
Generalizing Eye Tracking with Bayesian Adversarial Learning

Kang Wang Rui Zhao

RPI

{kangwang.kw, zhaorui.zju}@gmail.com

Hui Su

RPI and IBM

huisuibmres@us.ibm.com

Qiang Ji

RPI

qji@ecse.rpi.edu

Abstract

Existing appearance-based gaze estimation approach-

es with CNN have poor generalization performance. By

systematically studying this issue, we identify three major

factors: 1) appearance variations; 2) head pose variations

and 3) over-fitting issue with point estimation. To improve

the generalization performance, we propose to incorporate

adversarial learning and Bayesian inference into a unified

framework. In particular, we first add an adversarial compo-

nent into traditional CNN-based gaze estimator so that we

can learn features that are gaze-responsive but can general-

ize to appearance and pose variations. Next, we extend the

point-estimation based deterministic model to a Bayesian

framework so that gaze estimation can be performed using

all parameters instead of only one set of parameters. Besides

improved performance on several benchmark datasets, the

proposed method also enables online adaptation of the mod-

el to new subjects/environments, demonstrating the potential

usage for practical real-time eye tracking applications.

1. Introduction

Eye gaze represents human’s focus of attention or interest-

s. The eye gaze for ourselves can help us better understand

the visual world, and help us better interact with computers

or large systems [1, 2, 3]. Furthermore, eye gaze also plays

a crucial rule in understanding human’s cognitive and emo-

tional status, which have been used for marketing and adver-

tising [4], social network [5, 7, 8, 6], web search [9, 11, 10],

psychology study and medical research [12], etc.

Various techniques have been proposed to estimate eye

gaze. Model-based methods [13, 14, 15, 16, 17, 18, 19, 20]

rely on a geometric eye model to estimate eye gaze. The

idea is to represent 3D eye gaze to two 3D points and their

goal is to recover the 3D points. Despite their simplicity

and good accuracy, the system is sensitive to key point de-

tections and may not work in outdoor environments. Early

appearance-based methods [21, 22, 23] try to extract hand-

crafted features from eye images and map the features to eye

gaze. However, they cannot handle large head poses and are
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Figure 1. Three factors that affect the generalization performance

of appearance-based gaze estimation methods.

restricted to controlled environments.

More recently, appearance-based methods [24, 25, 26,

27, 28] with deep learning [29, 30, 31, 32] are the dominan-

t approaches because of their improved performance over

traditional model-based/appearance-based methods. How-

ever, researchers also begin challenging the generalization

performance of deep learning-based approaches, since the

trained model may totally fail for an unseen subject or in

a new environment. This significantly limits the usage of

appearance-based methods in practical eye tracking systems.

In this work, we study the following problem. Suppose

we have a gaze estimator trained with data from a source

domain, how can we generalize this gaze estimator to a

target domain with few labeled data or no labeled data? we

systematically study the factors that affect the generalization

performance, and identify three major factors as in Fig. 1.

The first factor is the appearance variation, which is re-

sulted from different combinations of illumination, skin col-

or, eye texture, eye shape, imaging condition, glasses, etc.

The example images in Fig. 1 come from different subject-

s/datasets with close to frontal eye gaze directions. It is

difficult to model these individual factors separate, we there-

fore only model the coupled appearance variations.

The second factor is the head pose variation. Fig. 1 shows

the images from the same subject looking at the same target

but with different head poses. The head pose variations may

not be obvious in the example images because we cut the eye

images, however we can get a sense of head pose variations
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from the image brightness, shadows as well as the pupil

positions. Although we can treat head pose variations as

part of appearance variations, we would like to model them

separately. The underlying reason is that head pose is re-

sulted from geometric rotation and motion which have good

analytical formulations. Compared to modeling appearance

and pose variation together in a coupled way, we can benefit

from a separate modeling.

The last factor is the over-fitting issue with point estima-

tion. Traditional CNNs only estimate one optimal set of

parameters, which work well for data with less variations.

However, for practical environments with large variations

as in Fig. 1, they may not work well since the parameter

posterior is much more complex.

