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Abstract

Regularization is a fundamental technique to solve an ill-

posed optimization problem robustly and is essential to re-

construct compressive hyperspectral images. Various hand-

crafted priors have been employed as a regularizer but

are often insufficient to handle the wide variety of spec-

tra of natural hyperspectral images, resulting in poor re-

construction quality. Moreover, the prior-regularized opti-

mization requires manual tweaking of its weight parame-

ters to achieve a balance between the spatial and spectral

fidelity of result images. In this paper, we present a novel hy-

perspectral image reconstruction algorithm that substitutes

the traditional hand-crafted prior with a data-driven prior,

based on an optimization-inspired network. Our method

consists of two main parts: First, we learn a novel data-

driven prior that regularizes the optimization problem with

a goal to boost the spatial-spectral fidelity. Our data-driven

prior learns both local coherence and dynamic character-

istics of natural hyperspectral images. Second, we com-

bine our regularizer with an optimization-inspired network

to overcome the heavy computation problem in the tradi-

tional iterative optimization methods. We learn the com-

plete parameters in the network through end-to-end train-

ing, enabling robust performance with high accuracy. Ex-

tensive simulation and hardware experiments validate the

superior performance of our method over the state-of-the-

art methods.

1. Introduction

Hyperspectral imaging captures the spectral power dis-

tributions of a scene or an object as a three-dimensional

(3D) tensor, which describes spectral intensity per wave-

length at each pixel location. By leveraging the rich spectral

information in hyperspectral images, various imaging and

vision applications have been benefited extending the cur-

rent dimensions of the recognition and classification tech-

niques to higher dimensions of novel applications, e.g., re-

mote sensing, medical imaging, vision inspection, digital

forensics, etc. [1, 2, 3, 4, 5, 6].

Since a hyperspectral image is a 3D tensor, the scenes

have to be measured with multiple exposures with one 1D

or 2D sensor. This imaging process is time-consuming and

limited to static objects [7]. With an objective to capture dy-

namic objects and scenes, quite a few snapshot hyperspec-

tral imaging system have been proposed [8, 9, 10, 11, 12].

Based on compressive sensing [13], coded aperture snap-

shot spectral imaging (CASSI) [14] introduces a promising

solution. CASSI encodes the incident light into a snapshot-

imaging sensor and employs an optimization algorithm to

reconstruct the hyperspectral image as a 3D tensor.

To solve the under-determined reconstruction problem,

regularization technique is used to introduce the image pri-

ors, for instance, the total variation (TV) [15, 16], spar-

sity [17, 18] and non-local similarity (NLS) [19, 20]. They

have been formulated analytically to restrict the solution

space when solving the data term. However, these prior

are designed empirically and often insufficient to model the

wide variety of spectra of the real world. Also, the optimiza-

tion based on a hand-crafted prior requires manual tweaking

of its weight parameters to handle the complicated charac-

teristics of the target scenes.

Moreover, the optimization of reconstructing hyperspec-

tral images cannot be solved with a closed form. There-

fore, iterative optimization techniques have been used in

general. Recently, a novel research direction is to substi-

tute the iteration-based optimization in compressive sens-

ing with a deep neural network, e.g., LISTA [21] ADMM-

Net [22] and ISTA-Net [23]. These networks learn unrolled

solutions of an iterative optimization based on natural im-

age statistics by means of deep learning. However, they still

inherit the sparsity prior by explicitly limiting features to be

sparse in a few layers. The optimization using the sparsity

prior suffers from the prior deviation problem as addressed

by Zhang et al. [24]. Besides, these neural network-based

approaches only account for CS reconstruction within the

spatial dimension, but in ignorance of the spectral dimen-

sion, as they do not learn any prior of spectral information
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of natural images. Choi et al. proposed to train an autoen-

coder to learn the spectral prior [25]. Nevertheless, the solu-

tion is still based on iterative optimization using the sparsity

regularizer.

