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Abstract

Models such as Sequence-to-Sequence and Image-to-

Sequence are widely used in real world applications. While

the ability of these neural architectures to produce variable-

length outputs makes them extremely effective for problems

like Machine Translation and Image Captioning, it also

leaves them vulnerable to failures of the form where the

model produces outputs of undesirable length. This be-

haviour can have severe consequences such as usage of in-

creased computation and induce faults in downstream mod-

ules that expect outputs of a certain length. Motivated by

the need to have a better understanding of the failures of

these models, this paper proposes and studies the novel

output-size modulation problem and makes two key tech-

nical contributions. First, to evaluate model robustness,

we develop an easy-to-compute differentiable proxy objec-

tive that can be used with gradient-based algorithms to find

output-lengthening inputs. Second and more importantly,

we develop a verification approach that can formally verify

whether a network always produces outputs within a cer-

tain length. Experimental results on Machine Translation

and Image Captioning show that our output-lengthening

approach can produce outputs that are 50 times longer

than the input, while our verification approach can, given

a model and input domain, prove that the output length is

below a certain size.

1. Introduction

Neural networks with variable output lengths have be-

come ubiquitous in several applications. In particular, re-

current neural networks (RNNs) such as LSTMs [17], used

�work done during an internship at DeepMind
|now at Facebook AI Research

to form “sequence” models [30], have been successfully and

extensively applied in in image captioning [34, 28, 21, 6,

12, 37, 26, 24, 1], video captioning [33, 38, 35, 40, 41], ma-

chine translation (MT) [30, 9], summarization [10], and in

other sequence-based transduction tasks.

The ability of these sequence neural models to generate

variable-length outputs is key to their performance on com-

plex prediction tasks. However, this ability also opens a

powerful attack for adversaries that try to force the model

to produce outputs of specific lengths that, for instance, lead

to increased computation or affect the correct operation of

down-stream modules. To address this issue, we introduce

the output-length modulation problem where given a spec-

ification of the form that the model should produce out-

puts with less than a certain maximum length, we want to

find adversarial examples, i.e. search for inputs that lead

the model to produce outputs with a larger length and thus

show that the model under consideration violates the speci-

fication. Different from existing work on targeted or untar-

geted attacks where the goal is to perturb the input such that

the output is another class or sequence in the development

dataset (thus within the dataset distribution), the output-

modulation problem requires solving a more challenging

task of finding inputs such that the output sequences are

outside of the training distribution, which was previously

claimed difficult [5].

The naive approach to the solution of the output-length

modulation problem involves a computationally intractable

search over a large discrete search space. To overcome

this, we develop an easy-to-compute differentiable proxy

objective that can be used with gradient-based algorithms

to find output-lengthening inputs. Experimental results

on Machine Translation show that our adversarial output-

lengthening approach can produce outputs that are 50 times

longer than the input. However, when evaluated on the

image-to-text image captioning model, the method is less
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successful. There could have been two potential reasons for

this result: the image-to-text architecture is truly robust, or

the adversarial approach is not powerful enough to find ad-

versarial examples for this model. To resolve this question,

we develop a verification method for checking and formally

proving whether a network is consistent with the output-

size specification for the given range of inputs. To the best

of our knowledge, our verification algorithm is the first for-

mal verification approach to check properties of recurrent

models with variable output lengths.

Our Contributions To summarize, the key contributions

of this paper are as follows:

• We propose and formulate the novel output-size mod-

ulation problem to study the behaviour of neural archi-

tectures capable of producing variable length outputs,

and we study its evaluation and verification problems.

• For evaluation, we design an efficiently computable

differentiable proxy for the expected length of the out-

put sequence. Experiments show that this proxy can

be optimized using gradient descent to efficiently find

inputs causing the model to produce long outputs.

• We demonstrate that popular machine translation mod-

els can be forced to produce long outputs that are 50

times longer than the input sequence. The long output

sequences help expose modes that the model can get

stuck in, such as undesirable loops where they con-

tinue to emit a specific token for several steps.

• We demonstrate the feasibility of formal verification

of recurrent models by proposing the use of mixed-

integer programming to formally verify that a certain

neural image-captioning model will be consistent with

the specification for the given range of inputs.