To deal with the three factors, we introduce a Bayesian

adversarial learning approach. Our overall network is built

on top of a traditional CNN that map eye image to eye

gaze. Inspired by recent work on domain adaptation [33, 34],

we first introduce an adversarial learning block, which is

responsible for learning good features for eye tracking but

can also generalize to appearance and head pose variations.

The idea is to learn features that cannot discriminate the

variations through a minmax objective. To handle the over-

fitting issue resulted from point estimation, we extend the

CNN to Bayesian Convolutional Neural Network (BCNN),

where we can perform gaze estimation with multiple sets of

parameters from the parameter posterior and hence improve

the generalization. To summarize, we make the following

novel contributions:

• We identify three major factors that affect the gener-

alization performance of appearance-based gaze esti-

mators and propose a Bayesian adversarial learning

approach to deal with the three factors in a unified

framework.

• We propose an adversarial learning approach which

learns features that can handle appearance and head

pose variations by combining appearance and model-

based adversarial loss functions.

• We introduce a Bayesian framework that alleviates the

over-fitting issues from point estimation and hence fur-

ther improves the generalization.

2. Related work

2.1. gaze estimation

We focus on recent appearance-based methods with deep

learning. In [24], the authors propose to map eye image to

eye gaze with a LeNet architecture. To better handle head

pose variations, they append the predicted head pose to the

extracted feature vector to jointly estimate eye gaze. The

authors in [25] propose a 4-pathway network to incorporate

left, right eye images, face images and face location infor-

mation to jointly estimate the eye gaze. In [26], the authors

first decouple the eye gaze to eye pose and head pose. Then

they use two CNN networks to estimate eye pose and head

pose, which are then directly mapped to eye gaze with an an-

alytical formulation. In [35], the authors propose to map the

eye appearance to an intermediate gaze map and then map

the gaze map to the final gaze. They argue that the two-step

strategy is easier to learn than end-to-end models and there-

fore gives better accuracy. There are also hybrid-models

[36, 37] that use CNN to map image to eye landmarks and

then map eye landmarks to eye gaze. All these approaches

implicitly or explicitly embed the head pose information

to improve the generalization performance. However, their

methods can only work in certain extent as the underlying

CNN cannot capture all the variations in the image space,

and their models only rely on one single set of parameters

which are prone to over-fitting issues.

2.2. Domain adaptation

Because of dataset bias or domain shift, models trained

on one dataset may fail on new datasets. Different domain

adaptation techniques are proposed to reduce the effects of

domain shift. Some of them learn the feature representa-

tions that can reduce domain shift in terms of maximum

mean discrepancy [38], or correlation distance [39]. Re-

cently, the adversarial learning [40] idea is employed to

minimize the domain discrepancy through an adversarial

objective [33, 34, 41]. By maximumly confusing the domain

classifier, the learned feature representations can better gen-

eralize to both domains. Existing work on domain adaptation

is designed to work for general tasks, and ignores domain

knowledge for specific tasks. In this work, we incorporate

the head pose knowledge for eye gaze and formulate them in

a unified adversarial learning framework, and demonstrate

better generalization.

2.3. Bayesian neural network

Bayesian neural network (BNN) [42] is a probabilistic

interpretation of deep models by modeling the posterior

distribution of the model parameters. BNNs avoid point

estimation and provide robustness against over-fitting, which

is crucial to generalize the learned model from the source

domain to the target domain. However, inference in BN-

N is difficult because of the integration over the parameter

space. Early attempts include the Laplace’s method [43]

and variational approaches [44], but the approximation er-

ror is large and the computational complexity remains large.

Modern inference techniques include improved variational

approaches [45, 46], Hamiltonian Monte Carlo based ap-

proaches and their variants [42, 47]. With these techniques,

we can achieve better efficiency and scale up to large-scale

datasets.
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Figure 2. Illustration of a standard appearance-based gaze estimator.

3. Problem statement

Before discussing the proposed approach, we first intro-

duce the baseline gaze estimator and our problem scenario.

Baseline gaze estimator.

We use a standard appearance-based gaze estimator

(Fig. 2) as our baseline:

f = Gf (x; θf ) and y = Gy(f ; θy),

where Gf (·) is the feature extractor with parameter θf , Gy(·)
is the gaze estimator with parameter θy , and f is the learned

feature representations.

