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Abstract

In this paper, we present an accurate and scalable ap-
proach to the face clustering task. We aim at grouping a
set of faces by their potential identities. We formulate this
task as a link prediction problem: a link exists between two
faces if they are of the same identity. The key idea is that
we find the local context in the feature space around an in-
stance (face) contains rich information about the linkage re-
lationship between this instance and its neighbors. By con-
structing sub-graphs around each instance as input data,
which depict the local context, we utilize the graph convo-
lution network (GCN) to perform reasoning and infer the
likelihood of linkage between pairs in the sub-graphs. Ex-
periments show that our method is more robust to the com-
plex distribution of faces than conventional methods, yield-
ing favorably comparable results to state-of-the-art meth-
ods on standard face clustering benchmarks, and is scal-
able to large datasets. Furthermore, we show that the pro-
posed method does not need the number of clusters as prior,
is aware of noises and outliers, and can be extended to a
multi-view version for more accurate clustering accuracy.

1. Introduction

In this paper, we study the problem of clustering faces
according to their underlying identities. We assume no
prior of the distribution of face representations or the num-
ber of identities. Face clustering is a fundamental task in
face analysis and has been extensively studied in previous
works [38, 27, 22, 29]. Some key applications include:
grouping and tagging faces in desktop / online photo albums
for photo management [38], organizing large scale face im-
age / video collections for fast retrieval in time-sensitive
scenarios like forensic investigations [19], and automati-
cally data cleaning / labeling for constructing large-scale
datasets [26, 12, 34].

Conventional clustering methods suffer from the com-
plex distribution of face representations, because they make
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Figure 1. High-level idea of our method. (a): This paper aims
to estimate whether two nodes should be linked. (b-d): Compar-
ison of three linkage estimation methods. (b): Directly thresh-
olding the [l distance, without considering context. (c): Using
a heuristic mthod for linkage estimation based on context. (d):
Our method, i.e., learning the linkage likelihood with a parametric
model, which is context-based.

impractical assumptions on data distribution. For instance,
K-Means [24] requires the clusters to be convex-shaped,
Spectral Clustering [28] needs different clusters to be bal-
anced in the number of instances, and DBSCAN [10] as-
sumes different clusters to be in the same density. In con-
trast, a family of linkage-based clustering methods make no
assumption on data distribution and achieve higher accu-
racy. As shown in Fig.1 (a), linkage-based methods aim at
predicting whether two nodes (or clusters) should be linked
(are of the same identity). Fig.1 (b) presents a naive solu-
tion to this problem by directly linking node pairs whose
lo distance is under a certain threshold. This is apparently
not a good solution since the densities of clusters vary a
lot. Therefore, more sophisticated metrics are designed to
compute the linkage likelihood, such as the Approximate
Rank-Order Distance (see Fig.1 (c)).
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Instead of computing the linkage likelihood by heuristic
metrics, we propose to learn to predict if two nodes should
be linked. As the key idea of this work, we find that the
linkage likelihood between a node and its neighbors can be
inferred from its context. In order to leverage the valuable
information in the context of nodes, we propose a learnable
clustering method based on the graph convolution network
(GCN), and the main idea is shown in Fig.1 (d). The frame-
work of the proposed method can be summarized as follow.

Firstly, we formulate clustering as a link prediction prob-
lem [36]. That is, a link exists between two nodes when
their identity labels are identical. Secondly, we only predict
linkages between an instance and its nearest neighbors. Ac-
cordingly, we construct an Instance Pivot Subgraph around
each instance (pivot), to depict the local context, with each
node modeling a pivot-neighbor pair. From IPS, we can per-
form reasoning to infer which pivot-neighbor pair should
be linked and we adopt GCN to learn this task. Finally,
GCN outputs a set of linkage likelihood, and we transitively
merge linked nodes to obtain the clusters.

We show that the proposed method is accurate when
compared with the state-of-the-art methods and is scal-
able in terms of computational complexity. The proposed
method learns to generate linkage likelihood automatically,
and results in superior performance to other linkage-based
methods like ARO [27] in which the linkage likelihood is
computed by heuristic rules. In addition, our approach is
aware of noises and outliers, does not need the number of
clusters as input, and is easy to be extended to a multi-view
version for utilizing data from different sources.