Motivations and Implications Our focus on studying the

output-length modulation problem is motivated by the fol-

lowing key considerations:

• Achieving Computational Robustness: Many ML

models are now offered as a service to customers via

the cloud. In this context, ML services employing

variable-output models could be vulnerable to denial-

of-service attacks that cause the ML model to perform

wasteful computations by feeding it inputs that induce

long outputs. This is particularly relevant for vari-

able compute models, like Seq2Seq [9, 30]. Given a

trained instance of the model, no method is known to

check for the consistency of the model with a specifica-

tion on the number of computation steps. Understand-

ing the vulnerabilities of ML models to such output-

lengthening and computation-increasing attacks is im-

portant for the safe deployment of ML services.

• Understanding and Debugging Models: By designing

inputs that cause models to produce long outputs, it

is possible to reason about the internal representations

learned by the model and isolate where the model ex-

hibits undesirable behavior. For example, we find that

an English to German sequence-to-sequence model

can produce outputs that end with a long string of ques-

tion marks (‘?’). This indicates that when the output

decoder state is conditioned on a sequence of ‘?’s, it

can end up stuck in the same state.

• Uncovering security vulnerabilities through adversar-

ial stress-testing: The adversarial approach to output-

length modulation tries to find parts of the space of

inputs where the model exhibits improper behavior.

Such inputs does not only reveal abnormal output size,

but could also uncover other abnormalities like the pri-

vacy violations of the kind that were recently revealed

by [4] where an LSTM was forced to output memo-

rized data.

• Canonical specification for testing generalization of

variable-output models: Norm-bounded perturbations

of images [31] have become the standard specifica-

tion to test attacks and defenses on image classifiers.

While the practical relevance of this particular speci-

fication can be questioned [14], it is still served as a

useful canonical model encapsulating the essential dif-

ficulty in developing robust image classifiers. We be-

lieve stability of output-lengths can serve a similar pur-

pose: as a canonical specification for variable output-

length models. The main difficulties in studying vari-

able output length models in an adversarial sense (the

non-differentiability of the objective with respect to in-

puts) are exposed in output-lengthening attack, mak-

ing it a fertile testing ground for both evaluating attack

methods and defenses. We hope that advances made

here will facilitate the study of robustness on variable

compute models and other specifications for variable-

output models such as monotonicity.

2. Related Work

There are several recent studies on generating adversarial

perturbations on variable-output models. [27, 20] show that

question answering and machine comprehension models are

sensitive to attacks based on semantics preserving modifica-

tion or the introduction of unrelated information. [11, 39]

find that character-level classifiers are highly sensitive to

small character manipulations. [29] shows that models pre-

dicting the correctness of image captions struggle against

perturbations consisting of a single word change. [5] and

[8] further study adversarial attacks for sequential-output

models (machine-translation, image captioning) with spe-

cific target captions or keywords.
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We focus on sequence output models and analyze

the output-length modulation problem, where the models

should produce outputs with at least a certain number of

output tokens. We study whether a model can be adversar-

ially perturbed to change the size of the output, which is a

more challenging task compared to targeted attacks (see de-

tails in Section 3). On the one hand, existing targeted attack

tasks aim to perturb the input such that the output is another

sequence in the validation dataset (thus within the training

distribution), but attacking output size requires the model to

generate out-of-distribution long sequences. On the other

hand, since the desired output sequence is only loosely con-

strained by the length rather than directly provided by the

user, the attack algorithm is required to explore the output

size to make the attack possible.

For models that cannot be adversarially perturbed, we

develop a verification approach to show that it isn’t simply

a lack of power by the adversary but the sign of true ro-

bustness from the model. Similar approaches have been in-

vestigated for feedforward networks [3, 7, 32] but our work

is the first to handle variable output length models and the

corresponding decoding mechanisms.

3. Modulating Output-size

We study neural network models capable of producing

outputs of variable length. We start with a canonical ab-

straction of such models, and later specialize to concrete

models used in machine translation and image captioning.

