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Abstract

Natural spatiotemporal processes can be highly non-

stationary in many ways, e.g. the low-level non-stationarity

such as spatial correlations or temporal dependencies of

local pixel values; and the high-level variations such as the

accumulation, deformation or dissipation of radar echoes

in precipitation forecasting. From Cramér’s Decomposition

[4], any non-stationary process can be decomposed into

deterministic, time-variant polynomials, plus a zero-mean

stochastic term. By applying differencing operations appro-

priately, we may turn time-variant polynomials into a con-

stant, making the deterministic component predictable.

However, most previous recurrent neural networks for

spatiotemporal prediction do not use the differential signals

effectively, and their relatively simple state transition func-

tions prevent them from learning too complicated variations

in spacetime. We propose the Memory In Memory (MIM)

networks and corresponding recurrent blocks for this pur-

pose. The MIM blocks exploit the differential signals between

adjacent recurrent states to model the non-stationary and ap-

proximately stationary properties in spatiotemporal dynam-

ics with two cascaded, self-renewed memory modules. By

stacking multiple MIM blocks, we could potentially handle

higher-order non-stationarity. The MIM networks achieve

the state-of-the-art results on four spatiotemporal prediction

tasks across both synthetic and real-world datasets. We be-

lieve that the general idea of this work can be potentially

applied to other time-series forecasting tasks.

1. Introduction

Natural spatiotemporal processes exhibit complex non-

stationarity in both space and time, where neighboring pixels

exhibit local dependencies, and their joint distributions are
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Figure 1: An example of 20 consecutive radar maps to illustrate the

complicated non-stationarity in precipitation forecasting. First row:

radar maps, in which the whiter pixels show higher precipitation

probability. Second, third, last row: pixel values’ distributions,

means and standard deviations for corresponding local regions

that are identified by bounding boxes of different colors. Note

that different regions have different variation trends, making the

spatiotemporal prediction problem extremely challenging.

changing over time. Learning higher-order properties un-

derlying the spatiotemporal non-stationarity is particularly

significant for many video prediction tasks. Examples in-

clude modeling highly complicated real-world systems such

as traffic flows [37, 35] and weather conditions [24, 32]. A

well-performed predictive model is expected to learn the

intrinsic variations in consecutive spatiotemporal context,

9154



which can be seen as a combination of the stationary compo-

nent and the deterministic non-stationary component.

A great challenge in non-stationary spatiotemporal predic-

tion is how to effectively capture higher-order trends regard-

ing each pixel and its local area. For example, when making

precipitation forecasting, one should carefully consider the

complicated and diverse local trends on the evolving radar

maps, shown as Figure 1. But this problem is extremely dif-

ficult due to the complicated non-stationarity in both space

and time. Most prior work handles trend-like non-stationarity

with recursions of CNNs [37, 35] or relatively simple state

transitions in RNNs [24, 32]. The lack of non-stationary

modeling capability prevents reasoning about uncertainties

in spatiotemporal dynamics and partially leads to the blurry

effect of the predicted frames.

We attempt to resolve this problem by proposing a generic

RNNs architecture that is more effective in non-stationarity

modeling. We find that though the forget gates in the re-

current predictive models could deliver, select, and discard

information in the process of memory state transitions, they

are too simple to capture higher-order non-stationary trends

in high-dimensional time series. In particular, the forget

gates in the recent PredRNN model [32] does not work ap-

propriately on precipitation forecasting: about 80% of them

are saturated over all timestamps, implying almost time-

invariant memory state transitions. In other words, future

frames are predicted by approximately linear extrapolations.

In this paper, we focus on improving the memory transi-

tion functions of RNNs. Most statistical forecasting methods

in classic time series analysis assume that the non-stationary

trends can be rendered approximately stationary by perform-

ing suitable transformations such as differencing. We intro-

duce this idea to RNNs and propose a new RNNs building

block named Memory In Memory (MIM), which leverages

the differential information between neighboring hidden

states in the recurrent paths. MIM can be viewed as an im-

proved version of LSTM [11], whose forget gate is replaced

by another two embedded long short-term memories.