The remainder of this paper is organized as follows.
First, we briefly review the related works in Section 2.
Then, Section 3 introduces the proposed clustering algo-
rithm. The experimental results are presented in Section
4 and conclusions are given in Section 5.

2. Related Work

Face Clustering. Due to large variations in pose, oc-
clusion, illumination and number of instances, face clusters
vary significantly in size, shape and density. The complex
distribution of face representations makes it unsuitable to
apply classic clustering algorithms like K-Means [24] and
spectral clustering [28], because these methods have rigid
assumptions on data distribution. Several papers develop
clustering algorithms based on Agglomerative Hierarchical
Clustering (AHC) [38, 22, 23], which is robust in group-
ing data with complex distribution. Lin ef al. [23] pro-
pose the proximity-aware hierarchical clustering (PAHC)
which exploits a linear SVM to classify local positive in-
stances and local negative instances. Zhu et al. [38] pro-
pose a cluster-level affinity named Rank-Order distance to
replace the original /1 /l5 distance, and demonstrate its abil-
ity in filtering out noise / outliers. Lin et al. [22] also design

a density-aware cluster-level affinity using SVDD [30] to
deal with density-unbalanced data. All the above methods
yield good performance on unconstrained face clustering,
but their computation complexity remains a problem, limit-
ing their application in large-scale clustering.

Fortunately, the Approximate Rank-Order Clustering
(ARO) [27] provides an efficient framework for large-scale
clustering. ARO aims at predicting whether a node should
be linked to its & Nearest Neighbors (KNN), and transitively
merges all linked pairs. Therefore, the computational com-
plexity of ARO is only O(kn). The kNN search process can
be also accelerated by the Approximate Nearest Neighbor
(ANN) search algorithm. Accordingly, the overall complex-
ity is O(nlogn) or O(n?), depending on whether we set k
as a constant or let it increase with n. ARO is much more
efficient than AHC based algorithms. Shi ef al. [29] also
adopt ANN to expand their ConPac algorithm to a scalable
version. In this work, since the proposed method is based
on kNN, it is suitable to exploit this framework as well.

Link Prediction is a key problem in social network anal-
ysis [21, 1, 20, 25, 36]. Given a complex network which is
organized as a graph, the goal is to predict the likelihood of
link between two member nodes. To estimate the likelihood
of links, some previous works like PageRank [4] and Sim-
Rank [16] analyze the entire graph, while others, such as
preferential attachment [3] and resource allocation [37], cal-
culate the link likelihood of the given nodes only from their
neighbors. Zhang and Chen [35, 36] argue that it is suffi-
cient to compute link likelihood only from the local neigh-
bor of a node pair, and propose a Weisfeiler-Lehman Neural
Machine [35] and a graph neural network [36] to learn gen-
eral graph structure features from local sub-graphs. It is
closely related to our work, since the clustering task can be
reduced to a link prediction problem, and we also exploit
graph neural networks to learn from local graphs.

Graph convolutional network (GCN). In many ma-
chine learning problems, the input can be organized as
graphs. Considerable research effort [5, 8, 18, 31, 13]
has been devoted to designing the convolutional neural net-
work for graph-structured data. According to the defini-
tion of convolution on graph data, GCNs can be categorized
into spectral methods and spatial methods. Spectral based
GCNs [5, 8, 18] generalize convolution based on Graph
Fourier Transform, while spatial based GCNs [31, 3]
directly perform manually-defined convolution on graph
nodes and their neighbors. In terms of applications, GCNs
can handle problems in both the transductive setting [8, 18]
and the inductive setting [13, 31]. In the transductive set-
ting, training data and testing data are nodes in a same fixed
graph, while in the inductive setting, the model needs to in-
ference across different graphs. In this work, we propose
a spatial-based GCN to solve link prediction problem. The
designed GCN performs graph node classification in the in-
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k 5 10 20 40 80 160

F-measure  0.874 0911 0928 0946 0959 0970

NMI 0960 0.969 0975 0981 0.986 0.990
Table 1. Upper bound of face clustering accuracy on the 1JB-B-
512 dataset. We use two metrics for evaluation, F-measure and
NMI (see Section 4.1). The upper bound is obtained by connecting
each instance with its k nearest neighbors if the neighbor is of the
same identity with this instance. We find that the upper bound is
reasonably high, indicating that kNN method could be effective
while, most importantly, being efficient.

ductive setting.

