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Abstract

In this paper, we present an accurate and scalable ap-

proach to the face clustering task. We aim at grouping a

set of faces by their potential identities. We formulate this

task as a link prediction problem: a link exists between two

faces if they are of the same identity. The key idea is that

we find the local context in the feature space around an in-

stance (face) contains rich information about the linkage re-

lationship between this instance and its neighbors. By con-

structing sub-graphs around each instance as input data,

which depict the local context, we utilize the graph convo-

lution network (GCN) to perform reasoning and infer the

likelihood of linkage between pairs in the sub-graphs. Ex-

periments show that our method is more robust to the com-

plex distribution of faces than conventional methods, yield-

ing favorably comparable results to state-of-the-art meth-

ods on standard face clustering benchmarks, and is scal-

able to large datasets. Furthermore, we show that the pro-

posed method does not need the number of clusters as prior,

is aware of noises and outliers, and can be extended to a

multi-view version for more accurate clustering accuracy.

1. Introduction

In this paper, we study the problem of clustering faces

according to their underlying identities. We assume no

prior of the distribution of face representations or the num-

ber of identities. Face clustering is a fundamental task in

face analysis and has been extensively studied in previous

works [38, 27, 22, 29]. Some key applications include:

grouping and tagging faces in desktop / online photo albums

for photo management [38], organizing large scale face im-

age / video collections for fast retrieval in time-sensitive

scenarios like forensic investigations [19], and automati-

cally data cleaning / labeling for constructing large-scale

datasets [26, 12, 34].

Conventional clustering methods suffer from the com-

plex distribution of face representations, because they make
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Figure 1. High-level idea of our method. (a): This paper aims

to estimate whether two nodes should be linked. (b-d): Compar-

ison of three linkage estimation methods. (b): Directly thresh-

olding the l2 distance, without considering context. (c): Using

a heuristic mthod for linkage estimation based on context. (d):

Our method, i.e., learning the linkage likelihood with a parametric

model, which is context-based.

impractical assumptions on data distribution. For instance,

K-Means [24] requires the clusters to be convex-shaped,

Spectral Clustering [28] needs different clusters to be bal-

anced in the number of instances, and DBSCAN [10] as-

sumes different clusters to be in the same density. In con-

trast, a family of linkage-based clustering methods make no

assumption on data distribution and achieve higher accu-

racy. As shown in Fig.1 (a), linkage-based methods aim at

predicting whether two nodes (or clusters) should be linked

(are of the same identity). Fig.1 (b) presents a naive solu-

tion to this problem by directly linking node pairs whose

l2 distance is under a certain threshold. This is apparently

not a good solution since the densities of clusters vary a

lot. Therefore, more sophisticated metrics are designed to

compute the linkage likelihood, such as the Approximate

Rank-Order Distance (see Fig.1 (c)).
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Instead of computing the linkage likelihood by heuristic

metrics, we propose to learn to predict if two nodes should

be linked. As the key idea of this work, we find that the

linkage likelihood between a node and its neighbors can be

inferred from its context. In order to leverage the valuable

information in the context of nodes, we propose a learnable

clustering method based on the graph convolution network

(GCN), and the main idea is shown in Fig.1 (d). The frame-

work of the proposed method can be summarized as follow.

Firstly, we formulate clustering as a link prediction prob-

lem [36]. That is, a link exists between two nodes when

their identity labels are identical. Secondly, we only predict

linkages between an instance and its nearest neighbors. Ac-

cordingly, we construct an Instance Pivot Subgraph around

each instance (pivot), to depict the local context, with each

node modeling a pivot-neighbor pair. From IPS, we can per-

form reasoning to infer which pivot-neighbor pair should

be linked and we adopt GCN to learn this task. Finally,

GCN outputs a set of linkage likelihood, and we transitively

merge linked nodes to obtain the clusters.

We show that the proposed method is accurate when

compared with the state-of-the-art methods and is scal-

able in terms of computational complexity. The proposed

method learns to generate linkage likelihood automatically,

and results in superior performance to other linkage-based

methods like ARO [27] in which the linkage likelihood is

computed by heuristic rules. In addition, our approach is

aware of noises and outliers, does not need the number of

clusters as input, and is easy to be extended to a multi-view

version for utilizing data from different sources.

The remainder of this paper is organized as follows.

First, we briefly review the related works in Section 2.

Then, Section 3 introduces the proposed clustering algo-

rithm. The experimental results are presented in Section

4 and conclusions are given in Section 5.