Problem scenario.

Suppose we have learned a baseline gaze estimator θs =
{θsf , θ

s
y} with data Ds = {xi,yi}

ns

i=1 from the source do-

main. This model can perform well on test data from a

similar domain/distribution as Ds, but may not generalize to

a new domain/distribution. Formally, assume we have data

Dt = {{xi,yi}
n′

t

i=1, {xi}
nt

i=1} (n′
t ≪ nt) from the target

domain (Eg. new subjects, head poses or environments), we

want to explore how we can adapt θs so that we can achieve

good performance on data from Dt. In this work, we are

interested in both semi-supervised case and unsupervised

case (n′
t = 0).

Next, we first discuss the proposed adversarial learning

method in Sec. 4.1, then we introduce the Bayesian extension

in Sec. 4.2.

4. Proposed approach

4.1. Adversarial learning

Our goal is to adapt the source model θs to a target model

θt = {θtf , θ
t
y} so that we can estimate gaze accurately onDt.

To this end, we design a specific network as shown in Fig. 3.

We introduce two additional classifiers compared to Fig. 2.

The extracted features f are fed to three models:

• gaze estimator Gy(f , θy): the output is the continuous

eye gaze y ∈ R2, y can represent the x and y coordi-

nates on the screen or the pitch and yaw angles in 3D

space.

• appearance classifier Ga(f , θa): the output is a scalar

probability a ∈ [0, 1] indicating the probability of the

input coming from the source domain Ds.

• head pose classifier Gh(f , θh): the output is a probabil-

ity vector h = {p1, ..., pk} indicating the probability

of each of the k head pose classes.
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Figure 3. Illustration of the proposed adversarial learning method.

The loss function for the gaze estimator is defined as:

Ly(θf , θy) =
1

n′
t

n′

t∑
i=1

||Gy(Gf (xi; θf ); θy)− yi||
2 (1)

For the appearance classifier, its goal is to differentiate im-

ages from source domain Ds or target domain Dt, the loss

function is defined as the binary cross-entropy:

La(θf , θa) =−
1

nt

nt∑
i=1

log(1−Ga(Gf (xi; θf ); θa))

−
1

ns

ns∑
i=1

log(Ga(Gf (xi; θf ); θa)) (2)

For the head pose classifier, its goal is to differentiate
images with different head poses, the loss is defined as the
multi-class cross-entropy:

Lh(θf , θh) =−
1

nt + ns

nt+ns∑

i=1

hi,j

k∑

j=1

log(Gh(Gf (xi; θf ); θh)

(3)

where hi,j is the groundtruth probability for i-th image and

j-th pose class.
There are 4 different sets of parameters, the learning of

{θy, θa, θh} is easy because they only depend on θf . To this
end, we can solve them given θf :

θ̂y = argmin
θy

Ly(θ̂f , θy) (4)

θ̂a = argmin
θa

La(θ̂f , θa) (5)

θ̂h = argmin
θh

Lh(θ̂f , θh) (6)

The learning of θf is relatively difficult (depend on
{θy, θa, θh}) but is the key of our adversarial learning. No-
tice we want the learned features to produce small gaze
estimation error but confuse appearance and pose classifiers.
To this end, we have the following objective:

θ̂f = argmin
θf

Ly(θf , θ̂y)− λaLa(θf , θ̂a)− λhLh(θf , θ̂h) (7)
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where λa and λh are two positive balancing factors. The

negative sign before the appearance and pose terms allows

us to minimize them together with the gaze regression loss

term.

Note the objective in Eq. (7) corresponds to the true mini-

max objective. Compared to Eq. (5) and (6), the only differ-

ence is the sign before the appearance and pose classifiers.

We are actually optimize the same objective (different pa-

rameters) to opposite directions. However as [40, 34] point

out, the log(1−Ga(Gf (xi; θf ); θa) term in Eq. (2) may be

problematic and causes vanishing gradient when we mini-

mize Eq. (7). We instead use the following new objective

Lf (θf , θ̂y, θ̂a, θ̂h) to solve θf :

θ̂f = argmin
θf
Lf (θf , θ̂y, θ̂a, θ̂h) (8)

= argmin
θf
Ly(θf , θ̂y)− λhLh(θf , θ̂h)

+ λa

1

nt

nt∑
i=1

logGa(Gf (xi; θf ); θ̂a)

Eq. (8) and Eq. (7) has the same fixed-point properties but

Eq. (8) can produce stronger gradients and improve the opti-

mization.