In this paper, we propose a novel hyperspectral im-

age reconstruction algorithm that substitutes the traditional

hand-crafted prior with a data-driven prior, based on an

optimization-inspired network. The proposed method com-

bines the merits from two aspects: the structure insight of

the optimization and the prior modeling capacity of the deep

neural network. First, we learn a novel data-driven prior

that regularizes the optimization problem to exploit the spa-

tial and spectral correlation. Our data-driven prior learns

both local coherence and dynamic characteristics of natural

hyperspectral images. Second, we combine our regularizer

with an optimization-inspired network to overcome heavy

computation of the traditional iterative optimization meth-

ods. We learn the entire parameters in the complete net-

work by end-to-end training, enabling robust performance

with high accuracy. Extensive simulations and hardware

experiments verify that the proposed method can achieve

a significant improvement over the state-of-the-art methods

according to both comprehensive quantitative metrics and

perceptual quality.

In a nutshell, this work integrates the power of deep

learning and the optimization framework into the recon-

struction problem of compressive hyperspectral imaging to

take a substantial step forward to make CASSI into practice.

2. Related work

2.1. Prior Modeling in Hyperspectral Image

Solving an inverse optimization problem stands at the

core of hyperspectral image reconstruction, i.e., the subse-

quent reconstruction problem is how to derive the underly-

ing 3D hyperspectral image from a 2D compressive image.

In general, a hyperspectral image prior is used to regularize

the inverse problem, since the prior can identify the most

feasible solution from the infinite set of solutions by en-

forcing specific feature to the solution. Thereby, designing

an appropriate prior plays a key role in finding a solution

for the reconstruction problem in compressive hyperspec-

tral imaging.

In the conventional hyperspectral image reconstruction

methods, most of the hyperspectral image priors are hand-

crafted based on empirical observation. Given the fact that

natural hyperspectral images are usually sparse after be-

ing transformed in the frequency or gradient domain, priors

that enforce the sparsity of transformation coefficients are

widely used in CASSI reconstruction [15, 18, 26]. To im-

prove the diversity of the transformation, blind compressive

sensing has been proposed to solve the CASSI reconstruc-

tion problem [27]. This technique makes efforts to jointly

infer the underlying hyperspectral image and the transfor-

mation basis from the compressive image. Further, by mak-

ing use of the repetitive structures in hyperspectral images,

NLS-based regularizers have been adopted by combining

with the sparsity representation [19] or low-rank approxi-

mation [20, 28], which have shown improvement over the

local regularizers. However, these hand-crafted priors are

often to generic, in that many non-image signals can also

satisfy the constraint.

Different from the carefully designed prior, the learning-

based methods can learn implicit image priors from a large

dataset. Choi et al. [25] proposed an autoencoder-based

method for CASSI reconstruction, where an autoencoder

is pre-trained as a deep image prior and integrated in the

optimization as a regularizer. A similar approach has been

exploited for natural image restoration, where deep image

priors are adopted as regularizers in the optimization [24].

Compared with the hand-crafted image priors, the data-

driven priors can characterize nonlinear correlation in hy-

perspectral images and thus lead to superior performance.

But it has to iteratively solve the optimization problems,

which suffers from parameter tuning.

2.2. Deep Learning for Image Reconstruction

Compared with the prevalence of deep learning in the

field of high-level visions [29, 30], few works focus on

involving deep learning to solve the hyperspectral image

reconstruction problem, especially concerning the deploy-

ment on real hardware systems.

Pioneering works on natural image reconstruction try to

learn a brute-force mapping function from the compressive

image to the underlying image, for instance [31, 32], which,

however, lacks flexibility. The learned mapping function

would be ineffective and need to be retrained, even if the

observation model deviates very slightly from that one used

during the training. Actually, this is a common phenomenon

in hardware implementation. For the first time, Xiong et al.

introduced a convolutional neural network to solve the hy-

perspectral image reconstruction problem in CASSI [33].

