. Quantitative results of our method on Scenario-3 and

Scenario-4. For FDA setting, C→U samples 16 images per experi-

ment round, and U→C samples 8 images per round, both annotate

3 car objects per image.

methods barely brings any gains for the detector, suggest-

ing they cannot effectively capture and mitigate the domain

shift with only s few target data samples. The DTf+FT

method results in about 1.0 AP gain, suggesting the style

transfer method only weakly captures the domain shift in

our setting where there is no such drastic style discrepancy

as between those real images and comic or art works [22].

For the UDA setting, as sufficient target domain data are

available, the three compared methods all get better results.

While our proposed split pooling based adaptation brings

much better results. We observe 6.4 AP gain over the base-

line source model, indicating the module effectively cap-

tures and mitigates domain shift, for both cases where a few

or sufficient target domain images are available.

Result for other four scenarios As presented in Table 1

to Table 3, for all the other scenarios, the results share sim-

ilar trend with scenario-1. For FDA setting, our method

provides effective adaptation for the source training model,

significantly surpassing all baselines and outperforms state-

of-the-art method under UDA setting. For UDA setting,

our method generates SOTA performance with the proposed

split pooling based adaptation. It is interesting to note

the performance of Scenario-1 (S→U) is much lower than

Scenario-3 (C→U) though they share same test set. This is

because the visual scene in SIM10K dataset is much sim-
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sps spm spl ins ft person rider car truck bus train mcycle bicycle mAP

Source 24.1 29.9 32.7 10.9 13.8 5.0 14.6 27.9 19.9

FDA setting

ADDA [43] 24.4
±0.3 29.1

±0.9 33.7
±0.5 11.9

±0.5 13.3
±0.8 7.0

±1.5 13.6
±0.6 27.6

±0.2 20.1
±0.8

DTf+FT 23.5
±0.5 28.5

±0.6 30.1
±0.8 11.4

±0.6 26.1
±0.9 9.6

±2.1 17.7
±1.0 26.2

±0.6 21.7
±0.6

FRCNN UDA [5] 24.0
±0.8 28.8

±0.7 27.1
±0.7 10.3

±0.7 24.3
±0.8 9.6

±2.8 14.3
±0.8 26.3

±0.8 20.6
±0.8

Ours

X 25.7
±0.8 35.6

±1.0 35.8
±0.8 17.7

±0.3 31.9
±0.5 9.4

±2.5 21.6
±1.5 30.3

±0.5 26.0
±1.0

X 27.8
±1.0 34.4

±0.8 41.3
±1.0 19.6

±0.8 31.9
±1.2 12.2

±2.1 18.3
±1.2 29.2

±0.5 26.9
±0.5

X 27.4
±0.8 36.3

±1.1 39.7
±0.9 19.4

±0.9 34.8
±1.5 10.0

±2.0 19.6
±1.1 30.3

±0.7 27.2
±0.3

X X 27.8
±0.4 36.4

±0.4 39.4
±1.0 18.1

±0.2 33.8
±1.5 10.9

±1.9 18.8
±1.3 30.1

±0.2 26.9
±0.6

X X X 25.7
±0.9 36.3

±1.1 40.4
±0.7 20.1

±0.3 34.5
±1.3 12.8

±2.2 24.1
±1.6 30.3

±0.4 28.0
±0.5

X 23.7
±1.0 30.2

±0.9 30.1
±0.4 11.5

±0.6 25.8
±1.1 11.2

±2.5 15.8
±1.3 28.5

±0.7 22.1
±0.4

X X X X 26.7
±0.6 36.2

±1.2 41.0
±0.6 20.3

±0.7 32.8
±1.9 18.7

±2.6 21.1
±1.4 29.8

±0.6 28.3
±0.5

X 23.5
±0.7 29.0

±0.6 27.1
±0.5 10.9

±0.2 23.2
±1.0 9.8

±2.6 16.0
±1.4 26.4

±0.2 20.8
±0.8

X X X X X 27.9
±0.6 37.8

±0.6 42.3
±0.7 20.1

±0.5 31.9
±1.1 13.1

±1.5 24.9
±1.3 30.6

±0.9 28.6
±0.5

UDA setting

ADDA [43] 25.7 35.8 38.5 12.6 25.2 9.1 21.5 30.8 24.9

DT+FT 25.3 35.0 35.9 18.7 32.1 9.8 20.9 30.9 26.1

FRCNN UDA [5] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

Ours (SP only) 29.1 39.7 42.9 20.8 37.4 24.1 26.5 29.9 31.3

Table 3. Quantitative results of our method on Scenario-5. 8 images(1 image per class) are sampled for each experiment round, and 1

object bounding box is annotated for corresponding class per image.

pler than that in Cityscapes, where more diverse car object

instances are presented, providing better training statistics.

Similar trend is observed in Scenario-2 and Scenario-4.

4.3. Qualitative Results

Figure 3 shows some qualitative result from Scenario

2 (S→C). It can be clearly observed that 1) the adapted

model outputs tighter bounding boxes for each object, in-

dicating better localization ability; 2) the adapted model

places higher confidence on detected objects, especially for

those harder objects (e.g., the car in the first image occluded

by the road sign); 3) the source model missed some small

objects, while the adapted model can detect them.