We denote by x the input to the network and by X the

space of all inputs to the network. We consider a set of in-

puts of interest S , which can denote, for example, the set of

“small”1 perturbations of a nominal input. We study models

that produce variable-length outputs sequentially. Let yt 2
Y denote the t-th output of the model, where Y is the out-

put vocabulary of the model. At each timestep, the model

defines a probability over the next element P (yt+1|x, y0:t).
There exists a special end-of-sequence element eos 2 Y
that signals termination of the output sequence.

In practice, different models adopt different decod-

ing strategies for generating yt+1 from the probability

P (yt+1|x, y0:t) [13, 19, 22]. In this paper, we focus on

the commonly used deterministic greedy decoding strategy

[13], where at each time step, the generated token is given

by the argmax over the logits:

y0 = argmax {P (·|x)} (1a)

yt+1 = argmax {P (·|x, y0:t)} if yt 6= eos (1b)

Since greedy decoding is deterministic, for a given sample

x with a finite length output, we can define the length of the

1The precise definition of small is specific to the application studied.

greedily decoded sequence as:

` (x)= t s.t

yt = eos

yi 6= eos 8i < t

yi+1 = argmax {P (.|x, y0:i)} 8i < t

(2)

Note that there is a unique t that satisfies the above condi-

tions, which is precisely the first t at which yt = eos when

using greedy decoding.

Output length modulation specification A network is

said to satisfy the output length modulation specification

parameterized by S, K̂, if for all inputs x in S , the model

terminates within K̂ steps under greedy decoding for all

x 2 S , formally:

8x 2 S `(x)  K̂ (3)

In Section 3.1, we study the problem of finding adversar-

ial examples, i.e., searching for inputs that lead the model

to produce outputs with a larger length and thus show that

the model violates the specification. In Section 4, we use

formal verification method to prove that a model is consis-

tent with the specification for the given range of inputs, if

such attacks are indeed impossible.

3.1. The Output-Size Modulation Problem

In order to check whether the specification, Eq. (3), is

valid, one can consider a falsification approach that tries to

find counterexamples proving that Eq. (3) is false. If an

exhaustive search over S for such counterexamples fails,

the specification is indeed true. However, exhaustive search

is computationally intractable; hence, in this section we

develop gradient based algorithms that can efficiently find

counterexamples (although they may miss them even if they

exist). To develop the falsification approach, we study the

solution to the following optimization objective:

max
x2S

` (x) (4)

where S is the valid perturbation space. If the optimal solu-

tion x in the space S has `(x) > K̂, then (3) is false.

The attack spaces S we consider in this paper include

both continuous inputs (for image-to-text models) and dis-

crete inputs (for Seq2Seq models).

Continuous inputs: For continuous inputs, such as image

captioning tasks, the input is an n ⇥ m image with pixel

values normalized to be in the range [�1, 1]. x is an n⇥m

matrix of real numbers and X = [�1, 1]n⇥m. We define the

perturbation space S(x, �) as follows:

S(x, �) = {x0 2 X | kx0 � xk1  �}

i.e., the space of � perturbations of the input x in the `1

ball.
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Discrete inputs: For discrete inputs, e.g., machine trans-

lation tasks, inputs are discrete tokens in a language vocab-

ulary. Formally, given the vocabulary V of the input lan-

guage, the input space X is defined as all sentences com-

posed of tokens in V , i.e., X = {(x1, . . . , xn) | xi 2
V, n > 0}. Given an input sequence x = (x1, . . . , xn),
we define the �-perturbation space of a sequence as all se-

quences of length n with at most d� · ne tokens different

from x (i.e., � 2 [0, 1] denotes the percentage of tokens that

an attacker is allowed to modify). Formally, the perturba-

tion space S(x, �) is defined as follows:

S(x, δ) = {(x0
1, . . . , x

0
n) 2 V n |

nP

i=1

[xi 6= x0
i]  dδ · ne}

3.2. Extending Projected Gradient Descent Attacks

In the projected gradient descent (PGD) attacks [25],2

given an objective function J(x), the attacker calculates the

adversarial example by searching for inputs in the attack

space to maximize J(x). In the basic attack algorithm, we

perform the following updates at each iteration:

x0 = ΠS(x,δ) (x+ ↵rxJ(x)) (5)

where ↵ > 0 is the step size and ΠS(x,δ) denotes the pro-

jection of the attack to the valid space S(x, �). Observe that

the adversarial objective in Eq. (4) cannot be directly used

as J(x) to update x as the length of the sequence is not

a differentiable objective function. This hinders the direct

application of PGD to output-lengthening attacks. Further-

more, when the input space S is discrete, gradient descent

cannot be directly be used because it is only applicable to

continuous input spaces.