3. Proposed Approach
3.1. Overview

Problem definition. Assume that we have the fea-
tures of a collection of face images X = [z, ..., wN]T S
RN*Dwhere N is the number of images and D the di-
mension of the features, the goal of face clustering is to
assign a pseudo label y; to each i € {1,2,..., N} so that
instances with the same pseudo label form a cluster. To
resolve this problem, we follow the link-based clustering
paradigm, which aims at predicting the likelihood of link-
age between pairs of instances. Accordingly, clusters are
formed among all the instances connected by linked pairs.

Motivation. The motivation behind this work is that we
find we only need to compute the linkage likelihood be-
tween an instance and its k nearest neighbors, and it suf-
fices to produce decent clustering results. In Table 1, we
show an upper bound of clustering performance with dif-
ferent values of k. To obtain the upper bound, we directly
connect each instance with its kNN if the neighbor is of the
same identity with this instance. The results show that the
upper bound is quite high under various values of k. This
indicates the potential effectiveness of predicting linkages
between an instance and its kNN, rather than among all po-
tential pairs. The advantage of adopting such a strategy is
that we could obtain reasonably high clustering accuracy
while the system has the benefit of being efficient.

Pipeline. This work focuses on the efficiency and ac-
curacy of a face clustering system. So we adopt the idea
of predicting linkages between an instance and its KNNs.
Because predicting a linkage is based on its context, to
make linkage prediction possibly accurate, we design a lo-
cal structure named Instance Pivot Subgraphs (IPS). An IPS
is a subgraph centered at a pivot instance p. IPS is com-
prised of nodes including the kKNNs of p and the high-order
neighbors up to h-hop of p. Importantly, we subtract the
feature of pivot p from all these nodes, so that each result-
ing node feature encodes the linkage relationship between a
pivot-neighbor pair. We present the framework of the pro-
posed approach in the following three steps, and an illustra-
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Figure 2. Construction of Instance Pivot Subgraph (IPS). (a) The
collection of face representations. (b) We use each instance p as
a pivot, and find its neighbors up to h-hop as the nodes of IPS.
(c) These node features are normalized by subtracting the feature
of the pivot. (d) For a node in IPS, we find its uNNs from the
entire collection. We add an edge between a node and its uNNs
if the neighbor is also a node of IPS. In this figure, we set h =
2,k1 = 10, k2 = 2 and uw = 3, where k; is the number of 1-hop
neighbors, and k- is the number of of 2-hop neighbors. Note that
an IPS based on pivot p does not contain p. The IPS for pivot p is
used to predict the linkage between p and every node in IPS.

tion is shown in Fig. 3:

e We use every instance as a pivot, and construct an In-
stance Pivot Subgraph (IPS) for it. The construction of
IPS is described in detail in Section 3.2.

e Given an IPS as input data, we apply graph convolution
networks (GCNs) for reasoning on it and the network
outputs a score for every node, i.e., linkage likelihood
between the corresponding pivot-neighbor pair. The
mechanism of GCN is presented in Section 3.3.

e The above steps output a set of weighted edges among
the entire graph, where the weights are the linkage
likelihood. Finally we transitively merge linked in-
stances into clusters, according to the linkage likeli-
hood. Details are presented in Section 3.4.

3.2. Construction of Instance Pivot Subgraph

We estimate the linkage likelihood between two face im-
ages (nodes) based on their context in a graph. In this pa-
per, we propose to construct the Instance Pivot Subgraph
(IPS) as context. IPS is generated by three steps. First, we
locate all the nodes of IPS. Then, we normalize the node
features by subtracting the feature of the pivot. Finally, we
add edges among nodes. An illustration of Instance Pivot
Subgraph generation is presented in Fig. 2.
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Figure 3. Framework of our method. We use every instance as a pivot, and construct an Instance Pivot Subgraph (IPS) for it. Each node in
IPS models the linkage (similarity) between the pivot and the corresponding neighbor. We apply graph convolutions on IPS and classify
nodes in IPS into either positive or negative. If a node is classified as positive, the corresponding neighbor should be linked to the pivot.
After determining all the linkages, we transitively merge linked instances to obtain the final clusters.