2. Related Work

Face Clustering. Due to large variations in pose, oc-

clusion, illumination and number of instances, face clusters

vary significantly in size, shape and density. The complex

distribution of face representations makes it unsuitable to

apply classic clustering algorithms like K-Means [24] and

spectral clustering [28], because these methods have rigid

assumptions on data distribution. Several papers develop

clustering algorithms based on Agglomerative Hierarchical

Clustering (AHC) [38, 22, 23], which is robust in group-

ing data with complex distribution. Lin et al. [23] pro-

pose the proximity-aware hierarchical clustering (PAHC)

which exploits a linear SVM to classify local positive in-

stances and local negative instances. Zhu et al. [38] pro-

pose a cluster-level affinity named Rank-Order distance to

replace the original l1/l2 distance, and demonstrate its abil-

ity in filtering out noise / outliers. Lin et al. [22] also design

a density-aware cluster-level affinity using SVDD [30] to

deal with density-unbalanced data. All the above methods

yield good performance on unconstrained face clustering,

but their computation complexity remains a problem, limit-

ing their application in large-scale clustering.

Fortunately, the Approximate Rank-Order Clustering

(ARO) [27] provides an efficient framework for large-scale

clustering. ARO aims at predicting whether a node should

be linked to its k Nearest Neighbors (kNN), and transitively

merges all linked pairs. Therefore, the computational com-

plexity of ARO is only O(kn). The kNN search process can

be also accelerated by the Approximate Nearest Neighbor

(ANN) search algorithm. Accordingly, the overall complex-

ity is O(n log n) or O(n2), depending on whether we set k
as a constant or let it increase with n. ARO is much more

efficient than AHC based algorithms. Shi et al. [29] also

adopt ANN to expand their ConPac algorithm to a scalable

version. In this work, since the proposed method is based

on kNN, it is suitable to exploit this framework as well.

Link Prediction is a key problem in social network anal-

ysis [21, 1, 20, 25, 36]. Given a complex network which is

organized as a graph, the goal is to predict the likelihood of

link between two member nodes. To estimate the likelihood

of links, some previous works like PageRank [4] and Sim-

Rank [16] analyze the entire graph, while others, such as

preferential attachment [3] and resource allocation [37], cal-

culate the link likelihood of the given nodes only from their

neighbors. Zhang and Chen [35, 36] argue that it is suffi-

cient to compute link likelihood only from the local neigh-

bor of a node pair, and propose a Weisfeiler-Lehman Neural

Machine [35] and a graph neural network [36] to learn gen-

eral graph structure features from local sub-graphs. It is

closely related to our work, since the clustering task can be

reduced to a link prediction problem, and we also exploit

graph neural networks to learn from local graphs.

Graph convolutional network (GCN). In many ma-

chine learning problems, the input can be organized as

graphs. Considerable research effort [5, 8, 18, 31, 13]

has been devoted to designing the convolutional neural net-

work for graph-structured data. According to the defini-

tion of convolution on graph data, GCNs can be categorized

into spectral methods and spatial methods. Spectral based

GCNs [5, 8, 18] generalize convolution based on Graph

Fourier Transform, while spatial based GCNs [31, 13]

directly perform manually-defined convolution on graph

nodes and their neighbors. In terms of applications, GCNs

can handle problems in both the transductive setting [8, 18]

and the inductive setting [13, 31]. In the transductive set-

ting, training data and testing data are nodes in a same fixed

graph, while in the inductive setting, the model needs to in-

ference across different graphs. In this work, we propose

a spatial-based GCN to solve link prediction problem. The

designed GCN performs graph node classification in the in-
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k 5 10 20 40 80 160

F-measure 0.874 0.911 0.928 0.946 0.959 0.970

NMI 0.960 0.969 0.975 0.981 0.986 0.990

Table 1. Upper bound of face clustering accuracy on the IJB-B-

512 dataset. We use two metrics for evaluation, F-measure and

NMI (see Section 4.1). The upper bound is obtained by connecting

each instance with its k nearest neighbors if the neighbor is of the

same identity with this instance. We find that the upper bound is

reasonably high, indicating that kNN method could be effective

while, most importantly, being efficient.

ductive setting.