It transfers the hyperspectral image reconstruction prob-

lem to an hyperspectral image enhancement problem and

learns a mapping function from a low-quality reconstruc-

tion to the desired hyperspectral images. In contrast, the

proposed network-based method is designed with inspira-

tion from the optimization framework, which fully inte-

grates the observation model in the neural network. Thus

the proposed method can generalize well to an untrained

observation model.

The motivation of this work originates from the recently

proposed deep neural network for natural image compres-

sive sensing, including the LISTA [21] ADMM-Net [22]

and ISTA-Net [23]. These methods mimic the structure

of the prior-regularized optimization and unroll the itera-
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Figure 1. The optical principle in CASSI and the prototype we

build for verifying the proposed method with real hardware exper-

iment.

tions in optimization into a deep network. Consequently,

they can learn the transformations and parameters by end-

to-end training. But they still utilize the sparsity prior in

the neural network by explicitly limiting the features in a

few layer to be sparse, which suffers from the same draw-

back as the hand-crafted image priors. Furthermore, these

methods are specifically designed and developed for natural

image compressive sensing and cannot be trivially extended

to hyperspectral image reconstruction, since hyperspectral

image lies in high dimension, thereby spectral prior should

be exploited to facilitate the reconstruction.

3. The Proposed Framework

3.1. CASSI Observation Model

A schematic diagram of CASSI is shown in Figure 1.

CASSI encodes the 3D hyperspectral information into a 2D

compressive image. Let F (m,n, λ) indicate the intensity

of incident light where 1 ≤ m ≤ M and 1 ≤ n ≤ N index

the spatial dimension and 1 ≤ λ ≤ Λ indexes the spectral

dimension. A coded aperture creates spatial modulation by

its transmission functionC(m,n), while a dispersive prism

creates spectral shear along a spatial dimension, according

to the wavelength-dependent dispersion function ψ(λ). By

following the observation model of CASSI, the 2D com-

pressive image can be represented as an integral over the

spectral wavelength λ as

G(m,n) =

Λ∑

λ=1

C(m−ψ(λ), n)F (m−ψ(λ), n, λ). (1)

Note the shear in Eq. (1) is along the vertical dimension and

the inference hereafter is also applicable to the horizontal

shear. The CASSI observation model can be rewritten in

Oblique 
Parallelepiped

Modulation

Spectral

Sp
at
ia
l

Compressive 
Patch

Dispersion Integration

Figure 2. Patch-based modeling for CASSI. One patch in the com-

pressive image exactly corresponds to one oblique parallelepiped

cube in the underlying hyperspectral image

matrix-vector form as

g = Φf , (2)

where g ∈ R
(M+Λ−1)N and f ∈ R

MNΛ are the vectorized

representation of the compressive image and the underlying

hyperspectral image, and Φ ∈ R
(M+Λ−1)N×MNΛ repre-

sents the measurement matrix of CASSI.

By analyzing the imaging mechanism within CASSI, we

decompose the observation model from full image-based

modeling to patch-based one to relieve the computational

complexity and then facilitate the network training. As

shown in Figure 2, we now consider a P × P patch of the

compressive image, and trace the energy in the patch back

through the system. The source hyperspectral image is no

longer a standard cube but an oblique parallelepiped cube

with Λ shifted spectral bands. Each band has a one-pixel

shift relative to its neighboring bands in the shear direc-

tion. In this manner, we can isolate the patch-based map-

ping between the compressive image and the underlying

hyperspectral image, and avoid cross-talk between differ-

ent mapping pairs. Then, the observation model of such

oblique parallelepiped cube can be expressed in the matrix-

vector form as

gi = Φifi, (3)

where i is the index number of the selected patch. Note that

Eq. (3) is the patch-based observation model of Eq. (2). For

simplicity, we remove the subscripts in Eq. (3).