Step 1: Node discovery. Given a pivot p, we use its
neighbors up to h-hop as nodes for IPS. For each hop, the
number of picked nearest neighbors may vary. We denote
the number of nearest neighbors in the ¢-th hop as k;,i =
1,2, ..., h. For example, let p be the pivot, the node set V,, of
the IPS G,(V,, E,,) withh = 3and k1 = 8, k2 = 4, k3 = 2
consists of 8 nearest neighbors of p, 4 nearest neighbors
of each 1-hop neighbors, and 2 nearest neighbors of each
two-hop neighbors. Note that the pivot p itself is excluded
from V,,. When we do so, the high-order neighbors provide
auxiliary information of the local structure of the context
between a pivot and its neighbor. For instance, for p and
one of its neighbors g, if the kNN of ¢ are consistently far
away from p, then the linkage likelihood between p and q is
expected be small.

Step 2: Node feature normalization. Now we have the
pivot instance p, the node set V), and their node features =,
and {z4|¢ € V,}. In order to encode the pivot informa-
tion into the node features of IPS, we normalize the node
features by subtracting xp,,

.’F'p:[...,wqpr,...]T,forallq€Vp, (1)

where we use Fp, € RIV»1*P to represent the normalized
node features. A node feature in IPS is the residual vector
between the feature of the pivot p and the feature of the
corresponding neighbor q.

Step 3: Adding edges among nodes. The last step is
to add edges among the nodes. For a node ¢ € V,,, we
first find the top u nearest neighbors among all instances
in the original entire collection. If a node r of the uNNs

appears in V,, we add an edge (g, r) into the edge set E,.
This procedure ensures the degree of nodes does not vary
too much. Finally we represent the topological structure of
IPS by an adjacency matrix A, € RIVe1*IVol and the node
feature matrix F . We neglect the subscript p hereafter.

3.3. Graph Convolutions on IPS

The context contained in IPS (edges among the nodes)
is highly valuable for determining if a node is is positive
(should link to the pivot) or negative (should not link to the
pivot). To leverage it, we apply the graph convolution net-
works (GCN) [18] with slight modifications to perform rea-
soning on IPS. A graph convolution layer takes as input a
node feature matrix X together with an adjacency matrix
A and outputs a transformed node feature matrix Y. In the
first layer, the input node feature matrix is the original node
feature matrix, X = . Formally, a graph convolution
layer in our case has the following formulation,

Y = o([X[|GX]W), )

where X € RVXdin Yy ¢ RNXdout N ig the number of
nodes, and d;,, d,y; are the dimension of input / output
node features. G = g(X, A) is an aggregation matrix of
size¢ N x N and each row is summed up to 1, and g(+)
is a function of X and A. Operator || represents matrix
concatenation along the feature dimension. W is the learn-
able weight matrix of the graph convolution layer of size
2d;p, X doyt, and o () is the non-linear activation function.
The graph convolution operation can be broken down
into two steps. In the first step, by left multiplying X by
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G, the underlying information of nodes’ neighbors is ag-
gregated. Then, the input node features X are concatenated
with the aggregated information GX along the feature di-
mension. In the second step, the concatenated features are
transformed by a set of linear filters, whose parameter W
is to be learned. The following three strategies g(-) for the
aggregation operation is explored.

e Mean Aggregation. The aggregation matrix G =
A~z AA~z, where A is the adjacency matrix and A
is a diagonal matrix with A;; = > j A;j. The mean
aggregation performs average pooling among neigh-

o Weighted Aggregation. We replace each non-zero el-
ement in A with the corresponding cosine similarity,
and use softmax function to normalize these non-zero
values along each row. The weighted aggregation per-
forms weighted average pooling among neighbors.

e Attention Aggregation. Similar to the graph atten-
tion network [31], we attempt to learn the aggrega-
tion weights of neighbors. That is, the elements in
G are generated by a two-layer MLP using the fea-
tures of a pair of pivot-neighbor nodes as input. The
MLP is trained end-to-end. The attention aggregation
performs weighted average pooling among neighbors,
where the weights are learned automatically.

The GCN used in this paper is the stack of four graph
convolution layers activated by the ReLU function. We
then use the cross-entropy loss after the softmax activation
as the objective function for optimization.In practice, we
only backpropagate the gradient for the nodes of the 1-hop
neighbors, because we only consider the linkage between a
pivot and its 1-hop neighbors. This strategy not only leads
to considerable acceleration compared with the fully super-
vised case, but also brings about accuracy gain. The reason
is that the high-order neighbors are mostly negative, so the
positive and negative samples are more balanced in 1-hop
neighbors than in all the neighbors. For testing, we only
perform node classification on the 1-hop nodes as well.