3. Proposed Approach

3.1. Overview

Problem definition. Assume that we have the fea-

tures of a collection of face images X = [x1, ...,xN ]T ∈
R

N×D, where N is the number of images and D the di-

mension of the features, the goal of face clustering is to

assign a pseudo label yi to each i ∈ {1, 2, ..., N} so that

instances with the same pseudo label form a cluster. To

resolve this problem, we follow the link-based clustering

paradigm, which aims at predicting the likelihood of link-

age between pairs of instances. Accordingly, clusters are

formed among all the instances connected by linked pairs.

Motivation. The motivation behind this work is that we

find we only need to compute the linkage likelihood be-

tween an instance and its k nearest neighbors, and it suf-

fices to produce decent clustering results. In Table 1, we

show an upper bound of clustering performance with dif-

ferent values of k. To obtain the upper bound, we directly

connect each instance with its kNN if the neighbor is of the

same identity with this instance. The results show that the

upper bound is quite high under various values of k. This

indicates the potential effectiveness of predicting linkages

between an instance and its kNN, rather than among all po-

tential pairs. The advantage of adopting such a strategy is

that we could obtain reasonably high clustering accuracy

while the system has the benefit of being efficient.

Pipeline. This work focuses on the efficiency and ac-

curacy of a face clustering system. So we adopt the idea

of predicting linkages between an instance and its kNNs.

Because predicting a linkage is based on its context, to

make linkage prediction possibly accurate, we design a lo-

cal structure named Instance Pivot Subgraphs (IPS). An IPS

is a subgraph centered at a pivot instance p. IPS is com-

prised of nodes including the kNNs of p and the high-order

neighbors up to h-hop of p. Importantly, we subtract the

feature of pivot p from all these nodes, so that each result-

ing node feature encodes the linkage relationship between a

pivot-neighbor pair. We present the framework of the pro-

posed approach in the following three steps, and an illustra-

Node feature −=
(a) Data collection (b) Finding nodes for IPS

(c) Pivot Normalization

ID-1

ID-2

ID-3

Pivot

1-hop
neighbors

2-hop 
neighbors

(d) Adding edges for IPS

𝑢NN linkage

Figure 2. Construction of Instance Pivot Subgraph (IPS). (a) The

collection of face representations. (b) We use each instance p as

a pivot, and find its neighbors up to h-hop as the nodes of IPS.

(c) These node features are normalized by subtracting the feature

of the pivot. (d) For a node in IPS, we find its uNNs from the

entire collection. We add an edge between a node and its uNNs

if the neighbor is also a node of IPS. In this figure, we set h =

2, k1 = 10, k2 = 2 and u = 3, where k1 is the number of 1-hop

neighbors, and k2 is the number of of 2-hop neighbors. Note that

an IPS based on pivot p does not contain p. The IPS for pivot p is

used to predict the linkage between p and every node in IPS.

tion is shown in Fig. 3:

• We use every instance as a pivot, and construct an In-

stance Pivot Subgraph (IPS) for it. The construction of

IPS is described in detail in Section 3.2.

• Given an IPS as input data, we apply graph convolution

networks (GCNs) for reasoning on it and the network

outputs a score for every node, i.e., linkage likelihood

between the corresponding pivot-neighbor pair. The

mechanism of GCN is presented in Section 3.3.

• The above steps output a set of weighted edges among

the entire graph, where the weights are the linkage

likelihood. Finally we transitively merge linked in-

stances into clusters, according to the linkage likeli-

hood. Details are presented in Section 3.4.

3.2. Construction of Instance Pivot Subgraph

We estimate the linkage likelihood between two face im-

ages (nodes) based on their context in a graph. In this pa-

per, we propose to construct the Instance Pivot Subgraph

(IPS) as context. IPS is generated by three steps. First, we

locate all the nodes of IPS. Then, we normalize the node

features by subtracting the feature of the pivot. Finally, we

add edges among nodes. An illustration of Instance Pivot

Subgraph generation is presented in Fig. 2.
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Figure 3. Framework of our method. We use every instance as a pivot, and construct an Instance Pivot Subgraph (IPS) for it. Each node in

IPS models the linkage (similarity) between the pivot and the corresponding neighbor. We apply graph convolutions on IPS and classify

nodes in IPS into either positive or negative. If a node is classified as positive, the corresponding neighbor should be linked to the pivot.

After determining all the linkages, we transitively merge linked instances to obtain the final clusters.