3.2. Hyperspectral Image Prior Network

Physically, the hyperspectral image reconstruction is

under-determined, thus image priors are adopted as the reg-

ularization to constrain the solution space [34]. From a

Bayesian perspective, the underlying hyperspectral image

can be obtained by solving a minimization problem as

f̂ = argmin
f

||g −Φf ||2 + τR(f), (4)

where τ is a balancing parameter. The data term guarantees

that the solution accords with the observation model and the

regularization term enforces the output with desired hyper-

spectral image prior R(·).
When the regularization term is not differentiable, it of-

ten employs the variable splitting technique to decouple the
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Figure 3. (a) Architecture of the hyperspectral image prior network. The hyperspectral image prior network is designed as a concatenation of

spatial network part and spectral network part, which focus on exploit spatial and spectral correlation, respectively. (b) and (c) Performance

test with only one part being used.

data term and the regularization term in Eq. (4). Specifi-

cally, by introducing an auxiliary variable h, Eq. (4) can be

reformulated as a constrained optimization problem which

is given by

f̂ = argmin
f

||g −Φf ||2 + τR(h), s.t. h = f . (5)

Then, by adopting the half quadratic splitting (HQS)

method, the above constrained optimization problem can be

converted as a non-constrained optimization problem

(f̂ , ĥ) = argmin
f ,h

||g−Φf ||2+η||h−f ||2+ τR(h), (6)

where η is a penalty parameter. Eq. (6) can be split into two

subproblems as

f̂ (k+1) = argmin
f

||g −Φf ||2 + η||h(k) − f ||2, (7)

ĥ(k+1) = argmin
h

||h− f (k+1)||2 +
τ

η
R(h). (8)

We can see that the h-subproblem in Eq. (8) is a proxi-

mal operator of the hyperspectral image prior R(·) with

penalty τ . When the hyperspectral image prior uses the

l1 sparsity, the proximal operator implies simply soft-

thresholding on f (k+1). From this perspective, the HQS

method separates the observation model Φ and the hyper-

spectral image prior R(·). The hyperspectral image prior

solely appears in the form of the proximal operator. There-

fore, instead of explicitly learning a hyperspectral image

prior R(·) and solving the proximal operator with the con-

straint of the hyperspectral image prior, we propose to di-

rectly learn a solver S(·) for the proximal operator with a

hyperspectral image prior network as follows:

h(k+1) = S(f (k+1)). (9)

In this manner, the hyperspectral image prior is not explic-

itly modeled, but is learned with the hyperspectral image

prior network, which introduces nonlinearity in prior mod-

eling and avoids the inaccuracy of the explicit hand-crafted

image priors, such as a TV prior or sparsity prior.

The architecture of the hyperspectral image prior net-

work is illustrated in Figure 3a. There are two technical

insights that guide the design of the hyperspectral image

prior network. First, it should enable to exploit spatial and

spectral correlation simultaneously. Second, it should be

as simple as possible to facilitate the training. Following

the first insight, the proposed prior network consists of two

main parts, i.e., the spatial network part and the spectral

network part, which focuses on exploiting the spatial cor-

relation and spectral correlation, respectively. Following

the second insight, the spatial network part employs resid-

ual network structure, since residual learning enables fast

and stable training which relieves the computational bur-

den [30, 35]. There are two linear convolutional layers in-

terleaved by one rectified linear unit (ReLU) layer. This

spatial network design is motivated by the recent work on

image spatial super-resolution with excellent performance

by removing the unnecessary layers (such as batch normal-

ization) in neural networks [35]. The spectral network con-

tains one convolutional layer to reach a simple architecture

and focus on exploiting the spectral correlation. Figure 3b

and Figure 3c show the performance test when only one part

in the prior network being used. It can been seen that both

the spatial network part and the spectral network part have

an impact on the final performance, which validates the

technical insights for the network design. As introduced in

Section 3.1, the input of the hyperspectral image prior net-

work is an oblique parallelepiped cube, which corresponds

to a patch on the compressive image. The first convolutional

layer uses 3 × 3 × Λ filters and produces L features, while

the second convolutional layer uses 3 × 3 × L filters and

produces Λ features. The spectral network uses 1 × 1 × Λ
filters.