To demonstrate the working mechanism of graph convo-
lutions, we design a toy example with 2-D input node fea-
ture and two graph convolution layers. The output dimen-
sion of each layer, d; and ds, is set to 2 for visualization
purpose. In Fig. 4, we show how the output embeddings
in each layer vary with training iterations. After each graph
convolution layer, positive nodes (red) are grouped closer,
and the negative nodes (blue and green) form another group.
This is because messages of neighbors are passed to nodes
in the aggregation step, and the message from neighbors
acts as a smoothness for the embedding that pulls linked
nodes together, like these nodes are connected by springs.
Meanwhile, the supervision signal pushes away the group
of positive nodes and the group of negative nodes. Finally,
the system reaches its equilibrium point, where positive and

Convl

Input

Conv?2

Figure 4. A toy example to illustrate the working mechanism of
graph convolutions. Different colors refer to different IDs. The
pivot is circled. Training gradients are bac-kpropagated for 1-
hop neighbors (larger nodes) but not for higher-order neighbors
(smaller nodes). We observe that, after each graph convolution,
positive and negative groups become farther from each other and
nodes in the same category become closer .

negative groups are far from each other and nodes in the
same category are close.

3.4. Link Merging

To apply clustering on a collection of face data, we loop
over all the instances, construct an IPS with each instance as
the pivot, and predict the likelihood of linkage (the softmax
probability output by the node classifier) between the in-
volved instances and the pivot. As a result, we have a set of
edges weighted by the linkage likelihood. To acquire clus-
ters, a simple approach is to cut all the edges whose weight
is below some threshold and use Breath First Search (BFS)
to propagate pseudo labels, as shown in Fig. 3. However,
the performance can be sensitively affected by the threshold
value. We accordingly adopt the pseudo label propagation
strategy proposed in [34]. In each iteration, the algorithm
cuts edges below some threshold and maintain connected
clusters whose size are larger than a pre-defined maximum
size in a queue to be processed in the next iteration. In the
next iteration, the threshold for cutting edges is increased.
This process is iterated until the queue is empty, which
means all the instances are labeled with pseudo labels.

4. Experiment
4.1. Evaluation Metrics and Datasets

To evaluate the performance of the proposed cluster-
ing algorithm, we adopt two mainstream evaluation met-
rics: normalized mutual information (NMI) and BCubed F-
measure [2]. Given €2 the ground truth cluster set, C' the
predicted cluster set, NMI is defined as,

1(9,0)

NMI(R,C) = N O]

) 3
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(a) sensitivity to parameter k; and k&, (b) sensitivity to parameter u

0.830

- T, /

/ / 0.825 LE
@ 0.80 / % o // \ \
=} =3
2 o V75 g o N\
g 0.78 E A
= / 00 lm—10 || 0815
0.77 § v LA k=20
/ fy =40
0.76 Ja O k=50 0810
2 VY k160

2 3 4 5 6 7 2 4 6 8 10

Figure 5. (a) The sensitivity of F-measure on IJB-B-512 to k1 and
k2, with constant u = 10. (b) The sensitivity of F-measure on to
parameter u, with different combination of k; and k.

where H(S2) and H(C) represent the entropies for € and
C, and I(2, C) is the mutual information.

BCubed F-measure [2] is a more practical measurement
which takes both precision and recall into consideration.
Let us denote L(¢) and C(i) as the ground truth label and
cluster label, respectively, we first define the pairwise cor-
rectness as,

.| 1, ifL(i) = L(j)and C(i) = C(4)
Correct(i, j) = { 0, otherwise ‘
“)
The BCubed Precision P and BCubed Recall R are respec-
tively defined as,

P = Ei[Ej.c(jy=c()[Correct(i, j)]], 5)

R =Ei[Ej.L.(j)=r(i)[Correct(i, j)]], (6)

and the BCubed F-measure is defined as F' = %.

We use separate datasets for training and testing. First,
we use ArcFace [9]' as the face representations. This model
is trained on the union set of MS-Celeb-1M [12] and VG-
GFace2 [0] dataset. Second, for GCN training, we use a ran-
dom subset of the CASIA dataset [33] which contains 5k
identities and 200k samples. Third, for testing, we adopt the
IJB-B dataset [32] because it contains a clustering protocol.
The protocol consists of seven subtasks varying in the num-
ber of ground truth identities. We evaluate our algorithm on
three largest subtasks. In the three subtasks, the numbers
of identities are 512, 1,024 and 1,845, and the numbers of
samples are 18,171, 36,575 and 68,195, respectively.