Step 1: Node discovery. Given a pivot p, we use its

neighbors up to h-hop as nodes for IPS. For each hop, the

number of picked nearest neighbors may vary. We denote

the number of nearest neighbors in the i-th hop as ki, i =
1, 2, ..., h. For example, let p be the pivot, the node set Vp of

the IPS Gp(Vp, Ep) with h = 3 and k1 = 8, k2 = 4, k3 = 2
consists of 8 nearest neighbors of p, 4 nearest neighbors

of each 1-hop neighbors, and 2 nearest neighbors of each

two-hop neighbors. Note that the pivot p itself is excluded

from Vp. When we do so, the high-order neighbors provide

auxiliary information of the local structure of the context

between a pivot and its neighbor. For instance, for p and

one of its neighbors q, if the kNN of q are consistently far

away from p, then the linkage likelihood between p and q is

expected be small.

Step 2: Node feature normalization. Now we have the

pivot instance p, the node set Vp and their node features xp

and {xq|q ∈ Vp}. In order to encode the pivot informa-

tion into the node features of IPS, we normalize the node

features by subtracting xp,

Fp = [. . . ,xq − xp, . . .]
T , for all q ∈ Vp, (1)

where we use Fp ∈ R
|Vp|×D to represent the normalized

node features. A node feature in IPS is the residual vector

between the feature of the pivot p and the feature of the

corresponding neighbor q.

Step 3: Adding edges among nodes. The last step is

to add edges among the nodes. For a node q ∈ Vp, we

first find the top u nearest neighbors among all instances

in the original entire collection. If a node r of the uNNs

appears in Vp, we add an edge (q, r) into the edge set Ep.

This procedure ensures the degree of nodes does not vary

too much. Finally we represent the topological structure of

IPS by an adjacency matrix Ap ∈ R
|Vp|×|Vp| and the node

feature matrix Fp. We neglect the subscript p hereafter.

3.3. Graph Convolutions on IPS

The context contained in IPS (edges among the nodes)

is highly valuable for determining if a node is is positive

(should link to the pivot) or negative (should not link to the

pivot). To leverage it, we apply the graph convolution net-

works (GCN) [18] with slight modifications to perform rea-

soning on IPS. A graph convolution layer takes as input a

node feature matrix X together with an adjacency matrix

A and outputs a transformed node feature matrix Y . In the

first layer, the input node feature matrix is the original node

feature matrix, X = F . Formally, a graph convolution

layer in our case has the following formulation,

Y = σ([X‖GX]W ), (2)

where X ∈ R
N×din , Y ∈ R

N×dout , N is the number of

nodes, and din, dout are the dimension of input / output

node features. G = g(X,A) is an aggregation matrix of

size N × N and each row is summed up to 1, and g(·)
is a function of X and A. Operator ‖ represents matrix

concatenation along the feature dimension. W is the learn-

able weight matrix of the graph convolution layer of size

2din × dout, and σ(·) is the non-linear activation function.

The graph convolution operation can be broken down

into two steps. In the first step, by left multiplying X by
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G, the underlying information of nodes’ neighbors is ag-

gregated. Then, the input node features X are concatenated

with the aggregated information GX along the feature di-

mension. In the second step, the concatenated features are

transformed by a set of linear filters, whose parameter W

is to be learned. The following three strategies g(·) for the

aggregation operation is explored.

• Mean Aggregation. The aggregation matrix G =
Λ−

1

2AΛ−

1

2 , where A is the adjacency matrix and Λ
is a diagonal matrix with Λii =

∑

j Aij . The mean

aggregation performs average pooling among neigh-

bors.• Weighted Aggregation. We replace each non-zero el-

ement in A with the corresponding cosine similarity,

and use softmax function to normalize these non-zero

values along each row. The weighted aggregation per-

forms weighted average pooling among neighbors.

• Attention Aggregation. Similar to the graph atten-

tion network [31], we attempt to learn the aggrega-

tion weights of neighbors. That is, the elements in

G are generated by a two-layer MLP using the fea-

tures of a pair of pivot-neighbor nodes as input. The

MLP is trained end-to-end. The attention aggregation

performs weighted average pooling among neighbors,

where the weights are learned automatically.

The GCN used in this paper is the stack of four graph

convolution layers activated by the ReLU function. We

then use the cross-entropy loss after the softmax activation

as the objective function for optimization.In practice, we

only backpropagate the gradient for the nodes of the 1-hop

neighbors, because we only consider the linkage between a

pivot and its 1-hop neighbors. This strategy not only leads

to considerable acceleration compared with the fully super-

vised case, but also brings about accuracy gain. The reason

is that the high-order neighbors are mostly negative, so the

positive and negative samples are more balanced in 1-hop

neighbors than in all the neighbors. For testing, we only

perform node classification on the 1-hop nodes as well.