Finally, we summarize the adversarial parameter learning

algorithm in Alg. 1. After convergence, we discard the

appearance and pose classifier parameters and only use θtf
and θty for our gaze estimation task.

4.1.1 Discussions

Motivation of head pose classifier and how to obtain

head pose label. Existing domain adaptation approaches

only consider the appearance adaptation. For our specific

gaze estimation task, the target gaze label is a geometric en-

tity and are strongly correlated with geometric features (Eg.

facial/eye landmarks). In fact, there exists plenty of work

on model-based / feature-based gaze estimation techniques.

Inspired by this, we propose to explicitly embed the geomet-

ric dependence in the feature-learning process. However, it

is difficult to analytically relate the eye gaze to geometric

features (facial landmarks), we instead use head pose as an

intermediate representation. For all training images, we per-

form offline detection of the landmarks c [48], then we can

relate head {M, t} pose with observed landmarks using a

3D shape model S [49, 50]:

c = MS+ t (9)

By minimizing the projection error, we are able to recover

the head pose, which is further quantized to k discrete pose

classes. By using the head pose estimated from model-based

methods, we implicitly encourage learning features that are

not sensitive to geometric variations.

Algorithm 1: Adversarial parameter learning

1. Input: Source domain data Ds = {xi,yi}
ns

i=1, target

domain data Dt = {{xi,yi}
n′

t

i=1, {xi}
nt

i=1}, source

model θs = {θsf , θ
s
y}.

2. Output: Target model θt = {θtf , θ
t
y}.

3. Initialization: θtf = θsf , θty = θsy , θta = N (0, σI),

θth = N (0, σI), total iterations T .

4. for iter ∈ {1, ..., T} do
- Sample a batch of data from source and target:

xs ∼ Ds, {xt, {xt′,yt′}} ∼ Dt.

- Update θty with {xt′,yt′} (Eq. (4)):

θty ← θty − α∂Ly(θ̂tf , θ
t
y)/∂θ

t
y

- Update θta with xs and xt (Eq. (5)):

θta ← θta − α∂La(θ̂tf , θ
t
a)/∂θ

t
a

- Update θth with xs and xt and their corresponding

pose labels (Eq. (6)):

θth ← θth − α∂Lh(θ̂tf , θ
t
h)/∂θ

t
h

- Update θtf with all data and other updated

parameters (Eq. (8)):

θtf ← θtf − α∂Lf (θf , θ̂y, θ̂a, θ̂h)/∂θ
t
f

(Note for unsupervised learning, we discard the

first Ly(θf , θ̂y) term in Eq. (8) and optimize the

rest two terms.)

4.2. Bayesian formulation

To alleviate the potential over-fitting issues with point

estimation, we extend the deterministic model to a proba-

bilistic Bayesian model. With Bayesian framework, gaze

estimation for a new image xt can be formulated as follows:

yt = argmax
yt

p(yt|xt,D,α) (10)

= argmax
yt

∫
θt

p(yt|θ
t)p(θt|D,α)dθt

≈ argmax
yt

m∑
i=1

p(yt|θ
t[i]) where θt[i] ∼ p(θt|D,α)

(11)

≈
1

m

m∑
i=1

Gy(Gf (xt; θ
t
f [i]); θ

t
y[i])

where D = {Ds,Dt}, and α is the prior for θt. Instead

of performing a point estimation to estimate one optimal

set of parameters, we perform Bayesian inference to obtain

multiple sets of parameters drawn from its posterior. Gaze

estimation is based on the average of multiple predictions

and hence can improve the generalization. The extended

Bayesian framework uses the same architecture as in Fig. 3,

but now the network parameters {θtf , θ
t
y, θ

t
a, θ

t
h} are assumed

to follow a probabilistic distribution. As in Eq. (11), the key
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to performing Bayesian inference is to effectively draw sam-

ples from the posterior distributions. It is difficult to draw

{θtf , θ
t
y, θ

t
a, θ

t
h} all at once, we follow the idea in [51] to

draw the 4 set of parameters alternately until final conver-

gence. To draw samples alternately, we need to define the

conditional posterior of the parameter given all other param-

eters, this will be discussed in Sec. 4.2.1. After that, we

briefly introduce the algorithm to effectively draw samples

from the posterior distributions (Sec. 4.2.2).