4.2. Parameter Selection

There are three hyperparameters for IPS construction:
the number of hops h, the number of picked nearest neigh-
bors in each hop {k;},7 = 1,2,...,h, and the number of
linked nearest neighbors u for picking edges. We first ex-
periment with different values of / and find that A > 3 does

Uhttps://github.com/deepinsight/insightface

not bring performance gain, so we set h = 2 in the fol-
lowing experiment. Accordingly, we explore the impact of
different values k;, k2 and u. We discuss both the training
phase and the testing phase.

In the training phase, we expect more supervision signals
to be back-propagated. Since supervision is only added to
1-hop nodes, we select a large k; = 200. In order to avoid
IPS being too large, we set a small value ko = 10. We also
set u = 10 to ensure every 2-hop node has at least one edge.

In the testing phase, it is not necessary to keep the same
configuration with the training phase. To investigate how
ki, ko and u influence the performance, we conduct two
group of experiments and the the results are shown in Fig. 5.
First, we keep u constant, vary ki, ko, and show how F-
measure changes on 1JB-B-512. We observe in Fig. 5 (a)
that the F-measure increases with larger £y and ko. Larger
k1 brings more candidate links to be predicted, thus yields
higher recall. Larger ko involves more 2-hop neighbors,
depicting the local structure of 1-hop neighbors more pre-
cisely, so the prediction is more accurate. However, the
performance reaches saturation when k; and ks are large
enough. For the parameter u, i.e., the linked number of
neighbors, we observe in 5 (b) that the performance is not
sensitive to the value of w.

Taking efficiency into consideration, the values of k; and
ko cannot be too large. We find that k1 = 80,k =5,u =5
yield a good trade-off between efficiency and performance
and use this setting in the following experiment.

4.3. Evaluation

The proposed approach is compared to the following
methods: K-means [24], Spectral Clustering [28], Ag-
glomerative Hierarchical Clustering (AHC) [15], Affinity
Propagation (AP) [11], Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [10], Proximity-
Aware Hierarchical Clustering (PAHC) [23], Deep Density
Clustering (DDC) [22], Conditional Pair-wise Clustering
(ConPaC) [29], and Approximate Rank-Order Clustering
(ARO) [27]. For all the methods, we tune the hyperparam-
eters e.g., o in Spectral Clustering and €, n in DBSCAN ,
and report the best results. For non-deterministic algorithms
like K-means we select the best result from 100 runs.

Comparing different aggregation methods. We first
compare the aggregation strategies described in Section 3.3.
In Table 2, GCN-M refers to Mean Aggregation, GCN-W
refers to Weighted Aggregation, and GCN-A refers to At-
tention Aggregation. The Attention Aggregation learns the
aggregation weights of neighbors automatically in an end-
to-end manner, yielding marginally better performance than
Mean Aggregation and Weighted Aggregation. Considering
the computation cost, the improvement is not significant, so
we use Mean Aggregation in the following experiment.

Comparison with baseline methods. The top part of
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1JB-B-512 1JB-B-1024 1JB-B-1845

Method F NMI F NMI F  NMI

1JB-B-512 1JB-B-1024 1JB-B-1845
F NMI F NMI F NMI

Method

K-means [24] 0.612 0.858 0.603 0.865 0.600 0.868
Spectral [28] 0517 0.784 0508 0.792 0516 0.785

AHC [15] 0.795 0917 0.797 0925 0.793  0.923
AP[11] 0.494 0.854 0484 0.864 0477 0.869
DBSCAN[10] 0.753 0.841 0.725 0.833 0.695 0.814
ARO [27] 0.763 0.898 0.758 0.908 0.755 00913
PAHC* [22] - - 0.639 0.890 0.610 0.890
ConPaC* [29]  0.656 - 0.641 - 0.634 -

DDC [22] 0.802 0921 0805 0926 0.800 0.929
GCN-M 0.821 0920 0819 0928 0.810 0.927
GCN-W 0.826 0923 0.822 0938 0.801 0.927
GCN-A 0833 0936 0.833 0.942 0.814 0.938

Table 2. Comparison with baseline methods in terms of BCubed
F-measure and NMI score. For all methods we tune the corre-
sponding hyperparameters and report the best result. Suffix M, W,
and A represents different aggregators. The superscript * denotes
results reported from the original papers, otherwise all methods
use the same ArcFace representation.