4.4. Ablation Analysis

Effect of pairing As shown in Table 4, we independently

examine the pairing effect on split pooling module and ob-

ject instance level adaptation module. When not paired, we

reduce input channel number of corresponding discrimina-

tor and remain the other parts unchanged. Without the intro-

duced pairing, the performance of adaptation drops signif-

icantly. This indicates effectiveness of the pairing for aug-

menting the input data for discriminator learning.

Number of sample images and annotated boxes We ex-

amine the effect of varying the number of target domain

images and annotating bounding boxes under Scenario-1, 4

and 5. We draw the mean value curve across all the sam-

pling rounds. As car is abundant class for target domain

of Scenario-1 and Scenario-4, we vary the annotated boxes

number from 1 to up to 6 (at most 6 boxes considering a

sps spm spl ins S→U S→C C→U U→ C

source 34.1 33.5 44.5 44.0

pairing X X X 36.8
±0.4 37.0

±0.7 46.8
±0.6 48.8

±0.5

w/o X X X 34.8
±0.5 34.3

±0.6 44.6
±0.3 45.8

±0.4

pairing X 37.2
±0.9 37.1

±0.6 46.4
±0.5 47.1

±0.2

w/o X 35.7
±0.6 34.9

±0.5 44.1
±0.6 45.3

±0.8

pairing X X X X 39.3
±0.6 39.8

±0.7 48.4
±0.7 50.6

±0.5

w/o X X X X 36.1
±0.6 36.8

±0.6 44.5
±0.3 45.5

±0.4

Table 4. The effect of the introduced pairing mechanism.

small set of images contain less than 6 car objects). We

vary the number of target images from 1 to 8 exponentially.

For Scenario-5, as for most classes (like truck, bus, train,

rider) there is only 1 instance in an image, we only annotate

1 box for each image. We do not examine beyond 8 images

as there are already at most 48 (6 boxes* 8 images) and 64

(1 box*8 classes*8 images) object instances in Fig.4(a)(b)

and Fig.4(c) involved, which can be deemed as sufficiently

many for FDA evaluation. As shown in Figure 4, the re-

sults suggest common phenomenon that using more image

and more box generates higher adaptation results. As im-

age number increases exponentially, the roughly linear im-

provement suggests saturating effect.

Sharing parameters among discriminators For split

pooling based adaptation, we use the same discriminator ar-

chitecture with shared parameters for different scale. While

the discriminators could also be independent and not shar-

ing parameters. As shown in Table 6, it is clearly observed

that sharing the discriminator between small, medium and

large scales provides much better results. Such interesting
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Figure 3. Qualitative result. The results are sampled from S→U scenario, we set a bounding box visualization threshold of 0.05. The first

row are sample output from unadapted source training model, and second raw are corresponding detection output from adapted model.
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Figure 4. Varying target sample image number and annotation boxes number. (a) S→U. (b) U→C. (c)C→F. 1-box, 3-box denote annotating

only 1 or 3 box each sampled image, and u6-box means annotating at most 6 boxes as some images does not contain enough to 6 car objects.

sps spm spl ins ft mean std

source 33.5 -

SMFR X 34.6 0.2

w/o X 30.1 1.8

SMFR X X X X 39.6 0.3

w/o X X X X 39.4 2.1

Table 5. The effect SMFR, with S→C scenario, mean and std de-

note mean and standard derivation of APs for the 10 runs.

S→U S→C C→U U→ C

source 34.1 33.5 44.5 44.0

SP share 36.8
±0.6 37.0

±0.6 46.8
±0.3 48.8

±0.4

SP not share 35.1
±0.3 35.3

±0.6 45.2
±0.7 46.8

±0.8

Table 6. The effect of sharing/not sharing discriminator paramters

between different scales’ split pooling adaptation module.

phenomenon suggests that image patches at different scales

share similar representation characteristics for the image-

level domain shift. They are complementary and combin-

ing them further strengthens the discriminator, resulting in

better domain invariant representation.

Stability gain from SMFR Fine-tuning on small set of

data unavoidably result in serve over-fitting, and instabil-

ity is a common annoying feature of adversarial training.

To evaluate the importance of the proposed source model

feature regularization (SMFR), within one round of sample,

we measure the standard derivation of the adapted model

performance over 10 runs with different random parameter

initialization. Table 5 illustrates that 1) Fine-tuning directly

result in very large variance and suffer from severe over-

fitting, the tunned model performs worse than the source

training model; Imposing SMFR drastically reduces vari-

ance, and the model actually benefits from the the limited

target sample data. 2) While SMFR does not improve much

of the overall performance of proposed components (i.e.,

sps, spm,spl,ins), the variance is dramatically reduced.

5. Conclusion

In this paper, we explored the possibility of exploiting

only few sample of target domain loosely annotated im-

ages to mitigate the performance drop of object detector

caused by domain shift. Built on Faster R-CNN, by care-

fully designing the adaptation modules and imposing proper

regularization, our framework can robustly adapt a source

trained model to target domain with very few target samples

and still outperforms state-of-art methods accessing full un-

labeled target set.
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