
Fully Learnable Group Convolution for Acceleration of Deep Neural Networks

Xijun Wang1,2 Meina Kan1 Shiguang Shan1,2,3 Xilin Chen1,2

1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS),

Institute of Computing Technology, CAS, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

3CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China

xijun.wang@vipl.ict.ac.cn {kanmeina,sgshan,xlchen}@ict.ac.cn

Abstract

Benefitted from its great success on many tasks, deep

learning is increasingly used on low-computational-cost de-

vices, e.g. smartphone, embedded devices, etc. To reduce

the high computational and memory cost, in this work, we

propose a fully learnable group convolution module (FLGC

for short) which is quite efficient and can be embedded into

any deep neural networks for acceleration. Specifically, our

proposed method automatically learns the group structure

in the training stage in a fully end-to-end manner, lead-

ing to a better structure than the existing pre-defined, two-

steps, or iterative strategies. Moreover, our method can be

further combined with depthwise separable convolution, re-

sulting in 5× acceleration than the vanilla Resnet50 on sin-

gle CPU. An additional advantage is that in our FLGC the

number of groups can be set as any value, but not necessar-

ily 2k as in most existing methods, meaning better tradeoff

between accuracy and speed. As evaluated in our experi-

ments, our method achieves better performance than exist-

ing learnable group convolution and standard group convo-

lution when using the same number of groups.

1. Introduction

Since the Alexnet proposed by Krizhevsky et al. [23]

achieved breakthrough results in the 2012 ImageNet Chal-

lenge, deeper and larger convolutional neural networks

(CNNs) have become a ubiquitous setting for better per-

formance, especially on tasks with big data [5, 26]. How-

ever, even an ordinary CNNs is usually with dozens, hun-

dreds or even thousands of layers and thousands of channels

[12, 35, 18]. Such huge parameters and high computational

cost make it insupportable on devices with limited hard-

ware resources or applications with strict latency require-

ments. In [6], Misha Denil et al. found that there is signif-

icant redundancy in CNNs, and the accuracy will not drop

even many of the network parameters are not learned or re-

moved. After that, various methods of reducing redundancy

have emerged. These methods can be roughly grouped into

two categories, post-processing methods such as pruning or

quantizing a pre-trained deep model, and efficient architec-

ture design methods attempting to design fast and compact

deep network.

1.1. Post­processing methods

A straightforward strategy is to post-process a pre-

trained model, such as pruning the parameters, or quantiz-

ing the model by using fewer bits.

Parameter Pruning. Some fine-grained methods at-

tempt to prune the wispy connections between two neural

nodes based on its importance, and thus convert a dense

network to a sparse one [27, 11, 10, 24]. A typical one is

[11], in which Han et al. proposed to learn the importance

of each connection and then those unimportant connections

are removed to reduce the operations. Furthermore, Guo et

al. [10] proposed an on-the-fly connection pruning method

named dynamic network surgery, which can avoid incorrect

pruning and make it as a continual network maintenance by

incorporating connection splicing into the whole process.

The sparse network achieved from the fine-grained prun-

ing methods has much lower computation cost theoretically.

Unfortunately, there is no mature framework or hardware

for sparse network, and thus only limited speed up can be

obtained practically.

There are also some other methods attempting to do

coarse-grained pruning by cutting off the entire filters,

channels or even layers. In [14], He et al. proposed an it-

erative two-step algorithm to effectively prune each layer

by using a LASSO regression, which based on the chan-

nel selection and least square reconstruction. In [25], Li et

al. applied L1 regularization to prune filters to induce spar-

sity. More generally, Wen et al. [38] proposed a structured

sparsity learning method to reduce redundant filters, chan-

nels, and layers in a unified manner. Coarse-grained prun-

9049

Figure 1. An overview of different group convolution mechanisms. (a) is a normal convolution. (b) is a standard group convolution, in

which input channels and filters in each group are both fixed. (c) is ShuffleNet group convolution unit, in which input channels are fixed.

(d) is our FLGC convolution, in which the grouping structure including both input channels and filters in each group is dynamically learnt.

The octagons represent the input channels and the circles represent the filters.

ing methods directly remove the filters or channels and thus

effectively accelerate the network.

Quantization. Network quantization is to reduce the

number of bits used to represent the parameters or features.

Han et al. [1] proposed a deep compression method that

firstly pruned the insignificant connections, and secondly

quantized the left connections by using weight sharing and

Huffman coding. Moreover, INQ [47] and ShiftCNN [9]

quantize a full-precision CNN model to a low-precision

model whose parameters (i.e. weights) are either zero

or powers of two. With the powers of two representa-

tion, the multiplication operations can be replaced by shift

operations which is quite efficient. Besides these post-

quantization methods, there are also some methods attempt-

ing to directly train a binary network, such as BinaryCon-

nect [3], BNNs [4] and XNORNetworks [30]. As quite

fewer bits used, all these methods can obtain faster net-

works, but correspondingly the accuracy usually is signif-

icantly decreased when dealing with large networks.