In the following, we show our extensions of the PGD

attack algorithm to handle these challenges.

Greedy approach for sequence lengthening We intro-

duce a differentiable proxy of `(x). Given an input x whose

decoder output logits are (o1, . . . , ok) (i.e., the decoded se-

quence is y = (argmax(o1), . . . , argmax(ok))), instead of

directly maximizing the output sequence length, we use a

greedy algorithm to find an output sequence whose length

is longer than k by minimizing the probability of the model

to terminate within k steps. In other words, we minimize

the log probability of the model to produce eos at any of

the timesteps between 1 to k. Formally, the proxy objective

J̃ is defined as follows:

J̃(x) =
k
P

t=1
max

⇢

ot[eos]� max
z 6=eos

ot[z], �✏

�

where ✏ > 0 is a hyperparameter to clip the loss. This

is piecewise differentiable w.r.t. the inputs x (in the same

2Here the adversarial objective is stated as maximization, so the algo-

rithm is Projected Gradient Ascent, but we stick with the PGD terminology

since it is standard in the literature

sense that the ReLU function is differentiable) and can be

efficiently optimized using PGD.

3.3. Continuous relaxation for discrete inputs

While we can apply the PGD attack with the proxy ob-

jective on the model with continuous inputs by setting the

projection function ΠS(x,δ) as the Euclidean projection, we

cannot directly update discrete inputs. To enable a PGD-

type attack in the discrete input space, we use the Gumbel

trick [18] to reparameterize the input space to perform con-

tinuous relaxation of the inputs.

Given an input sequence x = (x1, . . . , xn), for each

xi, we construct a distribution ⇡i 2 R
|V | initialized with

⇡i[xi] = 1 and ⇡i[z] = �1 for all z 2 V \ {xi}. The soft-

max function applied to ⇡i is a probability distribution over

input tokens at position i with a mode at xi. With this repa-

rameterization, instead of feeding x = (x1, . . . , xn) into

the model, we feed the Gumbel softmax sampling from the

distribution (u1, . . . , un). The sample x̃ = (x̃1, . . . , x̃n) is

calculated as follows:

ui ⇠ Uniform(0, 1); gi = � log(� log(ui))

p = softmax(⇡); x̃i = softmax( gi+log pi

τ
)

where ⌧ is the Gumbel-softmax sampling temperature that

controls the discreteness of x̃. With this relaxation, we per-

form PGD attack on the distribution ⇡ at each iteration.

Since ⇡i is unconstrained, the projection step in (5) is un-

necessary.

When the final ⇡0 = (⇡0
1, . . . ,⇡n) is obtained from the

PGD attack, we draw samples x0
i ⇠ Categorical(⇡i) to get

the final adversarial example for the attack.

4. Verified Bound on Output Length

While heuristics approaches can be useful in finding at-

tacks, they can fail due to the difficulty of optimizing non-

differentiable nonconvex functions. These challenges show

up particularly when the perturbation space is small or when

the target model is trained with strong bias in the training

data towards short output sequences (e.g., the Show-and-

Tell model as we will show in Section 6). Thus, we design

a formal verification approach for complete reasoning of the

output-size modulation problem, i.e., finding provable guar-

antees that no input within a certain set of interest can result

in an output sequence of length above a certain threshold.

Our approach relies on counterexample search using in-

telligent brute-force search methods, taking advantage of

powerful modern integer programming solvers [15]. We en-

code all the constraints that an adversarial example should

satisfy as linear constraints, possibly introducing additional

binary variables. Once in the right formalism, these can be

fed into an off-the-shelf Mixed Integer Programming (MIP)

solver, which provably solves the problem, albeit with a po-

tentially large computational cost. The constraints consist
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of four parts: (1) the initial restrictions on the model inputs

(encoding S(x, �)), (2) the relations between the different

activations of the network (implementing each layer), (3)

the decoding strategy (connection between the output logits

and the inputs at the next step), and (4) the condition for it

being a counterexample (ie. a sequence of length larger than

the threshold). In the following, we show how each part of

the constraints is encoded into MIP formulas.