To demonstrate the working mechanism of graph convo-

lutions, we design a toy example with 2-D input node fea-

ture and two graph convolution layers. The output dimen-

sion of each layer, d1 and d2, is set to 2 for visualization

purpose. In Fig. 4, we show how the output embeddings

in each layer vary with training iterations. After each graph

convolution layer, positive nodes (red) are grouped closer,

and the negative nodes (blue and green) form another group.

This is because messages of neighbors are passed to nodes

in the aggregation step, and the message from neighbors

acts as a smoothness for the embedding that pulls linked

nodes together, like these nodes are connected by springs.

Meanwhile, the supervision signal pushes away the group

of positive nodes and the group of negative nodes. Finally,

the system reaches its equilibrium point, where positive and

Input 

Co
nv
1

t=0

Co
nv
2

t=20 t=40 t=60 t=80

Figure 4. A toy example to illustrate the working mechanism of

graph convolutions. Different colors refer to different IDs. The

pivot is circled. Training gradients are bac-kpropagated for 1-

hop neighbors (larger nodes) but not for higher-order neighbors

(smaller nodes). We observe that, after each graph convolution,

positive and negative groups become farther from each other and

nodes in the same category become closer .

negative groups are far from each other and nodes in the

same category are close.

3.4. Link Merging

To apply clustering on a collection of face data, we loop

over all the instances, construct an IPS with each instance as

the pivot, and predict the likelihood of linkage (the softmax

probability output by the node classifier) between the in-

volved instances and the pivot. As a result, we have a set of

edges weighted by the linkage likelihood. To acquire clus-

ters, a simple approach is to cut all the edges whose weight

is below some threshold and use Breath First Search (BFS)

to propagate pseudo labels, as shown in Fig. 3. However,

the performance can be sensitively affected by the threshold

value. We accordingly adopt the pseudo label propagation

strategy proposed in [34]. In each iteration, the algorithm

cuts edges below some threshold and maintain connected

clusters whose size are larger than a pre-defined maximum

size in a queue to be processed in the next iteration. In the

next iteration, the threshold for cutting edges is increased.

This process is iterated until the queue is empty, which

means all the instances are labeled with pseudo labels.

4. Experiment

4.1. Evaluation Metrics and Datasets

To evaluate the performance of the proposed cluster-

ing algorithm, we adopt two mainstream evaluation met-

rics: normalized mutual information (NMI) and BCubed F-

measure [2]. Given Ω the ground truth cluster set, C the

predicted cluster set, NMI is defined as,

NMI(Ω,C) =
I(Ω,C)

√

H(Ω)H(C)
, (3)
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Figure 5. (a) The sensitivity of F-measure on IJB-B-512 to k1 and

k2, with constant u = 10. (b) The sensitivity of F-measure on to

parameter u, with different combination of k1 and k2.

where H(Ω) and H(C) represent the entropies for Ω and

C, and I(Ω,C) is the mutual information.

BCubed F-measure [2] is a more practical measurement

which takes both precision and recall into consideration.

Let us denote L(i) and C(i) as the ground truth label and

cluster label, respectively, we first define the pairwise cor-

rectness as,

Correct(i, j) =

{

1, if L(i) = L(j) and C(i) = C(j)
0, otherwise

.

(4)

The BCubed Precision P and BCubed Recall R are respec-

tively defined as,

P = Ei[Ej:C(j)=C(i)[Correct(i, j)]], (5)

R = Ei[Ej:L(j)=L(i)[Correct(i, j)]], (6)

and the BCubed F-measure is defined as F = 2PR
P+R

.

We use separate datasets for training and testing. First,

we use ArcFace [9]1 as the face representations. This model

is trained on the union set of MS-Celeb-1M [12] and VG-

GFace2 [6] dataset. Second, for GCN training, we use a ran-

dom subset of the CASIA dataset [33] which contains 5k

identities and 200k samples. Third, for testing, we adopt the

IJB-B dataset [32] because it contains a clustering protocol.

The protocol consists of seven subtasks varying in the num-

ber of ground truth identities. We evaluate our algorithm on

three largest subtasks. In the three subtasks, the numbers

of identities are 512, 1,024 and 1,845, and the numbers of

samples are 18,171, 36,575 and 68,195, respectively.