3.3. Optimization­inspired Reconstruction Method

We propose to solve Eqs. (7) and (8) in a united frame-

work. Compared with the splitting and iterative way, the

proposed framework re-bridge the observation model and

the image prior as a whole. Recall that f -subproblem in

Eq. (7) is a quadratic regularized least-squares problem

which ensures the data fidelity. A direct solution is given

in the closed form as

f (k+1) = (Φ⊺
Φ+ ηI)−1(Φ⊺g + ηh(k)). (10)
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Figure 4. (a) Illustration of the deep neural network for CASSI reconstruction. The network integrates the structure insight of the opti-

mization. It is composed of multiple stages, and each stage includes one hyperspectral image prior network paralleled with two linear

connections that accords with the observation model. (b) Impact of the stage number on the reconstruction accuracy. For more than 9

stages, there is no significant increase in PSNR and decrease in SAM.

where I is an identity matrix. Since Φ
⊺
Φ + ηI is very

large, it is computationally expensive to invert that matrix.

Instead, we employ the conjugate gradient (CG) algorithm

to solve the f -subproblem. Thus, the solution of Eq. (7) can

be expressed as

f (k+1) = f (k) − ǫ[Φ⊺(Φf (k) − g) + η(f (k) − h(k))]

= Φ̄f (k) + ǫf (0) + ǫηh(k),

(11)

where ǫ is the step size in gradient descent, f (0) = Φ
⊺g

represents the initialization and Φ̄ = (1 − ǫη)I − ǫΦ⊺
Φ.

Then, we can unify the two subproblems as a single problem

by substituting Eq. (9) into Eq. (11)

f (k+1) = Φ̄f (k) + ǫf (0) + ǫηS(f (k)). (12)

We propose to implement the deduction in Eq. (12) via

a deep neural network as shown in Figure 4a. The net-

work is composed of multiple stages, each of which in-

cludes one hyperspectral image prior network as introduced

in Section 3.2 paralleled with two linear connections that

accords with Eq. (12). In the proposed network, given the

initial hyperspectral image estimation f (0), the stages are

concatenated in a feed-forward manner. Different from the

iteration-based optimization, the network is trained in an

end-to-end manner to obey the observation model and ex-

ploit the image prior simultaneously, which is advantageous

over the separative solvers in previous methods. Specifi-

cally, the input compressive patch g is first fed into a lin-

ear layer modeled by the transpose of the measurement

matrix Φ
⊺. The output vector is reshaped to an oblique

parallelepiped cube which is treated as the initialization as

f (0) = Φ
⊺g. For the kth stage, its updated result f (k)

comes from three parts as shown in Eq. (12). The first part

is derived from the previous result f (k−1) which is fed into

the hyperspectral image prior network and then weighted by

the parameter ǫη; The second part is also from the previous

result f (k−1), which is fed into a linear layer parameterized

by Φ̄; The third part is a skip connection to the initializa-

tion f (0) weighted by parameter ǫ. This stage is repeatedK

times. Figure 4b shows the impact of the stage number on

the reconstruction accuracy. It can be seen that after 9 stages

there is no significant improvement in accuracy. Given the

tradeoff between accuracy and memory, we set the stage

number to 9 in the following simulations and experiments.

3.4. Adaptive Parameters Learning

We propose to train the network by end-to-end training

to learn the network parameters Θ and the optimization pa-

rameters ǫ and η simultaneously. In our implementation, all

the parameters are set to be different among each stage, as

with the stage increasing, the reconstruction quality is im-

proved, thus the network parameters and the optimization

parameters should be adaptively changed.