Other Methods. In addition to the methods described

above, some other approaches explored how to use low-

rank factorization, knowledge distillation for deep network

acceleration. In Low-rank decomposition methods [7, 22],

the convolutional filters structured in 4D tensors are decom-

posed to lower-rank filters, which removes the redundancy

in convolution inducing fewer calculations. In knowledge

distillation methods [15, 31], the knowledge learnt from a

deep and wide network is shifted into shallower and nar-

rower ones by making the output distribution of the two

networks the same.

The post-processing methods are simple and intuitive,

but obviously have some limitations. Most above methods

are in two or multiple steps manner, the objective of the net-

work (such as classification or detection) and the objective

of acceleration are separately optimized. Therefore, the ac-

celeration does not necessarily ensure excellent classifica-

tion or detection accuracy. Besides, most pruning methods

determine the importance of a connection or layer by only

considering its magnitude and its contribution to several ad-

jacent layers, but not its influence on the whole network.

As verified in [43], pruning without considering the global

impact will result in significant error propagation, causing

performance degeneration especially in deep networks.

1.2. Design Efficient Architectures

Considering the above mentioned limitations, some re-

searchers go other way to directly design efficient network

architectures, such as smaller filters, separable convolution,

group convolution, and etc.

Separable Convolution. Some early works straight-

forwardly employ small filters (e.g. 1×1, 3×3) to re-

place those large ones (e.g. 5×5, 7×7) for accelera-

tion [33, 12, 20, 18]. However, even if only with 3×3 and

1×1 filters, an ordinary deep network is still time consum-

ing, such as the ResNet50 needs about 4G MAdds1 and

VGG16 needs 16G MAdds for calculating a 224× 224 im-

age. In order to get further acceleration, some works ex-

plore separable convolution which uses multiple 2D con-

1In this paper, MAdds refers to the number of multiplication-addition

operations.

9050

volutions to replace the time-intensive 3D convolutions. In

aspect of spatial separation, Inception V3 [37] factorizes a

h × w × c filter into two ones, i.e. one h × 1 × c filter

and another 1 × w × c filter. In aspect of channel separa-

tion, Xception [2] and MobileNets [16] employ depthwise

separable convolution. This kind of separable convolution

can speed up the computing exponentially, and thus they are

widely used in many modern networks.

Group Convolution. Separable convolution achieves

the acceleration by factorizing the filters. Differently, the

group convolution speed up the network by dividing all fil-

ters into several groups, such as [21, 34, 40, 45, 41, 46].

The concept of group convolution was first proposed in

Alexnet [23], and then it is further successfully adopted in

ResNeXt [41], making it popular in recent network design.

However, standard group convolutions do not communicate

between different groups, which restricts their representa-

tion capability. To solve this problem, in ShuffleNet [46],

a channel shuffle unit is proposed to randomly permute the

output channels of group convolution to make the output

better related to the input. In these methods, the elements

(i.e. input channels and filters) in each group are fixed

or randomly defined. Furthermore, in Condensenet [17] a

learnable group convolution was proposed to automatically

select the input channels for each group.

Although the existing group convolution methods have

advanced the acceleration very effectively, there are still

several limitations to solve: 1) The filters used for group

convolution in each group are pre-defined and fixed, and

this hard assignment hinders its representation capability

even with random permutation after group convolution; 2)

In some works the groups are learnable, but usually are de-

signed as a tedious multiple-stage or iterative manner. In

each stage, the network from previous stage is firstly pruned

and then fine-tuned to recover the accuracy.

To deal with all above limitations once for all, in

this work we propose a fully learnable group convolution

(FLGC) method. In our proposed FLGC, the grouping

structure including the input channels and filters in one

group is dynamically optimized. What’s more, this mod-

ule can be embedded into any existing deep network and

easily optimized in an end-to-end manner. At test time, the

learnt model is calculated similar as the standard group con-

volution which allows for efficient computation in practice.

A brief comparison of different group convolution meth-

ods are shown in Figure 1. Overall, the advantages of our

method are as follows:

(1) The element including input channels and filters in

each group are both learnable, allowing for flexible group-

ing structure and inducing better representation capability;

(2) The group structure in all layers are simultaneously

optimized in an end-to-end manner, rather than a multiple-

stage or iterative manner (i.e. pruning layer by layer.);

(3) The numbers of input channels and filters in each

group are both flexible, while the two numbers must be di-

visible by the group number in conventional group convo-

lution.

2. Fully Learnable Group Convolution(FLGC)

In modern deep networks, the size of filters is mostly

3 × 3 or 1 × 1, and the main computational cost is from

the convolution layer. The 3× 3 convolutions can be easily

accelerated by using the depthwise separable convolution

(DSC). And the separation of 3× 3 convolutions will come

along with additional 1 × 1 convolutions. After DSC, the

1×1 convolutions contribute the major time-cost, e.g. for a

Resnet50 network, after applying DSC to the 3×3 convolu-

tions, the computational cost of 1×1 convolutions accounts

for 83.6% in the whole network. Therefore, how to speed

up the 1 × 1 convolution becomes an urgent problem and

attracts increasing attentions.