4.2.1 Construction of posterior distribution

We first assume the parameters follow a Gaussian prior dis-

tribution:

p(θti |α) = N (0, σI), ∀i ∈ {f, y, a, t} (12)

where σ is the standard deviation. Next, we can construct

the posterior by combining the likelihood models with the

prior models. From the discussion in Sec. 4.1, we learn the

4 type of parameters alternatively, here we follow the same

idea by constructing the conditional posterior given other

parameters.

First, for the gaze branch, we assume the output eye gaze

follows a Gaussian distribution:

p(y|x, θtf , θ
t
y) = N (y;µ(x, θtf , θ

t
y),Σ(x, θtf , θ

t
y)) (13)

where µ(x, θtf , θ
t
y) represents the mean and Σ(x, θtf , θ

t
y)

represents the covariance. In this work, covariance is as-
sumed to be a diagonal matrix. To predict mean and co-
variance, we modify the gaze branch in Fig. 3 to output a
4-dimensional vector where the first 2 dimensions represent
the mean and the last 2 dimensions represent the diagonal
entries. The conditional posterior therefore follows:

p(θty|θ
t
f , θ

t
a, θ

t
h) = p(θty|θ

t
f ) ∝ (14)

n′

t∏

i=1

N (yi;G
1
y(Gf (xi; θ

t
f ); θ

t
y), G

2
y(Gf (xi; θ

t
f ); θ

t
y))p(θ

t
y)

where G1
y(·) represents the first 2-dimension of the output

(mean) and G2
y(·) represents the last 2-dimension of the out-

put (covariance). Intuitively, θty that yields good predictions

(close to the groundtruth) should have larger probabilities.
Second, for the appearance branch, the conditional poste-

rior follows:

p(θta|θ
t
f , θ

t
y, θ

t
h) = p(θta|θ

t
f ) ∝ (15)

nt∏

i=1

(1−Ga(Gf (xi; θ
t
f ); θ

t
a))

ns∏

i=1

Ga(Gf (xi; θ
t
f ); θ

t
a)p(θ

t
a)

If θta produces large probabilities (close to 1) for source

data, while low probabilities (close to 0) for target data,

then θta and its neighborhood should have large posterior

probabilities.

Algorithm 2: Bayesian adversarial learning

1. Input: Source domain data Ds = {xi,yi}
ns

i=1, target

domain data Dt = {{xi,yi}
n′

t

i=1, {xi}
nt

i=1}, source

model θs = {θsf , θ
s
y}.

2. Output: m target model samples {θti}
m
i=1.

3. Initialization: θtf = θsf , θty = θsy , θta = N (0, σI),

θth = N (0, σI), burn in time T , collection interval b.
4. for iter ∈ {1, ..., T +m ∗ b} do

- Sample a batch of data from source and target:

xs ∼ Ds, {xt, {xt′,yt′}} ∼ Dt.

- Sample θty: θty ← θty + vy

vy ← (1− α)vy + η
∂ log p(θt

y|θ
t
f )

∂θt
y

+N (0, 2αηI)

- Sample θta: θta ← θta + va

va ← (1− α)va + η
∂ log p(θt

a|θ
t
f )

∂θt
a

+N (0, 2αηI)

- Sample θth: θth ← θth + vh

vh ← (1− α)vh + η
∂ log p(θt

h|θ
t
f )

∂θt
h

+N (0, 2αηI)

- Sample θtf : θtf ← θtf + vf

vf ←

(1− α)vf + η
∂ log p(θt

f |θ
t
y,θ

t
a,θ

t
h)

∂θt
f

+N (0, 2αηI)

- Collect sample {θtf , θ
t
y} every b iterations after

burn in time.