Given a set of oblique parallelepiped cubes f(l) as the

training samples and its corresponding compressive patch

g(l), the network is trained according to the MSE-based loss

function, which can be expressed as

(Θ̂, ǫ̂, η̂) = arg min
Θ,ǫ,η

1

L

L∑

l=1

||f̃(g(l);Θ, ǫ, η)− f(l)||
2,

(13)

where f̃(·) denotes the output of the network given the in-

put and the parameters.

We employ MatConvNet to implement the network, min-

imize the loss function in Eq. (13) using the stochastic gra-

dient descent method, and train it up to 150 epochs. The

mini-batch size and momentum parameter are set to 64 and

0.9, respectively. The learning rate is set to 10−3. The

network parameters for each layers are initialized with the

method in [36]. The optimization parameters are initialized

with all zeros. We use a machine equipped with an Intel

Core i7-6800K CPU with 64GB memory and an NVIDIA

Titan X PASCAL GPU with 12GB memory.

4. Simulation Results on Synthetic Data

4.1. Configurations

For comprehensive evaluation, we conduct simulations

on the public ICVL [37], Harvard [38] and KAIST [25]

hyperspectral image datasets. We follow the principles

in [39, 25, 33] to partition the training and testing sets. We
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Table 1. Performance comparisons on the ICVL and Harvard datasets. The best performance is labeled in bold and the second best

performance is underlined.

Dataset Metric TwIST GPSR AMP 3DNSR SSLR HSCNN ISTA-Net Autoencoder ProposedD ProposedI

ICVL

PSNR 26.15 24.56 26.77 27.95 29.16 29.48 31.73 30.44 33.43 34.13

SSIM 0.936 0.909 0.947 0.958 0.964 0.973 0.984 0.970 0.990 0.992

SAM 0.053 0.09 0.052 0.051 0.046 0.043 0.042 0.036 0.030 0.028

Harvard

PSNR 27.16 24.96 26.67 28.51 29.68 28.55 31.13 30.30 32.44 32.84

SSIM 0.924 0.907 0.935 0.94 0.952 0.944 0.967 0.952 0.976 0.979

SAM 0.119 0.196 0.155 0.132 0.101 0.118 0.114 0.098 0.093 0.089

Time(s) 555 302 705 8648 6986 3.11 1.15 521 1.11 1.11

set the patch size and the number of feature map in prior

network to 64 × 64 and 64, respectively. The correspond-

ing coded aperture C(m,n) is constructed by generating a

binary matrix in Bernoulli distribution with p = 0.5.

We compare our methods with several state-of-the-art

methods, including five hand-crafted prior-based meth-

ods, i.e., TwIST with TV prior [15], GPSR and AMP

with sparisty prior [18, 26], and 3DNSR and SSLR with

NLS prior [19, 20], and three learning-based methods, i.e.,

HSCNN [33], ISTA-Net1 [23] and Autoencoder [25]. All

the codes for the competitive methods are released publicly

or provided privately to us by the authors, and we make

great effort to produce their best results. For the proposed

method, there are two kinds of variation, i.e., the coded

apertures used in training and testing are identical (indicated

by ProposedI ) or different (indicated by ProposedD).

Three quantitative image quality metrics are employed

to evaluate the performance of these methods, includ-

ing peak signal-to-noise ratio (PSNR), structural similar-

ity (SSIM) [40] and spectral angle mapping (SAM) [41].

PSNR and SSIM show the spatial fidelity which are calcu-

lated on each 2D spatial image, and averaged over all spec-

tral bands. a larger value of PSNR and SSIM indicates bet-

ter performance. SAM shows the spectral fidelity, which is

calculated on each 1D spectral vector and averaged over all

spatial points. A smaller value of SAM suggests a better

reconstruction.

4.2. Evaluation

Numerical Results. Table 1 summarizes the numeri-

cal results on the ICVL and Harvard datasets. It can be

seen that the proposed methods outperform all the existing

methods by a large margin according to the metrics in both

spatial and spectral domains. For simulations here, the ra-

tio between the pixel numbers of compressive image and the

underlying hyperspectral image is extremely high (3.2% for

31 spectral bands), so the reconstruction is challenging for

1 Since it was originally designed for natural imaging, we modified it

with great efforts to be applicable to hyperspectral imaging.