Table 2 showcases results of several widely used clustering
algorithms. The results suggest algorithms that make less
restrictive assumptions on data distribution usually achieve
higher performance. For instance, there is no assumptions
on data distribution in AHC and the performance is the best.
DBSCAN requires the data to have similar density and the
performance is inferior to AHC. K-means needs the data
to be convex-shaped, and Spectral Clustering is not good
at handling unbalanced data, thus both yield unsatisfactory
results. Same as AHC, our approach does not make any as-
sumptions on the data distribution, and the clustering rule
is learned by a parametric model, therefore it is not surpris-
ing the performance is superior to the strong AHC baseline.
This is not a trivial result, since the performance of AHC
is sensitive to the threshold, while ours is not sensitive to
parameter selection and consistently outperforms AHC.

Comparison with state-of-the-art. In the second part
of Table 2 we compare our method with four state-of-the-
art face clustering algorithms, i.e., ARO [27], PAHC [23],
ConPaC [29] and DDC [22]. The proposed method con-
sistently outperforms other method on the three subtasks in
term of both F-measure and NMI score. Note that the re-
sults of PAHC and ConPac may not be compared directly
since different face representations are employed. However,
we find that both of them underperform the corresponding
AHC baseline (with the same face representation), while
our method surpass the AHC baseline. This shows the ac-
curacy of our mehtod is favorably comparable to the state-
of-the-art face clustering algorithms.

Different face representation. To validate that the ben-
efit is indeed from the algorithm rather than the strong
ArcFace feature, we train a face recognition model using
ResNet-50 [14] + Softmax Loss on the MS1M dataset [12],
and test clustering methods with such representation.

AHC[I5] 0.688 0.874 0.694 0.880 0.676 0.867
ARO[27] 0.624 0.852 0.628 0.853 0.619 0.848
DDC[22] 0.704 0.887 0.708 0.892 0.697 0.889
Ours 0.736 0910 0.733 0913 0.726  0.908

Table 3. Method comparison under the same Res-50 feature.
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Figure 6. Performance on IJB-B-512 after removing singleton

clusters v.s. proportion of removed singleton clusters.

Method comparison under Res-50 representation is shown
in Table. 3. Combined with Table. 2, the results show that:

(1) When stronger representation is adopted (Arcface),
our method yields better performance. This indicates our
method is able to benefit from better representation.

(2) When using the same representation, our method
outperforms state-of-the-art methods. This indicates our
method has superior performance to prior arts.

Singleton Clusters. In practice, we find our approach
produces many singleton clusters, i.e., clusters that contain
only a single sample. The proportion of the generated sin-
gleton clusters among the whole collection varies with the
hyperparameters in the merging step. We examine single-
ton samples and find that most of the them are extreme hard
samples, i.e., profile faces, low-resolution faces or blurred
faces, also non-face images due to the failure of face de-
tection, and mis-labeled faces. We filtered all the singleton
clusters and re-test the F-measure and NMI score on 1JB-
B-512. For a fair comparison, we also report the perfor-
mance of other three linkage based clustering methods after
removing singleton clustering. We manually tune the hyper-
parameters in each algorithm to let the proportion of single-
ton instances vary, then remove singleton clusters and com-
pute F-measure and NMI score. Finally We plot the curves
of the two metrics as the proportion of singleton clusters
varies in Fig. 6. ARO, DBSCAN and our method present
ascending cureves, which means these methods are able to
filter out noise and outliers. By tuning hyperparameters to
be stricter, these methods generate more singleton clusters,
and the remained non-singleton clusters are more accurate.
In contrast, AHC presents a plain curve, so the accuracy of
generated clusters is not controllable by tuning hyperparam-
eters. With the same proportion of singleton clusters, our
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Parameters F-measure NMI runtime
k1 =10,ky =5 0.634 0.886 00:19:50
ki1 =40,ko =5 0.655 0.891 00:53:56
k1 =160,ky =5 0.720 0.905 02:45:36

Table 4. Results on the IJB-B-1845+1M dataset. The total number
of images is 1,094,842. Runtime is presented in HH:MM:SS.

method consistently outperforms other algorithms. Further-
more, clusters generated by our method are in pretty high
purity, with a moderate sacrifice in instance number (say
0.943 F-measure with 15.2% instances discarded). This is
a valuable property in applications like automatically data
labeling, where the purity is important.