Third, the conditional posterior for the head pose branch
follows:

p(θth|θ
t
f , θ

t
y, θ

t
h) = p(θth|θ

t
f ) ∝ (16)

nt+ns∏

i=1

k∏

j=1

G
j

h(Gf (xi; θ
t
f ); θ

t
a)

hi,jp(θth)

where Gj
h(·) represents the j-th element of the output of

head pose branch. Similarly, θth should have large posterior

probabilities if it produces correct pose classifications.
Finally, analogous to Eq. (8), we modify the appearance

term to avoid vanishing gradient and the conditional posterior
for θtf follows:

p(θtf |θ
t
y, θ

t
a, θ

t
h) ∝ (17)

p(θty|θ
t
f )

︸ ︷︷ ︸

gaze

nt∏

i=1

Ga(Gf (xi; θ
t
f ); θ

t
a)

︸ ︷︷ ︸

appearance

(−p(θth|θ
t
f ))

︸ ︷︷ ︸

head pose

p(θtf )
︸ ︷︷ ︸

prior

The conditional posterior in Eq. (17) tells when θtf should

have large probabilities: 1) the gaze term indicates θtf should

produce small gaze prediction error; 2) the appearance term

regulates θtf to produce large probability for data from tar-

get domain (confuse data from source and target domain);

3) head pose term, similarly maximumly confuse the pose

classifier; 4) the prior term incorporates our prior knowl-

edge about the parameter space. These four terms jointly
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contribute to the posterior distribution of θtf , allowing us to

obtain good samples that give good gaze estimation error

while also improves the generalization performance.

4.2.2 Bayesian inference

Computing the posterior analytically is challenging, we in-

stead employ the Stochastic Gradient Hamiltonian Monte

Carlo (SGHMC) [47, 51] to approximate the posterior. S-

GHMC is an extension of HMC which supports mini-batch

update. As a result, it can scale-up to large datasets and

allow us to draw samples effectively. We leave the details of

SGHMC for readers’ own interest and only summarize the

overall approximation algorithm in Alg. 2.

5. Experiments and Analysis

We evaluate the proposed method on four benchmark

datasets: 1) MPIIGaze [24], which consists of data from 15
subjects in different environments; 2) UT [22], consists of

50 subjects, each with 8 head poses and 160 gaze directions;

3) Columbia [52], with 56 subjects and 5 head poses; and

4) EyeDiap [53], consists of data from HD/VGA camera,

discrete and continuous targets and different head poses.

Different approaches use different subsets of the data, we

follow the same setting as [35] for the evaluation.

MPIIGaze and EyeDiap have continuous head pose an-

gles, we follow the settings in MPIIGaze dataset to normalize

head pose into 2 angles (2D region), then we manually set

threshold of the two angles to divide the 2D region into 8
sub-regions (with approximately similar amount of data for

each sub-region). UT and Columbia have different number

of cameras with fixed head position, the number of head

pose classes is equal to the number of cameras.

Our model input is eye image of size 36 × 60. Here

is the summary of the architecture in Fig. 3: 1) Gf (x, θf )
(Conv(5, 5, 64), LeakyRelu(0.2), MaxPooling(2), Conv(5, 5,

32), LeakyRelu(0.2), MaxPooling(2), FC(128); 2) Gy(f , θy)
(FC(128), LeakyRelu(0.2), FC(2)); 3) Ga(f , θa) (FC(500),

LeakyRelu(0.2), FC(256), LeakyRelu(0.2), FC(1), Sigmoid);

4) Gh(f , θh) (FC(500), LeakyRelu(0.2), FC(256), LeakyRe-

lu(0.2), FC(k), Softmax). Notice we use a relative simple

model compared to existing work with complex architec-

tures.

For Bayesian inference, we need to modify the last layer

of Gy(f , θy) to output a 4-dimensional vector while other

layers remain the same. The prior in Eq. (12) is set with

σ = 0.01. For the inference in Alg. 2, we collect one sample

every 64 iterations and use a total 100 samples to perform

gaze estimation. With a Tesla M40 GPU, inference using

one sample takes around 5ms.

5.1. Ablation study

We first perform a systematic study to evaluate different

model components in Sec. 5.1.1 (unsupervised setting with

no labeled data), then we study how number of annotated

samples affect the model performance in Sec. 5.1.2.