Table 2. Performance comparisons on the KAIST dataset. For the

case with noise, the noise variance is 0.05.

Metric HSCNN ISTA-Net Autoencoder ProposedD ProposedI

without

noise

PSNR 25.18 29.39 27.90 29.77 30.03

SSIM 0.947 0.979 0.971 0.986 0.988

SAM 0.153 0.140 0.136 0.122 0.114

with

noise

PSNR 24.90 29.28 27.65 29.17 29.86

SSIM 0.931 0.968 0.970 0.976 0.978

SAM 0.203 0.143 0.143 0.141 0.136

the methods with hand-crafted image priors. This demon-

strates the superiority of the prior modeling capability of the

hyperspectral image network. Compared with the learning-

based methods, the proposed network drives from the inspi-

ration of the optimization, sets the parameters adaptively by

end-to-end training, and thus achieves better performance.

Even when the coded aperture used in the testing is different

with that in the training, the proposed method still produces

superior result compared with all the previous methods.

Noise Test. We conduct an additional simulation exper-

iment on the KAIST dataset with consideration of imaging

noise. Here, we focus on comparing the performance of the

learning-based methods. For the case with noise, the noise

variance is 0.05. The results are listed in Table 2. As can be

seen, our method outperforms the other methods under both

the noise-free and the noisy cases, which promotes CASSI

to work at a high frame rate.

Perceptual Quality. To visualize the reconstruction re-

sults, two representative result images of all methods are

shown in Figure 5. To simultaneously show the results of

all spectral bands, we convert the spectral images to sRGB

via the CIE color matching function. The PSNR and SSIM

values are provided for each result. Clearly, the proposed

method can produce the visually pleasant results with less

artifacts and sharper edges compared with other methods,

which is consistent with the numerical metrics.

Spectral Fidelity. Figure 6 shows the recovered spec-

trum of two points in the selected image. It can be seen
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Compressive image TwIST GPSR AMP 3DNSR SSLR

(21.57 / 0.904) (20.76 / 0.892) (23.59 / 0.944) (24.84 / 0.957) (23.86 / 0.941)

HSCNN ISTA-Net Autoencoder ProposedD ProposedI Ground truth

(27.30 / 0.979) (27.31 / 0.985) (28.22 / 0.984) (32.24 / 0.992) (32.92 / 0.994) (PSNR / SSIM)

Compressive image TwIST GPSR AMP 3DNSR SSLR

(21.89 / 0.908) (18.34 / 0.841) (23.90 / 0.943) (24.92 / 0.956) (24.94 / 0.956)

HSCNN ISTA-Net Autoencoder ProposedD ProposedI Ground truth

(27.30 / 0.977) (28.82 / 0.983) (26.75 / 0.972) (32.70 / 0.993) (33.60 / 0.995) (PSNR / SSIM)

Figure 5. Visual quality comparison. The PSNR and SSIM for the result images are shown in the parenthesis. Our methods outperforms

all the competitive methods in terms of spatial and spectral accuracy.

that, among all the results, the spectra reconstructed by the

proposed methods are closer to the reference. The overlaid

SAM values of the reconstructed spectra further demon-

strate the superior performance of the proposed methods on

spectral recovery.

Computational Complexity. The computational com-

plexity is proportional to the number of multiplications in

solving Eq. (8) [25]. In our method, the total number of

multiplication for the hyperspectral image prior network is

approximately M ×N × 105. In contrast, for example, the

GPSR method adopts the sparse coding technique to solve

Eq. (8) and its multiplication is approximatelyM×N×107

with a 2× over-complete dictionary. Further, we record

the running time for reconstructing one hyperspectral im-

age with size of 512 × 512 × 31 shown in Table 1. All

the codes are implemented on an Intel Core i7-6800K CPU

and no specific parallel operation and code optimization are

conducted. The proposed method is comparable with ISTA-

Net and much faster than the other methods.