Since the 1 × 1 filters are non-separable, group convo-

lution becomes a hopeful and feasible solution. However,

simply applying group convolution will result in drastic pre-

cision degradation. As analyzed in [17], this is caused by

the fact that the input channels to the 1 × 1 convolutional

layer have an intrinsic order or they are far more diverse.

This implies that the hard assignment grouping mechanism

in standard group convolution is incompetent. For a better

solution, our proposed method dynamically determines the

input channels and filters for each group, forming a flexible

and efficient grouping mechanism.

Briefly, in our FLGC the input channels and filters in one

group (i.e. the group structure) are both dynamically deter-

mined and updated according to the gradient of the overall

loss of the network through back propagation. And thus it

can be optimized in an end-to-end manner.

2.1. Method

In a deep network, the convolution layer is computed as

convolving the input feature maps with filters. Taking the

kth layer for an example, the input of the kth layer can be

denoted as Xk = {xk
1 , x

k
2 , · · · , x

k
C}, where C is the num-

ber of channels and xk
i is the ith feature map. The filters

of the kth layer are denoted as W k = {wk
1 , w

k
2 , · · · , w

k
N},

where N denotes the number of filters, i.e. number of out-

put channels, and wk
i is the ith 3D convolutional filter. The

output2 of this convolution layer is calculated as follows:

Xk+1 = W k ⊗Xk

= {wk
1 ∗X

k, wk
2 ∗X

k, · · · , wk
N ∗X

k}, (1)

where ⊗ in this work denotes the convolution between two

sets, ∗ denotes the convolution operation between a filter

and the input feature maps.

2We omit the bias b for simplicity.

9051

In group convolution, the input channels and filters are

divided into G groups respectively, denoted as Xk =
{Xk

1 , X
k
2 , · · · , X

k
G}

3 and W k = {W k
1 ,W

k
2 , · · · ,W

k
G}

4.

Now, Xk+1 is reformulated as below:

Xk+1 = {W k
1 ⊗Xk

1 ,W
k
2 ⊗Xk

2 , · · · ,W
k
G ⊗Xk

G}. (2)

Typically, in standard group convolution the input chan-

nels and filters are evenly divided into G groups in a hard

assignment manner, i.e. C
G

input channels and N
G

filters in

each group. Therefore, the number of channels used in each

filter is reduced to 1
G

of original ones, resulting in a accel-

eration rate as below:

MAdds(W k ⊗Xk)

MAdds(
∑G

i=1 W
k
i ⊗Xk

i)
= G. (3)

As can be seen, this group convolution from hard as-

signment can easily bring about considerable acceleration

of G×. However, it is not necessarily a promising approach

for accuracy. Therefore, the goal of our method is to design

a fully learnable grouping mechanism, where the grouping

structure is dynamically optimized for favorable accelera-

tion as well as accuracy.

Firstly, we formulate the grouping structure in the kth

layer as two binary selection matrices for input channels

and filters respectively, denoting as Sk and T k.

The Sk is a matrix for channel selection in shape of C ×
G, with each element defined as:

Sk(i, j) =







1, if xk
i ∈ Xk

j ,
i = [1, C]; j ∈ [1, G].

0, if xk
i /∈ Xk

j ,
(4)

in which Sk(i, j) = 1 means the ith input channel is se-

lected into the jth group. As can be seen, the jth column of

Sk indicates which input channels belong to the jth group.

Then, Xk
j can be simply represented as follows:

Xk
j = Xk ⊙ Sk(:, j)T , j ∈ [1, G], (5)

where ⊙ denotes the element-wise selection operator and

the element here means ∀xk
i ∈ Xk, and T denotes the trans-

pose of a vector.

Similarly, for filter selection we define a matrix T k in

shape of N ×G , with each element defined as:

T k(i, j) =







1, if wk
i ∈W k

j ,
i = [1, N]; j ∈ [1, G].

0, if wk
i /∈W k

j ,
(6)

in which T k(i, j) = 1 means the ith filter is selected into

the jth group. The jth column of T k indicates which filters

3Xk
1
∪Xk

2
∪ · · · ∪Xk

G
= Xk

4Wk
1
∪Wk

2
∪ · · · ∪Wk

G
= Wk

belong to the jth group. Then the jth group of filters, i.e.

W k
j , can be represented as:

W k
j = W k ⊙ T k(:, j)T , j ∈ [1, G]. (7)

As a result, the overall group convolution in Eq.(2) can

be re-formulated as follows:

Xk+1 =W k ⊗Xk

={W k
1 ⊗Xk

1 ,W
k
2 ⊗Xk

2 , · · · ,W
k
G ⊗Xk

G}

={W k ⊙ T k(:, 1)T ⊗Xk ⊙ Sk(:, 1)T , · · · ,

W k ⊙ T k(:, G)T ⊗Xk ⊙ Sk(:, G)T }. (8)

With Eq.(8), the structure of group convolution is param-

eterized by two binary selection matrix Sk and T k. There-

fore, this parameterized group convolution can be embed-

ded in any existing deep networks with the objective as:

min
Wk,Sk,Tk|K

k=1

1

n

n
∑

i=1

L(Yi; Ŷ |Xi,W
k, Sk, T k), (9)

in which Xi denotes the ith input sample, n indicates the

number of training data, Yi indicates the ith sample’s true

category label, K is the number of layers, and Ŷ is the label

predicted from a network with our group convolution pa-

rameterized by W k, Sk, T k. L(,) denotes the loss function

(e.g. cross entropy loss) for classification or detection etc.