5.1.1 Evaluation of different model components

We consider following 4 models:

• baseline: a standard CNN-based gaze estimator.

• baseline + appearance classifier: adding appearance

classifier.

• baseline + appearance + pose classifiers: further incor-

porate head pose classifier.

• baseline + appearance + pose classifiers + Bayesian

inference: perform Bayesian inference.

For each model, we consider 3 types of evaluations: 1)

cross-subject; 2) cross-pose and 3) cross-dataset. For cross-

subject evaluations, we perform 4-fold cross-validation by

dividing all subjects into 4 clusters randomly. For cross-

pose experiments, we perform 4-fold cross-validation for

MPIIGaze, UT and EyeDiap. Their 8 head poses are divided

into 4 clusters by grouping neighboring poses into the same

cluster. For Columbia, we perform 5-fold cross-validation.
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Figure 4. Cross-subject evaluations.

The cross-subject evaluations are shown in Fig. 4. We can

see for the 4 datasets, adding appearance classifier shows

a significant improvement over the baseline gaze estima-

tor. First, the appearance variations are the most dominant

variations, by learning features that cannot distinguish the

variations, we can therefore achieve a large improvement.

When we add the pose classifier, we can observe further

improvement. The improvement is not as significant as ap-

pearance classifier, because head pose variations are also

reflected by the underlying appearance change (handled by

appearance classifier). And this is a cross-subject experimen-

t, the head pose distributions for source and target domain

appear similar. Explicitly using pose classifier is therefore

less useful. Finally, when we perform Bayesian inference,
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we observe consistent improvement for the 4 datasets. Note

the improvements for the 4 datasets are different. Bayesian

inference gives a large improvement for EyeDiap (large vari-

ations and low-qualities), and a smaller improvement on

Columbia because of its high-quality image conditions. The

experiments demonstrate the contributions for each of the

components in the proposed method.
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Figure 5. Cross-pose evaluations.

Next, we perform cross-pose evaluation as in Fig. 5. First,

we observe consistent improvements for each model compo-

nents on the 4 datasets. Second, compared to cross-subject

experiments, the head pose classifier shows a more important

role in cross-pose experiments, as the pose distributions for

source and target are different. By explicitly force the model

to learn features that are not pose-sensitive, we can obtain a

larger improvement.

MPIIGaze Columbia EyeDiap
2
4
6
8

10
12
14
16
18
20
22

E
rr

o
r 

/d
e

g
re

e

baseline

baseline+a

baseline+a+p

baseline+a+p+Bayesian

Figure 6. Cross-dataset evaluations with UT as source domain data.

The cross-dataset experiments are shown in Fig. 6. We

observe similar patterns and all components contribute to the

improved performance.

Table 1. Average improvement over baseline models.

Cross-subject Cross-pose Cross-dataset

(a) 12.2% 9.3% 10.1%

(a, p) 15.6% 14.4% 12.4%

(a,p,B) 21.9% 21.1% 17.9%

Finally, we show the quantitative improvement over the

baseline model in Tab. 1. The improvements are averaged

over all datasets. From the results, we conclude that ap-

pearance classifier contributes most to the improvement,

Bayesian inference demonstrates a mid-level role while pose

classifier shows a relatively smaller improvement. But if

source domain and target domain has different pose distribu-

tions, the pose classifier can play an important role since the

basic appearance classifier cannot fully capture variations

caused by geometric motions. In addition, different from

appearance and pose classifiers, which address the general-

ization issue from data-variation perspective, the proposed

Bayesian framework address the generalization issue from

the model perspective. By introducing Bayesian inference in-

stead of point-estimation, the underlying model yields better

generalization capabilities.

5.1.2 Evaluation of number of labeled data

The previous study is conducted based on an unsupervised

setting, we are also interested in a semi-supervised setting.

We use UT dataset for our evaluation. We use 32, 000
images for source domain data and the rest 32, 000 im-

ages for target domain data. Next we random draw k%
(k ∈ {0, 1, 2, 5, 10}) of the target domain data as labeled

data, and the rest as the unlabeled (testing) data. We repeat

the process 5 times and report the average performance. For

a fair comparison, we also perform fine-tuning on the base-

line models using the labeled data and compare with the

proposed method.
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Figure 7. Cross-subject evaluation on UT.