5. Experiments on a Real CASSI System

In this section, we conduct experiments on real hard-

ware system to demonstrate the practicability of our sys-

tem. To this end, we build a prototype of a CASSI system,
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SAM values of the reconstructed spectra
TwIST GPSR AMP 3DNSR SSLR HSCNN ISTA-Net Autoencoder ProposedD ProposedI

(a) 0.040 0.144 0.106 0.101 0.052 0.035 0.027 0.027 0.026 0.016

(b) 0.077 0.226 0.090 0.054 0.093 0.069 0.063 0.071 0.051 0.026

Figure 6. Comparison of spectral accuracy. The points are indi-

cated in Figure 5. The spectra reconstructed by the our methods

are closer to the reference compared with the other methods. The

SAM numbers further demonstrate the superiority of our methods

on spectral reconstruction.

as shown in Figure 1. The system is made of a 16mm ob-

jective lens (AZURE 1614), a coded aperture, a relay lens

(Edmund 45762), a dispersive prism and a detector. The

detector is a Point Grey FL3-U3-13Y3M with a pixel pitch

of 4.9um and 1280 × 1080 pixels in total. The coded aper-

ture includes random binary patterns made through litho-

graphic chrome etching on a quartz plate and the pixel pitch

is 9.8um. A pixel on the coded aperture corresponds to two-

by-two pixel on the detector. The dispersive prism is man-

ufactured by Shanghai Optics, producing a 26-pixel disper-

sion from 450nm to 650nm. We calibrate the prototype by

following the principle in [18] to obtain the optical proper-

ties of the system.

To handle real-world scenes from our prototype, we re-

train the network by combining the hyperspectral images

from these three datasets. The training data is further aug-

mented with scale invariance [42]. We use the configura-

tion of the ProposedD to train the network for real experi-

ment. Figure 7 shows the reconstructed images of one chan-

nel by our method together with TwIST, 3DNSR, and Au-

toencoder. It can be seen that the proposed methods can

produce better results with less artifacts and clearer con-

tents compared with the other methods. Further, we select

one patch in the color checker in Figure 7 (indicated by ⊗
) and plot the spectral signatures in Figure 8. The reference

spectrum is obtained with a commercial spectrometer. The

spectrum of our method are closest to the reference and the

corresponding RMSE also verify the superior performance

of our method.

6. Conclusion

We have presented a novel hyperspectral image recon-

struction method, which outperforms current state-of-the art

methods. There are the two key steps in our method: (1) we

TwIST 3DNSR

Autoencoder Ours

⊗

Figure 7. Experiments results on a real CASSI system. The cen-

ter wavelength for the selected band is 632nm. Our method can

achieve results with clearer spatial details.

450 500 550 600 650
Wavelength

0

0.1

0.2

0.3

0.4

0.5

0.6
Reference
TwIST: 0.103
3DNSR: 0.097
Autoencoder: 0.050
Ours: 0.033

Figure 8. The reconstructed spectra on the selected patch in Fig-

ure 7 (indicated by ⊗ ) and the corresponding RMSE. Our method

can achieve results with smaller spectral errors.

learn a novel data-driven prior that regularizes the optimiza-

tion problem to exploit the spatial-spectral correlation; (2)

we combine our regularizer with an optimization-inspired

network to enable end-to-end training. Our reconstruction

method also reduces the computational cost. We have also

built a prototype system to validate the effectiveness of the

proposed methods. One future direction of interest is to

extend the proposed method for other hyperspectral image

processing problem, e.g., hyperspectral interpolation and

demosaicing. The other direction is to further accelerate the

proposed method to reach a real-time reconstruction, thus

enabling to acquire hyperspectral images at a video frame

rate.
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