In the above objective, the filters W k, the group structure

including Sk and T k can be all automatically optimized ac-

cording to the overall objective function. However, binary

variables are notorious for its non-differential feature. So,

we further design an ingenious approximation to make it

differentiable for better optimization in section 2.2.

As can be seen from Eq.(9), the group structure in our

method is automatically optimized rather than manually de-

fined. Furthermore, different from those methods only con-

sidering the magnitude and impact of the connection in one

or two layers, the group structure in our method is deter-

mined according to the objective loss of the whole network.

Therefore, the group structures of all layers in our method

are jointly optimized implying a superior solution.

2.2. Optimization

In Eq.(9), the filters W k can be easily optimized as most

deep networks by using the stochastic gradient descent,

while the binary parameters are hard to optimize as they

are non-differentiable. To solve this problem, we approx-

imate the Sk and T k by applying a softmax function to a

meta selection matrix to make it differentiable.

Specifically, we introduce a meta selection matrix S̄k for

channel selection with the same shape as Sk. And then the

softmax function is applied to each row of S̄k, which can

map it to (0,1) as below:

Ŝk(i, :) = softmax(S̄k(i, :)), i ∈ [1, C]. (10)

9052

Here, the meta selection matrix S̄k can be initialized as

Gaussian distribution or results from other methods. After

softmax, the ith row of Ŝk indicates the probability that the

ith input channel belongs to each group. So, the ith input

channel can be simply selected into the group with highest

probability. That is to say, the binary selection matrix Sk

can be approximated as:

Sk(i, j) =







1, if Ŝk(i, j) = max(Ŝk(i, :)),

0, otherwise.
(11)

The reason of using softmax function is that with soft-

max operation the meta selection matrix S̄k can be updated

to make the output Ŝk approximating 0 or 1 as close as pos-

sible. As a result, the quantization error between S̄k and Sk

is largely narrowed.

Similarly, the binary selection matrix T k is approxi-

mated by applying softmax function on a meta selection

matrix T̄ k for filter selection as follows:

T k(i, j) =







1, if T̂ k(i, j) = max(T̂ k(i, :)),

0, otherwise,
(12)

with

T̂ k(i, :) = softmax(T̄ k(i, :)), i ∈ [1, N]. (13)

Here, the ith row of T̂ k indicates the probability that the ith

filter belongs to each group.

In summary, with the above Eq.(10), Eq.(11), Eq.(12)and

Eq.(13), the differentiation of the binary Sk and T k are

shifted to the differentiation of the meta selection variable

S̄k and T̄ k which are non-binary, yet with small quantiza-

tion error.

Furthermore, for easy implementation, Eq.(8) is equiva-

lently transformed to the following formulation:

Xk+1 ={W k ⊙ T k(:, 1)T ⊗Xk ⊙ Sk(:, 1)T , · · · ,

W k ⊙ T k(:, G)T ⊗Xk ⊙ Sk(:, G)T }

=(W k ⊙Mk)⊗Xk, (14)

with Mk = T k(Sk)T , and the shape of Mk is N × C that

is the same as W k.

Finally, the objective function is re-formulated as below:

min
W,S̄,T̄

1

n

n
∑

i=1

L(Yi, Xi(W ⊙M) + b), (15)

where W = {W k|Kk=1}, S̄ = {S̄k|Kk=1}, T̄ = {T̄ k|Kk=1}.
The objective in Eq.(15) can be easily optimized as

most deep network by using the stochastic gradient descent

method, with the parameters of each layer are updated as

follows:

W k
(i,j) ←W k

(i,j) − η
∂L

∂
(

W k
(i,j) ⊙Mk

(i,j)

) , ∀i, j ∈ I, (16)

S̄k
(i,j) ←S̄k

(i,j) − η
∂L

∂
(

W k
(i,j) ⊙Mk

(i,j)

)

∂
(

W k
(i,j) ⊙Mk

(i,j)

)

∂Mk
(i,j)

∂Mk
(i,j)

∂Ŝk
(i,j)

∂Ŝk
(i,j)

∂S̄k
(i,j)

, (17)

T̄ k
(i,j) ←T̄ k

(i,j) − η
∂L

∂
(

W k
(i,j) ⊙Mk

(i,j)

)

∂
(

W k
(i,j) ⊙Mk

(i,j)

)

∂Mk
(i,j)

∂Mk
(i,j)

∂T̂ k
(i,j)

∂T̂ k
(i,j)

∂T̄ k
(i,j)

, (18)

in which η indicates the learning rate. The overall procedure

is summarized in Algorithm 1.