Our formulation is inspired by pior work on encoding

feed-forward neural networks as MIPs [3, 7, 32]. The im-

age captioning model we use consists of an image embed-

ding model, a feedforward convolutional neural network

that computes an embedding of the image, followed by a

recurrent network that generates tokens sequentially start-

ing with the initial hidden state set to the image embedding.

The image embedding model is simply a sequence of lin-

ear or convolutional layers and ReLU activation functions.

Linear and convolutional layers are trivially encoded as lin-

ear equality constraints between their inputs and outputs,

while ReLUs are represented by introducing a binary vari-

able and employing the big-M method [16]:

xi = max (x̂i, 0) ) �i 2 {0, 1}, xi � 0 (6a)

xi  ui · �i, xi � x̂i (6b)

xi  x̂i � li · (1� �i) (6c)

with li and ui being lower and upper bounds of x̂i which

can be obtained using interval arithmetic (details in [3]).

Our novel contribution is to introduce a method to extend

the techniques to handle greedy decoding used in recurrent

networks. For a model with greedy decoding, the token with

the most likely prediction is fed back as input to the next

time step. To implement this mechanism as a mixed integer

program, we employ a big-M method [36]:

omax =max
y2Y

(oy)

) omax � oy, �y 2 {0, 1} 8y 2 Y (7a)

omax  oy + (u� ly)(1� �y) 8y 2 Y (7b)
X

y2Y

�y = 1 (7c)

with ly, uy being a lower/upper bound on the value of oy
and u = maxy2Y uy (these can again be computed us-

ing interval arithmetic). Implementing the maximum in

this way gives us both a variable representing the value of

the maximum (omax), as well as a one-hot encoding of the

argmax (�y). If the embedding for each token is given by

{embi | i 2 Y}, we can simply encode the input to the fol-

lowing RNN timestep as
P

y2Y �y · emby , which is a linear

function of the variables that we previously constructed.

With this mechanism to encode the greedy decoding, we

can now unroll the recurrent model for the desired number

of timesteps. To search for an input x with output length

` (x) � K̂, we unroll the recurrent network for K̂ steps

and attempt to prove that at each timestep, eos is not the

maximum logit, as in (2). We setup the problem as:

max min
t=1..K̂



max
z 6=eos

ot[z]� ot[eos]

�

(8)

where o(k) represents the logits in the k-th decoding step.

We use an encoding similar to the one of Equation (7) to

represent the objective function as a linear objective with

added constraints. If the global optimal value of Eq. (8)

is positive, this is a valid counterexample: at all timesteps

t 2 [1..K̂], there is at least one token greater than the eos

token, which means that the decoding should continue. On

the other hand, if the optimal value is negative, that means

that those conditions cannot be satisfied and that it is not

possible to generate a sequence of length greater than K̂.

The eos token would necessarily be predicted before. This

would imply that our robustness property is True.

5. Target Model Mechanism

We use image captioning and machine translation mod-

els as specific target examples to study the output length

modulation problem. We now introduce their mechanism.

Image captioning models The image captioning model

we consider is an encoder-decoder model composed of two

modules: a convolution neural network (CNN) as an en-

coder for image feature extraction and a recurrent neural

network (RNN) as a decoder for caption generation [34].

Formally, the input to the model x is an m⇥ n sized im-

age from the space X = [�1, 1]m⇥n, the CNN-RNN model

computes the output sequence as follows:

i0 = CNN(x); h0 = 0

ot, ht+1 = RNNCell(it, ht)
yt = argmax(ot); it+1 = emb(yt)

where emb denotes the embedding function.

The captioning model first run the input image x through

a CNN to obtain the image embedding and feed it to the

RNN as the initial input i0 along with the initial state h0.