Scalability and Efficiency. The proposed method only
operate on local IPS, hence the runtime of link prediction
process grows linearly with the number of data. The IPS
construction has an O(n?) complexity if we search nearest
neighbor by brute force, and can be reduced to O(n logn)
by Approximate Nearest Neighbor (ANN) search. In gen-
eral, the overall complexity of our method is O(nlogn),
which means it is efficient and scalable. Here we perform
a large-scale experiment by introducing 1 million distrac-
tors to the [JB-B-1845 dataset, to investigate the efficiency
of our method. We use the whole Megaface [17] dataset
as distractors, which comprises of 1 million irrelevant face
images. F-measure and NMI score are then computed by
simply ignoring the distractors. As shown in Table 4, the
runtime and performance is influenced by k;, and we can
tune the k; for accuracy-time trade-off. All the experiment
are performed on a single Titan Xp GPU, and one can use
more for acceleration since our algorithm is suitable for par-
allelism.

4.4. Multi-View Extension

In many real-world applications, data may come from
multiple sources and contain complementary information,
known as “multi-view data”. Multi-View clustering aims
at exploiting such data to generate better clusters. In this
section, we show our clustering method is easily extended
to a multi-view version, and also adaptive to different base
features.

We apply the proposed clustering method to video face
clustering task, where two views of data, namely face fea-
tures and audio features, can be extracted to depict a person.
The face features and the audio features are extracted by two
CNNs and then simply concatenated as a joint representa-
tion, accordingly the training and inference procedures of
the GCN are the same as described above.

We adopt VoxCeleb2 [7] dataset for training the GCN
and evaluating the clustering results. The VoxCeleb2
dataset comprises of 145K videos of 5,994 different iden-
tities, and we split it into a test set consisting of 2,048 iden-
tities and a disjoint training set. We propose two clustering

Face Audio Face+Audio

F NMI F NMI F NMI

K-means [24]  0.648 0.877 0229 0.644 0.636 0.874
Spectral [28] 0.592 0.825 0214 0.619 0.541 0.782

Method

AHC [15] 0.755 0913 0358 0.704 0.833 0.934
ARO [27] 0575 0.875 0.261 0.834 0.319 0.835
Ours 0.801 0921 0395 0497 0.841 0.940

Table 5. Clustering accuracy with 512 identities.

Method Face Audio Face+Audio
F NMI F NMI F NMI
K-means [24]  0.589 0.871 0.152 0.650 0.582 0.871
AHC [15] 0.695 0.908 0228 0.686 0.785 0.938
ARO [27] 0.583 0.858 0277 0.813 0.370 0.873
Ours 0.766 0932 0311 0452 0.810 0.946

Table 6. Clustering accuracy with 2,048 identities.

protocols which consist of 22,568 instances of 512 identi-
ties and 83,265 instances of 2,048 identities, respectively.
Several clustering methods are compared with three differ-
ent base features, namely face, audio and face+audio, and
the results are presented in Table 5 and Table 6.

The distribution of the concatenated face+audio features
are more complex than the single face / audio features,
therefore some heuristic clustering methods fail to lever-
age the complementary information (face features outper-
form face+audio features). In contrast, the proposed method
learn the clustering rule by a parametric model, thus is able
to handle such data distribution, and brings about perfor-
mance gain from multi-view data. This series of experi-
ment show our clustering method can be 1) easily extend to
a multi-view version, only if training data is provided, and
also 2) adaptive to different base features.

5. Conclusion

In this paper, we propose a linkage based method for
face clustering. We emphasize the importance of context in
face clutering and propose to construct instance pivot sub-
graphs (IPS) that depict the context of given nodes. On IPS,
We use the graph convolution network to reason the linkage
likelihood between a given node and its neighbors. Exten-
sive experiment indicates the proposed method is more ro-
bust to the complex distribution of faces than conventional
methods. We report favorably comparable results to state-
of-the-art methods on standard face clustering benchmarks
and show our method is scalable to large datasets. Finally,
we demonstrate the strength of our method in visual-audio
face clustering.
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