Algorithm 1 FLGC: solving the optimization problem in

Eq.(15) via SGD

Input: X: training data, Y: lable

Output: {W k, Sk, T k : k ∈ [1,K]}
1: Initialize W k ← msra; S̄k, T̄ k ← Gaussian;

Sk, T k ← 0
2: for each batch Xi do

3: //Forward propagation:

4: for i = 1→ C do

5: Ŝk(i, :)← softmax(S̄k(i, :))
6: Sk(i, j)← 1 ,if Ŝk(i, j) = max(Ŝk(i, :))
7: end for

8: for i = 1→ N do

9: T̂ k(i, :)← softmax(T̄ k(i, :))
10: T k(i, j)← 1 ,if T̂ k(i, j) = max(T̂ k(i, :))
11: end for

12: Mk ← T k(Sk)T

13: Get loss: L = L(Yi, Xi(W
k ⊙Mk) + b)

14: //Backward propagation:

15: W k ←W k − η ∂L
∂(Wk⊙Mk)

16: S̄k ← S̄k − η ∂L
∂(Wk⊙Mk)

∂(Wk⊙Mk)
∂Mk

∂Mk

∂Ŝk

∂Ŝk

∂S̄k

17: T̄ k ← T̄ k − η ∂L
∂(Wk⊙Mk)

∂(Wk⊙Mk)
∂Mk

∂Mk

∂T̂k

∂T̂k

∂T̄k

18: end for

2.3. Inference with Index­Reordering

After the group structure is learnt, the input channels and

filters usually need to be re-organized for fast inference. A

naive method is to add an index layer to re-order the input

9053

channels according to the group information, and another

index layer to re-order the filters. Then, the output channels

are re-ordered back to the original order, as shown in Fig-

ure 2(a). Unfortunately, such frequent re-order operations

on memory will significantly increase the inference time.

Therefore, we propose an efficient strategy for index re-

ordering as shown in Figure 2(b). Firstly, the filters are re-

ordered to make those filters in one group arranged together.

Secondly, considering that the input channels are also the

output channels of previous layer, we merge the index of

the output from previous layer and index of input channels

in this layer as single index to obtain correct order of input

channels. The detail is shown in Figure 2(c). As designed

like above, the operations on memory are reduced a lot and

all these re-ordering index can be obtained offline, so it is

quite efficient at the inference stage.

As a result, at the inference time our FLGC can be as

efficient as the standard group convolution.

3. Experiments

In this section, we investigate the effectiveness of

our proposed FLGC by embedding it into the existing

popular CNNs networks including Resnet50 [13], Mo-

bileNetV2 [32] and Condensenet [17]. Firstly, we conduct

ablation study of FLGC on CASIA-WebFace [42], and then

compare it with existing competitive methods on CASIA-

WebFace, CIFAR-10 and ImageNet (ILSVRC 2012) [5] in

terms of face verification and image classification.

3.1. Embedding into the state­of­the­art CNNs

We select three state-of-the-art architectures includ-

ing Resnet50, MobileNetV2 and CondenseNet to embed

the proposed fully learnable group convolution(FLGC) for

evaluation.

Resnet50 with FLGC. The Resnet50 is a powerful net-

work which achieves prominent accuracy on many tasks.

Nevertheless, it is quite time-consuming. As shown in Fig-

ure 3(blue line), the major computation cost falls on the 3×3

Figure 2. Illustration of index re-ordering for efficient inference.

(a) is a naive inference method, (b) is our efficient inference

method, (c) is Index-Reordering unit.

convolutions, and thus we firstly use the DSC to separate the

3 × 3 convolutions following MobileNet [16]. After DSC,

there are a large number of 1× 1 convolutions, which com-

putational cost accounts for 83.6% of the whole network.

Therefore, we further replace all the 1× 1 layers in the net-

work with our FLGC layers. Besides, we simply double the

stride of the first layer and add a fc layer.

MobileNetV2 with FLGC. The MobileNetV2 is a state-

of-the-art efficient architecture with elaborative design.

This architecture achieves satisfactory accuracy on many

tasks with favorable computational cost, e.g. classifica-

tion, detection and segmentation. But still, the intensive

1 × 1 convolutions takes great majority of computational

cost, leaving much room for further acceleration. There-

fore, we replace those 1 × 1 convolution layers, of which

the filters number is larger than 96, with our FLGC layer.

CondenseNet with FLGC. CondenseNet proposed a

learnable group convolution which can automatically select

the input channels for each group. However, the filters in

each group are fixed, and the process are designed as a te-

dious multiple-stage or iterative manner. Besides, the im-

portance of each input channel is determined according to

the magnitude of the connections between the input and the

filters, but without considering its impact on the overall net-

work, leading to a sub-optimal solution. We substitute all

the FLGC for the LGC in CondenseNet.

3.2. Ablation Study

The ablation experiment is conducted on CASIA-

WebFace with Resnet50 in terms of face verification. The

experimental setting on this dataset is the same as that in

section 3.1.