4.2. Parameter Selection

There are three hyperparameters for IPS construction:

the number of hops h, the number of picked nearest neigh-

bors in each hop {ki}, i = 1, 2, ..., h, and the number of

linked nearest neighbors u for picking edges. We first ex-

periment with different values of h and find that h ≥ 3 does

1https://github.com/deepinsight/insightface

not bring performance gain, so we set h = 2 in the fol-

lowing experiment. Accordingly, we explore the impact of

different values ki, k2 and u. We discuss both the training

phase and the testing phase.

In the training phase, we expect more supervision signals

to be back-propagated. Since supervision is only added to

1-hop nodes, we select a large k1 = 200. In order to avoid

IPS being too large, we set a small value k2 = 10. We also

set u = 10 to ensure every 2-hop node has at least one edge.

In the testing phase, it is not necessary to keep the same

configuration with the training phase. To investigate how

k1, k2 and u influence the performance, we conduct two

group of experiments and the the results are shown in Fig. 5.

First, we keep u constant, vary k1, k2, and show how F-

measure changes on 1JB-B-512. We observe in Fig. 5 (a)

that the F-measure increases with larger k1 and k2. Larger

k1 brings more candidate links to be predicted, thus yields

higher recall. Larger k2 involves more 2-hop neighbors,

depicting the local structure of 1-hop neighbors more pre-

cisely, so the prediction is more accurate. However, the

performance reaches saturation when k1 and k2 are large

enough. For the parameter u, i.e., the linked number of

neighbors, we observe in 5 (b) that the performance is not

sensitive to the value of u.

Taking efficiency into consideration, the values of k1 and

k2 cannot be too large. We find that k1 = 80, k2 = 5, u = 5
yield a good trade-off between efficiency and performance

and use this setting in the following experiment.

4.3. Evaluation

The proposed approach is compared to the following

methods: K-means [24], Spectral Clustering [28], Ag-

glomerative Hierarchical Clustering (AHC) [15], Affinity

Propagation (AP) [11], Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) [10], Proximity-

Aware Hierarchical Clustering (PAHC) [23], Deep Density

Clustering (DDC) [22], Conditional Pair-wise Clustering

(ConPaC) [29], and Approximate Rank-Order Clustering

(ARO) [27]. For all the methods, we tune the hyperparam-

eters e.g., σ in Spectral Clustering and ǫ, n in DBSCAN ,

and report the best results. For non-deterministic algorithms

like K-means we select the best result from 100 runs.

Comparing different aggregation methods. We first

compare the aggregation strategies described in Section 3.3.

In Table 2, GCN-M refers to Mean Aggregation, GCN-W

refers to Weighted Aggregation, and GCN-A refers to At-

tention Aggregation. The Attention Aggregation learns the

aggregation weights of neighbors automatically in an end-

to-end manner, yielding marginally better performance than

Mean Aggregation and Weighted Aggregation. Considering

the computation cost, the improvement is not significant, so

we use Mean Aggregation in the following experiment.

Comparison with baseline methods. The top part of
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Method
IJB-B-512 IJB-B-1024 IJB-B-1845

F NMI F NMI F NMI

K-means [24] 0.612 0.858 0.603 0.865 0.600 0.868

Spectral [28] 0.517 0.784 0.508 0.792 0.516 0.785

AHC [15] 0.795 0.917 0.797 0.925 0.793 0.923

AP [11] 0.494 0.854 0.484 0.864 0.477 0.869

DBSCAN [10] 0.753 0.841 0.725 0.833 0.695 0.814

ARO [27] 0.763 0.898 0.758 0.908 0.755 0.913

PAHC∗ [22] - - 0.639 0.890 0.610 0.890

ConPaC∗ [29] 0.656 - 0.641 - 0.634 -

DDC [22] 0.802 0.921 0.805 0.926 0.800 0.929

GCN-M 0.821 0.920 0.819 0.928 0.810 0.927

GCN-W 0.826 0.923 0.822 0.938 0.801 0.927

GCN-A 0.833 0.936 0.833 0.942 0.814 0.938

Table 2. Comparison with baseline methods in terms of BCubed

F-measure and NMI score. For all methods we tune the corre-

sponding hyperparameters and report the best result. Suffix M, W,

and A represents different aggregators. The superscript ∗ denotes

results reported from the original papers, otherwise all methods

use the same ArcFace representation.