At each decode step, the RNN uses the input it and state ht

to compute the new state ht+1 as well as the logits ot repre-

senting the log-probability of the output token distribution

in the vocabulary. The output yt is the token in the vocabu-

lary with highest probability based on ot, and it is embedded

into the continuous space using an embedding matrix Wemb

as Wemb[yt]. The embedding is fed to the next RNN cell as

the input for the next decoding step.

Machine translation models The machine translation

model is an encoder-decoder model [30, 9] with both the
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encoder and the decoder being RNNs. Given the vocab-

ulary Vin of the input language, the valid input space X
is defined as all sentences composed of tokens in Vin, i.e.,

X = {(x1, . . . , xn) | xi 2 V, n > 0}. Given an input

sequence x = (x1, . . . , xn), the model first calculates its

embedding f(x) RNN as follows (he
t and iet denote the en-

coder hidden states and the inputs at the t-th time step, re-

spectively. embe denotes the embedding function for each

token in the vocabulary). The model then uses f(x) as the

initial state h0 for the decoder RNN to generate the output

sequence, following the same approach as in the image cap-

tioning model.

he
0 = 0; iet = embe(xt)

he
t = RNNCelle(iet , h

e
t�1); f(x) = he

n

6. Experiments

We consider the following three models, namely, Multi-

MNIST captioning, Show-and-Tell [34], and Neural Ma-

chine Translation (NMT) [30, 9, 2] models.

6.1. Details of models and datasets

Multi-MNIST. The first model we evaluate is a mini-

mal image captioning model for Multi-MNIST dataset. The

Multi-MNIST dataset is composed from the MNIST dataset

(Figure 1 left). Each image in the dataset is composed

from 1-3 MNIST images: each MNIST image (28 * 28)

is placed on the canvas of size (28 * 112) with random bias

on the x-axis. The composition process guarantees that ev-

ery MNIST image is fully contained in the canvas without

overlaps with other images. The label of each image is the

list of MNIST digits appearing in the canvas, ordered by

their x-axis values. The dataset contains 50,000 training

images and 10,000 test images, where the training set is

constructed from MNIST training set and the test set is con-

structed from MNIST test set. The images are normalized

to [�1, 1] before feeding to the captioning model. For this

dataset, we train a CNN-RNN model for label prediction.

The model encoder is a 4-layers CNN (2 convolution layers

and 2 fully connected layers with ReLU activation functions

applied in between). The decoder is a RNN with ReLU ac-

tivation. Both the embedding size and the hidden size are

set to 32. We train the model for 300 steps with Adam opti-

mizer based on the cross-entropy loss. The model achieves

91.2% test accuracy, and all predictions made by the model

on the training set have lengths no more than 3.

Show-and-Tell. Show and Tell model [34] is an image

captioning model with CNN-RNN encoder-decoder archi-

tecture similar to the Multi-MNIST model trained on the

MSCOCO 2014 dataset [23]. Show-and-Tell model uses

Inception-v3 as the CNN encoder and an LSTM for cap-

tion generation. We use a public version of the pretrained

model3 for evaluation. All images are normalized to [�1, 1]

3https://github.com/tensorflow/models/

and all captions in the dataset are within length 20.

NMT. The machine translation model we study is a

Seq2Seq model [30, 9] with the attention mechanism [2]

trained on the WMT15 German-English dataset. The model

uses byte pair segmentation (BPE) subword units [28] as

vocabulary. The input vocabulary size is 36, 548. The

model consists of 4-layer LSTMs of 1024 units with a bidi-

rectional encoder, with the embedding dimension set to

1024. We use a publicly available checkpoint4 with 27.6

BLEU score on the WMT15 test datasets in our evaluation.

At training time, the model restricts the maximum decoding

length to 50.

6.2. Adversarial Attacks

Our first experiment studies whether adversarial inputs

exist for the above models and how they affect model de-

coding. For each model, we randomly select 100 inputs

from the development dataset as attack targets, and com-

pare the output length distributions from random perturba-

tion and PGD attacks.