Firstly, we analyze the speedup with DSC and our FGLC

by comparing with the standard convolution. The time cost

of each layer in all methods are shown in Figure 3. As can

be seen, in the standard Resnet50 denoted in the blue line,

3 × 3 convolution layer is the major time-consuming part.

After applying DSC, 3× 3 convolution time cost is signifi-

cantly reduced as shown in the orange line, and the orange

line also highlights that 1 × 1 convolution layer is the ma-

jor time cost part now. By further applying FLGC, the time

cost of 1 × 1 convolution layer is successfully reduced as

shown in the green line, resulting in a quite efficient archi-

tecture with comparable accuracy as the baseline(standard

Resnet50). For overall procedure, our method achieves a

significant improvement of time cost.

Besides the efficiency, we further explore the accuracy

of standard group convolution and our FLGC w.r.t. differ-

ent number of groups, and the result are shown in Figure 4,

Table 1 and Table 2. As can be seen, the accuracy drops dra-

matically when the standard group convolution is applied

to the 1 × 1 convolution, mainly due to the loss of repre-

sentation capability from hard assignment. Differently, our

9054

Figure 3. The time cost of each convolutional layer in Resnet50 with different convolution mechanisms on a single CPU. The blue line is

the Standard Resnet50. The orange line is the Resnet50 with 3 × 3 convolutions replaced by DSC. The green line is the Resnet50 with

1× 1 convolutions further replaced by FLGC.

Figure 4. Compare our FLGC with standard group convolu-

tion(SGC) in terms of face verification accuracy of Resnet50 on

CASIA-WebFace w.r.t. different group numbers.

FLGC successfully maintains the accuracy even with large

number of groups, benefitted from the fully learnable mech-

anism for grouping structure.

3.3. Comparison with competitive approaches

Results on CASIA-WebFace. The CASIA-WebFace is

a commonly used wild dataset for face verification, consist-

ing of 494,414 face images from 10,575 subjects. All faces

are detected and aligned by using [39] and [44], and then

the detected faces are cropped out in resolution of 256×256.

This dataset is used for training. Following the mainstream

works, the well-known LFW [19] dataset is used for face

verification evaluation. LFW includes 13,233 face images

from 5749 different identities, and the standard protocol de-

fines 3,000 positive pairs and 3,000 negative pairs for veri-

fication testing.

On this dataset, we embed the proposed FLGC into the

Resnet50 as described in section 3.1. For optimization of

our method, we initialize the meta selection matrix S̄k and

T̄ k with Gaussian distribution, and simply set the hyperpa-

rameters of momentum as 0.9, weight decay as 5 × 10−4,

batch size as 80, and iterations as 120,000. Two versions

of our FLGC with group number as 4 and 8 are evaluated

respectively.

Our accelerated network is compared with several state-

of-the-art methods on this dataset including [42, 28, 8, 29].

All methods for comparison including ours employ soft-

max loss for optimization. The experimental results are

shown in Table 1. As can be seen, the standard Resnet50

achieves better verification rate with giant architecture than

[42, 28, 8, 29], inevitably leading to high computational

cost. Expectedly, our modified Resnet50 achieves about

18x speed up over standard Resnet50 without accuracy

drop, which is also much faster than [42, 28, 8, 29]. In prac-

tical evaluation on single CPU(Intel(R) Xeon(R) CPU E5-

2620 v3 @2.40GHz), our modified Resnet50 runs 5x faster

than standard Resnet50, demonstrating the effectiveness of

our method.

Results on CIFAR-10. We further compare our FLGC

with other acceleration approaches on CIFAR-10 dataset.

CIFAR-10 consists of 10 classes and 60,000 images in res-

olution of 32×32 pixels. Among them, 50,000 images are

used for training and 10,000 for testing.

Since the image resolution on this dataset is small, the

modified Resnet50 in Section 3.1 used for 224×224 image

is too large and redundant. So, we replace the 7×7 convo-

lution layer with 3×3 convolution layer to suit the smaller

input images. Based on this baseline architecture, we re-

place the 1x1 convolution layers with FLGC layers, and

the number of group is set as 4. For clear comparison, two

versions of FLGC with different MAdds by changing num-

ber of filters is proposed, referred to as ResNet50-FLGC1

and ResNet50-FLGC2. Besides Resnet50, we also embed

our FLGC in the state-of-the-art acceleration architecture

9055

Table 1. Face verification accuracy (%) and time complexity on

LFW, all the medels are trained on CASIA-WebFace. The arch-

tecture of ResNet50-FLGC and ResNet50-SGC are introduced in

Section 3.1. (SGC: standard group convolution)

Model MAdds Params Acc

Yi et al. [42] 770M 1.75M 97.73

64layer+Softmax [28] 28460M 37.16M 97.88

Ding et al. [8] 2874M 3.76M 98.43

Liu et al. [29] 10194M 6.78M 98.71

ResNet50(stardand) 3727M 20.69M 98.82

ResNet50-SGC(G=2) 363M 5.35M 98.81

ResNet50-FLGC(G=2) 363M 5.35M 98.82

ResNet50-SGC(G=4) 203M 2.70M 98.78

ResNet50-FLGC(G=4) 203M 2.70M 98.82

ResNet50-SGC(G=8) 124M 1.37M 98.30

ResNet50-FLGC(G=8) 124M 1.37M 98.73

MobileNetV2, referred to as MobileNetV2-FLGC. For op-

timization of our method, all hyperparameters is the same

as that used on CASIA-WebFace.