Table 2 showcases results of several widely used clustering

algorithms. The results suggest algorithms that make less

restrictive assumptions on data distribution usually achieve

higher performance. For instance, there is no assumptions

on data distribution in AHC and the performance is the best.

DBSCAN requires the data to have similar density and the

performance is inferior to AHC. K-means needs the data

to be convex-shaped, and Spectral Clustering is not good

at handling unbalanced data, thus both yield unsatisfactory

results. Same as AHC, our approach does not make any as-

sumptions on the data distribution, and the clustering rule

is learned by a parametric model, therefore it is not surpris-

ing the performance is superior to the strong AHC baseline.

This is not a trivial result, since the performance of AHC

is sensitive to the threshold, while ours is not sensitive to

parameter selection and consistently outperforms AHC.

Comparison with state-of-the-art. In the second part

of Table 2 we compare our method with four state-of-the-

art face clustering algorithms, i.e., ARO [27], PAHC [23],

ConPaC [29] and DDC [22]. The proposed method con-

sistently outperforms other method on the three subtasks in

term of both F-measure and NMI score. Note that the re-

sults of PAHC and ConPac may not be compared directly

since different face representations are employed. However,

we find that both of them underperform the corresponding

AHC baseline (with the same face representation), while

our method surpass the AHC baseline. This shows the ac-

curacy of our mehtod is favorably comparable to the state-

of-the-art face clustering algorithms.

Different face representation. To validate that the ben-

efit is indeed from the algorithm rather than the strong

ArcFace feature, we train a face recognition model using

ResNet-50 [14] + Softmax Loss on the MS1M dataset [12],

and test clustering methods with such representation.

Method
IJB-B-512 IJB-B-1024 IJB-B-1845

F NMI F NMI F NMI

AHC [15] 0.688 0.874 0.694 0.880 0.676 0.867

ARO [27] 0.624 0.852 0.628 0.853 0.619 0.848

DDC [22] 0.704 0.887 0.708 0.892 0.697 0.889

Ours 0.736 0.910 0.733 0.913 0.726 0.908

Table 3. Method comparison under the same Res-50 feature.
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Figure 6. Performance on IJB-B-512 after removing singleton

clusters v.s. proportion of removed singleton clusters.

Method comparison under Res-50 representation is shown

in Table. 3. Combined with Table. 2, the results show that:

(1) When stronger representation is adopted (Arcface),

our method yields better performance. This indicates our

method is able to benefit from better representation.

(2) When using the same representation, our method

outperforms state-of-the-art methods. This indicates our

method has superior performance to prior arts.

Singleton Clusters. In practice, we find our approach

produces many singleton clusters, i.e., clusters that contain

only a single sample. The proportion of the generated sin-

gleton clusters among the whole collection varies with the

hyperparameters in the merging step. We examine single-

ton samples and find that most of the them are extreme hard

samples, i.e., profile faces, low-resolution faces or blurred

faces, also non-face images due to the failure of face de-

tection, and mis-labeled faces. We filtered all the singleton

clusters and re-test the F-measure and NMI score on IJB-

B-512. For a fair comparison, we also report the perfor-

mance of other three linkage based clustering methods after

removing singleton clustering. We manually tune the hyper-

parameters in each algorithm to let the proportion of single-

ton instances vary, then remove singleton clusters and com-

pute F-measure and NMI score. Finally We plot the curves

of the two metrics as the proportion of singleton clusters

varies in Fig. 6. ARO, DBSCAN and our method present

ascending cureves, which means these methods are able to

filter out noise and outliers. By tuning hyperparameters to

be stricter, these methods generate more singleton clusters,

and the remained non-singleton clusters are more accurate.

In contrast, AHC presents a plain curve, so the accuracy of

generated clusters is not controllable by tuning hyperparam-

eters. With the same proportion of singleton clusters, our
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Parameters F-measure NMI runtime

k1 = 10, k2 = 5 0.634 0.886 00:19:50

k1 = 40, k2 = 5 0.655 0.891 00:53:56

k1 = 160, k2 = 5 0.720 0.905 02:45:36

Table 4. Results on the IJB-B-1845+1M dataset. The total number

of images is 1,094,842. Runtime is presented in HH:MM:SS.

method consistently outperforms other algorithms. Further-

more, clusters generated by our method are in pretty high

purity, with a moderate sacrifice in instance number (say

0.943 F-measure with 15.2% instances discarded). This is

a valuable property in applications like automatically data

labeling, where the purity is important.