Multi-MNIST We evaluate the distribution of output

lengths of images with an `
1 perturbation radius of

� 2 {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} using both random

search and PGD attack. In random search, we generate

10,000 random images within the given perturbation radius

for each image in the target dataset as new inputs to the

model. In PGD attack, the adversarial inputs are obtained

by running 10,000 gradient descent steps with an learning

rate of 0.0005 using the Adam Optimizer.

Neither of the attack methods can find any adversarial

inputs for � 2 {0.001, 0.005, 0.01} perturbation radius (i.e.,

no perturbation is found for any images in the target dataset

within the above � to generate an output sequence longer

than the original one). Figure 2 shows the distribution of the

output lengths for images with different perturbation radius.

Results show that the PGD attack is successful at finding

attacks that push the distribution of output lengths higher,

particularly at larger values of �. Examples of adversarial

inputs found by the model are shown in Figure 1.

Show-and-Tell For the Show-and-Tell model, we gener-

ate attacks within an `
1 perturbation radius of � = 0.5 with

both random search and PGD attack on 500 images ran-

domly selected from the development dataset. However, ex-

cept one adversarial input found by PGD attack that would

cause the model to produce an output with size 25, no other

adversarial inputs are found that can cause the model to pro-

duce outputs longer than 20 words, which is the training

length cap. Our analysis shows that the difficulty of attack-

ing the model is resulted from its strong bias on the output

4https://github.com/tensorflow/nmt
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Figure 1. Multi-MNIST examples (left), adversarial examples found by PGD attack (mid), and their differences. For the first group, the

model correctly predicts label l1 = [6, 1] on the original image but predicts l01 = [6, 1, 1] for its corresponding adversarial input. Predictions

on the original/adversarial inputs made by model for the second group are l2 = [0, 7, 4], l02 = [0, 1, 4, 3], and l3 = [3], l03 = [3, 3, 5, 3] for

the third group. The adversarial inputs in the first/second/third groups are found within the perturbation radius δ1 = 0.1, δ2 = 0.25, δ3 =
0.25.

Figure 2. The distribution of output length for random search (de-

noted as Rand) and PGD attack with different perturbation radius

δ. The x-axis denotes the output length and y-axis denotes the

number of outputs with the corresponding length. δ = 0 (no per-

turbation allowed) refers to the original output distribution of the

target dataset.

sequence distribution and the saturation of sigmoid gates in

the LSTM decoder. This result is also consistent with the

result found by [5] that Show-and-Tell model is “only able

to generate relevant captions learned from the training dis-

tribution”.

NMT We evaluate the NMT model by comparing the out-

put length distribution from adversarial examples gener-

ated from random search and PGD attack algorithms. We

randomly draw 100 input sentences from the development

dataset. The maximum input length is 78 and their corre-

sponding translations made by the model are all within 75

tokens. We consider the perturbation � 2 {0.3, 0.5, 1.0}.

1. Random Search. In each run of the random attack,

given an input sequence with length n, we first ran-

domly select d� · ne locations to modify, then ran-

domly select substitutions of the tokens at these lo-

cations from the input vocabulary, and finally run the

NMT model on the modified sequence. We run 10,000

random search steps for the 100 selected inputs, and

show the distributions of all outputs obtained from the

translation (in the total 1M output sequences).

2. PGD Attack. In PGD attack, we also start by randomly

selecting d� · ne locations to modify for each input

sequence with length n. We then run 800 iterations

of PGD attack with Adam optimizer using an initial

learning rate of 0.005 to find substitutions of the to-

kens at these selected locations. We plot the output

length obtained from running these adversarial inputs

through the translation model.

Figure 3 shows the distribution of output sequence

lengths obtained from random search methods with dif-

ferent �. We aggregate all sequences with length longer

than 100 into the group ‘>100’ in the plot. Results show

that even random search approach could often craft inputs

such that the corresponding output lengths are more than

75 and occasionally generates sentences with output length

over 100. The random search algorithm finds 79, 11, 3 for

� =0.3, 0.5, 1, respectively, among the 1M translations that

are longer than 100 tokens (at small �, the search space is

more restricted, and random search has a higher success

rate of finding long outputs). Notably, the longest sequence

found by the random search is a sequence with output length

312 tokens, where the original sequence is only 6.