On this dataset, we compare the FLGC with state-of-the-

art filter level pruning methods and the state-of-the-art ar-

chitecture MobileNetV2. The comparison results are shown

in Table 2. Comparing with the pruning methods [14, 25]

which also employ the Resnet architecture, we can get lower

classification error with 3× fewer MAdds. Besides, our

FLGC can be flexibly embedded into any efficient architec-

tures such as MobileNetV2, leading to further speedup. As

can be seen in Table 2, MobileNetV2 with FLGC achieves

better accuracy w.r.t different group number, further demon-

strating the superiority of our proposed FLGC.

Table 2. Image classification error(%) and time complexity of dif-

ferent methods on CIFAR-10.(G:group number)

Model MAdds Params Err

ResNet56-pruned [14] 62M — 8.2

ResNet50-FLGC1(ours) 23M 0.22M 7.95

ResNet56-pruned [25] 90M 0.73M 6.94

ResNet50-FLGC2(ours) 44M 0.68M 6.77

MobileNetV2-SGC(G=2) 158M 1.18M 6.04

MobileNetV2-FLGC(G=2) 158M 1.18M 5.89

MobileNetV2-FLGC(G=3) 122M 0.85M 5.80

MobileNetV2-SGC(G=4) 103M 0.68M 6.64

MobileNetV2-FLGC(G=4) 103M 0.68M 5.84

MobileNetV2-FLGC(G=5) 92M 0.58M 6.12

MobileNetV2-FLGC(G=6) 85M 0.51M 6.33

MobileNetV2-FLGC(G=7) 80M 0.46M 6.34

MobileNetV2-SGC(G=8) 76M 0.43M 7.51

MobileNetV2-FLGC(G=8) 76M 0.43M 6.91

Results on ImageNet. To further validate the effec-

tiveness of our proposed FLGC, we compare our FLGC

with state-of-the-art learnable group convolution which pro-

Table 3. Comparison of Top-1 and Top-5 classification error rate

(%) with other state-of-the-art compact models on ImageNet.

Model MAdds Params Top1 Top5

Inception V1[36] 1448M 6.6M 30.2 10.1

1.0 MobileNet-224[16] 569M 4.2M 29.4 10.5

ShuffleNet 2x[46] 524M 5.3M 26.3 —

NASNet-A (N=4)[48] 564M 5.3M 26.0 8.4

NASNet-B (N=4)[48] 488M 5.3M 27.2 8.7

NASNet-C (N=4)[48] 558M 4.9M 27.5 9.0

CondenseNet (G=4)[17] 529M 4.8M 26.2 8.3

CondenseNet-SGC 529M 4.8M 29.0 9.9

CondenseNet-FLGC 529M 4.8M 25.3 7.9

posed in CondenseNet [17] on ImageNet.

For a fair comparison, we used the same network struc-

ture as CondenseNet. Based on this baseline architecture,

we replace the LGC layers in CondenseNet with our FLGC

layers and standard group convolution (SGC) layers re-

spectively, and the number of group is set as 4. What’s

more, we keep the hyperparameters the same as that used

in CondenseNet. All models are trained for 120 epochs,

with a cosine shape learning rate which starts from 0.2 and

gradually reduces to 0. As can be seen in Table 3, our

FLGC achieves better accuracy than CondenseNet’s LGC

and SGC. Moreover, Our FLGC even achieves a favorable

performance compared with competitive MobileNet, Shuf-

fleNet and NASNet-A.

4. Conclusion

In this work, we propose a fully learnable group convo-

lution module which is quite efficient and can be embedded

into any layer of any deep neural networks for acceleration.

Instead of the existing pre-defined, two-steps, or iterative

acceleration strategies, FLGC can automatically learn the

group structure at the training stage according to the over-

all loss of the network in a fully end-to-end manner, and

run as efficient as standard group convolution at the infer-

ence stage. The number of input channels and filters in

each group are flexible, which ensures better representa-

tion capability and well solves the problem of uneven infor-

mation distribution encountered in standard group convo-

lution. Furthermore, compared with LGC of CondenseNet

and standard group convolution, our FLGC can better main-

tain the accuracy while achieve significant acceleration even

with large number of groups.

Acknowledgements

This work is partially supported by the National Key

R&D Program of China (No. 2017YFA0700800), Natural

Science Foundation of China (Nos. 61650202, 61772496

and 61532018).

9056

References

[1] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.

Compressing neural networks with the hashing trick. In In-

ternational Conference on Machine Learning (ICML), pages

2285–2294, 2015.