The cross-subject evaluation is shown in Fig. 7, and the

cross-pose evaluation is shown in Fig. 8. We can observe

that with more labeled data, both the fine-tuned model and

the proposed model can keep reducing the gaze estimation

error, but the proposed method can always give better ac-

curacy than the fine-tuned model. This demonstrate that

the proposed approach can handle both unsupervised and

semi-supervised scenarios.

5.1.3 Online eye tracking

The proposed method can serve as an online model adapta-

tion technique for a real-time eye tracking system. Suppose
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Figure 8. Cross-pose evaluation on UT.
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Figure 9. Online eye tracking performance with the proposed model

adaptation approach.

we have a real-time eye tracking system trained with source

domain data. A new subject tries to use the system but is not

satisfied with the performance. In this case, we can use the

proposed method to gradually adapt the model parameters

so that it can produce good results for the new subject. In

particular, we ask the new subject to use the system for some

time and collect raw eye images. These raw eye images serve

as unlabeled target domain data and can be used to adapt the

model parameters with the proposed Bayesian adversarial

learning. We conduct a simple experiment in the lab. The

baseline gaze estimator is trained with data from 10 people,

and we ask the new subject to use the system for some time.

We also collect some labeled data for the new subject for

testing. Fig. 9 shows the gaze estimation error as a func-

tion of time (we use the first T frames to adapt the baseline

model). The results suggest that as we use the system and

collect more data, we can gradually adapt to a new subject

and improve the gaze estimation performance.

5.2. Comparison with State­of­the­art

Next we compare with state-of-the-art approaches on

cross-subject and cross-dataset experiments.

Table 2. Cross-subject evaluation.

[54] [36] [35] Proposed

EyeDiap - 11.9 10.3 9.9

UT - - - 5.4

MPII 6.3 - 4.5 4.3

We first perform cross-subject experiments. In [54], the

authors combined head pose feature and appearance fea-

ture to perform gaze estimation. They did not model the

appearance variations and use a simple feature concatena-

tion technique to incorporate head pose information. On

the contrary, we use a similar baseline model, but explicitly

consider appearance variations and incorporate pose informa-

tion in a adversarial way. And combined with the Bayesian

framework, we achieve an improvement around 2.0 degrees.

In [36], the authors first use a hourglass model to map

eye appearance to eye landmarks and then use either feature-

based or model-based method to map landmarks to eye gaze.

In [35], the authors propose to map appearance to a gaze

map then estimate gaze from gaze map. Both methods use

a much more complex architectures than ours, but we still

outperform them, demonstrating the effectiveness of the

proposed Bayesian adversarial learning framework.

Table 3. Cross-dataset evaluation.
[54] [55] [37] [36] Proposed

EyeDiap - - - 26.6 18.3

MPII 13.9 8.9 7.7 8.7 7.4

We further perform cross-dataset experiments by using

UT dataset as source domain data. Fig. 3 shows the results

with unsupervised setting. We outperform all competing

approaches on MPII dataset. Even with a relative small scale

model, the proposed approach can still achieve better results.

When evaluated on EyeDiap, we outperform [36] with a big

margin. The reason is that the distribution of UT and EyeDi-

ap differs significantly, minimizing the domain shift between

them leads to a large improvement in the gaze estimation

accuracy. In addition, EyeDiap has large variations which

leads to complex parameter posterior distributions, using

Bayesian inference is more effective in these cases which

explains the large improvement.

6. Conclusion

In this paper, we systematically study the generalization

issue of appearance-based gaze estimation methods. We i-

dentify three major factors: 1) appearance variations; 2) pose

variations and 3) over-fitting issue with point estimation. By

introducing an adversarial learning approach, we are able

to learn better feature representations that can generalize to

appearance and pose variations. With the extended Bayesian

framework, we alleviate the over-fitting issue by using mul-

tiple sets of parameters to perform gaze estimation. System-

atical experiments demonstrate the contributions from each

model component, and the overall model also outperforms

state-of-the-art on benchmark datasets.
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