Figure 3. The histogram representing the output length distribu-

tion of the NMT model using random search with different pertur-

bations (δ 2 {0.3, 0.5, 1}). The x-axis shows the output length.

y-axis values are divided by 10,000, the number of random pertur-

bation rounds per image.

Figure 4 shows the result from attacking the NMT model

with PGD attack. Results show that PGD attack has rel-

atively low success rate at lower perturbations compared
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Figure 4. The histogram representing the output length distribution

of the NMT model under PGD attack for different δ. x-axis shows

the output length and y-axis shows the number of instances with

the corresponding length.

(I) Die Waffe wird ausgestellt und durch den Zaun übergeben.

(O) The weapon is issued and handed over by the fence . eos

(I0) Die namen name descri und ames utt origin i.e. meet grammatisch .

(O0) names name names name names grammatically name names names

names names names names names names names names names names

names names names names names names names names names names

names names names names names names names names names names

names names names names names names names names names names

names names names names names names names names names names

names names names names names names names names names names

names names names names names names names names names eos

Figure 5. An example of German to English translation where I,O

refer to an original sequence in the dataset and the corresponding

translation made by the model. I 0, O0 refer to an adversarial exam-

ple found by PGD attack and the corresponding model translation.

to larger perturbations. With an unconstrained perturbation

� = 100%, PGD attack algorithm discovers more adversar-

ial inputs whose outputs are longer than 100 tokens (10%
among all attacks), which is 1000⇥ more often than ran-

dom search. As an extreme case, PGD attack discovered

an adversarial input with length 3 whose output length is

575. Examples of adversarial inputs and their correspond-

ing model outputs are shown in Figure 5 and the Appendix;

we find out that a common feature of the long outputs pro-

duced by the translation model is that the output sequences

often end with long repetitions of one (or a few) words.

To analyze the bottleneck of PGD attack on the NMT

model, we further run a variation of the PGD attack where

the attack space is the (continuous) word embedding space

as opposed to the (discrete) token space: we allow the at-

tacker to directly modify token embeddings at selected at-

tack locations to any other vector. PGD attack on this vari-

ation achieves a 100% success rate to find adversarial token

embeddings such that the model outputs are longer than 500

tokens. This indicates that the discrete space is a bottleneck

for consistently finding stronger attacks.

6.3. Verification

Our implementation of the verification algorithm using

the mixed integer programming (8) is implemented using

SCIP [15]. We run our verification algorithm on the Multi-

Figure 6. Proportion of samples being provably robust (in blue),

vulnerable (in red) or of unknown robustness status (in gray) to an

attack attempting to make the model generate an output sequence

longer than the ground truth, as a function of the perturbation ra-

dius allowed to the attacker. For small radiuses, the MIP can prove

that no attacks can be successful. For large radiuses, we are able

to find successful attacks.

MNIST dataset, attempting to formally prove the robust-

ness of the model to attacks attempting to generate an out-

put longer than the ground truth. For each input image, we

set a timeout of 30 minutes for the solver.

The results in Figure 6 show that our verification algo-

rithm is able to verify formally that no attacks exists for

small perturbation radiuses. However, as the perturbation

radius increases, our verification algorithm times out and is

not able to explore the full space of valid perturbations and

thus cannot decide whether attacks exists in the given space.

For this reason, the number of robust samples we report is

only a lower bound on the actual number of robust samples.

Conversely, the vulnerable samples that we exhibit give us

an upper bound on the number of those robust samples. As

shown by the large proportion of samples of unknown sta-

tus, there is currently still a gap between the capabilities of

formal verification method and attacks.

7. Conclusion

In this paper, we introduce the existence and the con-

struction of the output-length modulation problem. We pro-

pose a differentiable proxy that can be used with PGD to

efficiently find output-lengthening inputs. We also develop

a verification approach to formally prove certain models

cannot produce outputs greater than a certain length. We

show that the proposed algorithm can produce adversarial

examples that are 50 times longer than the input for ma-

chine translation models, and the image-captioning model

can conform the output size is less than certain maximum

length using the verification approach. In future work, we

plan to study adversarial training of sequential output mod-

els using the generated attacks, to models that are robust

against output lengthening attacks, and further, verify this

formally.
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