Scalability and Efficiency. The proposed method only

operate on local IPS, hence the runtime of link prediction

process grows linearly with the number of data. The IPS

construction has an O(n2) complexity if we search nearest

neighbor by brute force, and can be reduced to O(n log n)
by Approximate Nearest Neighbor (ANN) search. In gen-

eral, the overall complexity of our method is O(n log n),
which means it is efficient and scalable. Here we perform

a large-scale experiment by introducing 1 million distrac-

tors to the IJB-B-1845 dataset, to investigate the efficiency

of our method. We use the whole Megaface [17] dataset

as distractors, which comprises of 1 million irrelevant face

images. F-measure and NMI score are then computed by

simply ignoring the distractors. As shown in Table 4, the

runtime and performance is influenced by k1, and we can

tune the k1 for accuracy-time trade-off. All the experiment

are performed on a single Titan Xp GPU, and one can use

more for acceleration since our algorithm is suitable for par-

allelism.

4.4. Multi­View Extension

In many real-world applications, data may come from

multiple sources and contain complementary information,

known as ”multi-view data”. Multi-View clustering aims

at exploiting such data to generate better clusters. In this

section, we show our clustering method is easily extended

to a multi-view version, and also adaptive to different base

features.

We apply the proposed clustering method to video face

clustering task, where two views of data, namely face fea-

tures and audio features, can be extracted to depict a person.

The face features and the audio features are extracted by two

CNNs and then simply concatenated as a joint representa-

tion, accordingly the training and inference procedures of

the GCN are the same as described above.

We adopt VoxCeleb2 [7] dataset for training the GCN

and evaluating the clustering results. The VoxCeleb2

dataset comprises of 145K videos of 5,994 different iden-

tities, and we split it into a test set consisting of 2,048 iden-

tities and a disjoint training set. We propose two clustering

Method
Face Audio Face+Audio

F NMI F NMI F NMI

K-means [24] 0.648 0.877 0.229 0.644 0.636 0.874

Spectral [28] 0.592 0.825 0.214 0.619 0.541 0.782

AHC [15] 0.755 0.913 0.358 0.704 0.833 0.934

ARO [27] 0.575 0.875 0.261 0.834 0.319 0.835

Ours 0.801 0.921 0.395 0.497 0.841 0.940

Table 5. Clustering accuracy with 512 identities.

Method
Face Audio Face+Audio

F NMI F NMI F NMI

K-means [24] 0.589 0.871 0.152 0.650 0.582 0.871

AHC [15] 0.695 0.908 0.228 0.686 0.785 0.938

ARO [27] 0.583 0.858 0.277 0.813 0.370 0.873

Ours 0.766 0.932 0.311 0.452 0.810 0.946

Table 6. Clustering accuracy with 2,048 identities.

protocols which consist of 22,568 instances of 512 identi-

ties and 83,265 instances of 2,048 identities, respectively.

Several clustering methods are compared with three differ-

ent base features, namely face, audio and face+audio, and

the results are presented in Table 5 and Table 6.

The distribution of the concatenated face+audio features

are more complex than the single face / audio features,

therefore some heuristic clustering methods fail to lever-

age the complementary information (face features outper-

form face+audio features). In contrast, the proposed method

learn the clustering rule by a parametric model, thus is able

to handle such data distribution, and brings about perfor-

mance gain from multi-view data. This series of experi-

ment show our clustering method can be 1) easily extend to

a multi-view version, only if training data is provided, and

also 2) adaptive to different base features.

5. Conclusion

In this paper, we propose a linkage based method for

face clustering. We emphasize the importance of context in

face clutering and propose to construct instance pivot sub-

graphs (IPS) that depict the context of given nodes. On IPS,

We use the graph convolution network to reason the linkage

likelihood between a given node and its neighbors. Exten-

sive experiment indicates the proposed method is more ro-

bust to the complex distribution of faces than conventional

methods. We report favorably comparable results to state-

of-the-art methods on standard face clustering benchmarks

and show our method is scalable to large datasets. Finally,

we demonstrate the strength of our method in visual-audio

face clustering.

6. Acknowledgement

This work was supported by the state key devel-

opment program in 13th Five-Year under Grant No.

2016YFB0801301 and the National Natural Science Foun-

dation of China under Grant Nos. 6177128861701277.

1124



References

[1] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social

networks, 25(3):211–230, 2003. 2
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