[2] F. Chollet. Xception: Deep learning with depthwise separa-

ble convolutions. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1251–1258, 2017.

[3] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:

Training deep neural networks with binary weights during

propagations. In Advances in Neural Information Processing

Systems (NIPS), pages 3123–3131, 2015.

[4] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks: Training deep neu-

ral networks with weights and activations constrained to+ 1

or-1. arXiv preprint arXiv:1602.02830, 2016.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 248–255, 2009.

[6] M. Denil, B. Shakibi, L. Dinh, N. De Freitas, et al. Pre-

dicting parameters in deep learning. In Advances in Neural

Information Processing Systems (NIPS), pages 2148–2156,

2013.

[7] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fer-

gus. Exploiting linear structure within convolutional net-

works for efficient evaluation. In Advances in Neural Infor-

mation Processing Systems (NIPS), pages 1269–1277, 2014.

[8] C. Ding and D. Tao. Robust face recognition via multimodal

deep face representation. IEEE Transactions on Multimedia

(TMM), pages 2049–2058, 2015.

[9] D. A. Gudovskiy and L. Rigazio. Shiftcnn: Generalized low-

precision architecture for inference of convolutional neural

networks. arXiv preprint arXiv:1706.02393, 2017.

[10] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient dnns. In Advances in Neural Information Process-

ing Systems (NIPS), pages 1379–1387, 2016.

[11] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In Advances in

Neural Information Processing Systems (NIPS), pages 1135–

1143, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 770–778, 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European conference on com-

puter vision (ECCV), LNCS 9908, Part IV, pages 630–645,

2016.

[14] Y. He, X. Zhang, and J. Sun. Channel pruning for accel-

erating very deep neural networks. In IEEE International

Conference on Computer Vision (ICCV), 2017.

[15] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[17] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger.

Condensenet: An efficient densenet using learned group con-

volutions. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2018.

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2017.

[19] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. La-

beled faces in the wild: A database forstudying face recog-

nition in unconstrained environments. In Workshop on faces

in’Real-Life’Images: detection, alignment, and recognition,

2008.

[20] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and< 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016.

[21] Y. Ioannou, D. Robertson, R. Cipolla, A. Criminisi, et al.

Deep roots: Improving cnn efficiency with hierarchical filter

groups. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[22] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions. In

British Machine Vision Conference (BMVC), 2014.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS),

pages 1097–1105, 2012.

[24] V. Lebedev and V. Lempitsky. Fast convnets using group-

wise brain damage. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2554–2564, 2016.

[25] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. In International Con-

ference on Learning Representations (ICLR), 2017.

[26] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In European Conference on Com-

puter Vision (ECCV), LNCS 8693, Part V, pages 740–755,

2014.

[27] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

806–814, 2015.

[28] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.

Sphereface: Deep hypersphere embedding for face recogni-

tion. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[29] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin soft-

max loss for convolutional neural networks. In International

Conference on Machine Learning (ICML), pages 507–516,

2016.

[30] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision

(ECCV), LNCS 9908, Part IV, pages 525–542, 2016.

[31] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. arXiv

preprint arXiv:1412.6550, 2014.

9057

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4510–4520, 2018.

[33] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[34] K. Sun, M. Li, D. Liu, and J. Wang. Igcv3: Interleaved low-

rank group convolutions for efficient deep neural networks.

In British Machine Vision Conference (BMVC), 2018.

[35] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI Conference on Artificial

Intelligence (AAAI), 2017.

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[37] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 2818–2826, 2016.

[38] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances in

Neural Information Processing Systems (NIPS), pages 2074–

2082, 2016.

[39] S. Wu, M. Kan, Z. He, S. Shan, and X. Chen. Funnel-

structured cascade for multi-view face detection with

alignment-awareness. Neurocomputing, 2017.

[40] G. Xie, J. Wang, T. Zhang, J. Lai, R. Hong, and G.-J. Qi.

Interleaved structured sparse convolutional neural networks.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 8847–8856, 2018.

[41] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggre-

gated residual transformations for deep neural networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 5987–5995, 2017.

[42] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. arXiv preprint arXiv:1411.7923, 2014.

[43] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,

M. Gao, C.-Y. Lin, and L. S. Davis. Nisp: Pruning networks

using neuron importance score propagation. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2018.

[44] J. Zhang, M. Kan, S. Shan, and X. Chen. Occlusion-free

face alignment: deep regression networks coupled with de-

corrupt autoencoders. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3428–3437,

2016.

[45] T. Zhang, G.-J. Qi, B. Xiao, and J. Wang. Interleaved group

convolutions. In IEEE International Conference on Com-

puter Vision (ICCV), 2017.

[46] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An ex-

tremely efficient convolutional neural network for mobile de-

vices. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6848–6856, 2017.

[47] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremen-

tal network quantization: Towards lossless cnns with low-

precision weights. In International Conference on Learning

Representations (ICLR), 2017.

[48] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning

transferable architectures for scalable image recognition. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 8697–8710, 2018.

9058