MIM has the following characteristics: (1) It creates uni-

fied modeling for the spatiotemporal non-stationarity by

differencing neighboring hidden states rather than raw im-

ages. (2) By stacking multiple MIM blocks, our model has a

chance to gradually stationarize the spatiotemporal process

and make it more predictable. (3) Note that over-differencing

is no good for time series prediction, as it may inevitably lead

to a loss of information. This is another reason that we apply

differencing in memory transitions rather than all recurrent

signals, e.g. the input gate and the input modulation gate. (4)

MIM has one memory cell adopted from LSTMs as well as

two additional recurrent modules with their own memories

embedded in the transition path of the first memory. We

use these modules to respectively model the higher-order

non-stationary and approximately stationary components of

the spatiotemporal dynamics. The proposed MIM networks

achieve the state-of-the-art results on multiple prediction

tasks, including a widely used synthetic dataset and three

real-world datasets.

2. Related Work

2.1. ARIMA Models for Time Series Forecasting

Our model is inspired by the Autoregressive Integrated

Moving Average (ARIMA) models. A time-series random

variable whose power spectrum remains constant over time

can be viewed as a combination of signal and noise. An

ARIMA model aims to separate the signal from the noise.

The obtained signal is then extrapolated into the future. In

theory, it tackles time series forecasting by transforming the

non-stationary process to stationary through differencing [3].

2.2. Deterministic Spatiotemporal Prediction

Spatiotemporal non-stationary processes are more com-

plicated, as the joint distribution of neighboring pixel values

is varying in both space and time. Like low-dimensional

time series, they can also be decomposed into deterministic

and stochastic components. Recent work in neural networks

explored spatiotemporal prediction from these two aspects.

CNNs [17] and RNNs [27] have been widely used for

learning the deterministic spatial correlations and temporal

dependencies from videos. Ranzato et al. [23] defined a re-

current model predicting frames in a discrete space of patch

clusters. Srivastava et al. [26] introduced the sequence to

sequence LSTM network from language modeling to video

prediction. But this model can only capture temporal varia-

tions. To learn spatial and temporal variations in a unified

network structure, Shi et al. [24] integrated the convolution

operator into recurrent state transition functions, and pro-

posed the Convolutional LSTM. Finn et al. [9] developed

an action-conditioned video prediction model that can be

further used in robotics planning when combined with the

model predictive control methods. Villegas et al. [29] and

Patraucean et al. [21] presented recurrent models based on

the convolutional LSTM that leverage optical flow guided

features. Kalchbrenner et al. [14] proposed the Video Pixel

Network (VPN) that encodes the time, space, color struc-

tures of videos as a four-dimensional dependency chain. It

achieves sharp prediction results but suffers from a high

computational complexity. Wang et al. [32, 31] extended

the convolutional LSTM with zigzag memory flows, which

provides a great modeling capability for short-term video

dynamics. Adversarial learning [10, 7] has been increasingly

used in video generation or prediction [19, 30, 8, 28, 34],

as it aims to solve the multi-modal training difficulty of the

future prediction and helps generate less blurry frames.

However, the high-order non-stationarity of video dynam-

ics has not been thoroughly considered by the above work,
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Figure 2: The ST-LSTM block [32] (detailed in the supplementary materials) in the left plot and the proposed Memory In Memory (MIM)

block in the right plot. MIM is designed to introduce two recurrent modules (yellow squares) to replace the forget gate (dashed box) in

ST-LSTM. MIM-N is the non-stationary module and MIM-S is the stationary module. Note that the MIM block cannot be used in the first

layer so the input Xt is replaced by Hl−1

t .

whose temporal transition methods are relatively simple,

either controlled by the recurrent gate structures or imple-

mented by the recursion of the feed-forward network. By

contrast, our model is characterized by exploiting high-order

differencing to mitigate the non-stationary learning difficulty.

2.3. Stochastic Spatiotemporal Prediction

Some recent methods [36, 6, 18] attempted to model the

stochastic component of video dynamics using Variational

Autoencoder [16]. These methods increase the prediction

diversity but are difficult to evaluate and require to run a

great number of times for a satisfactory result. In this pa-

per, we focus on the deterministic part of spatiotemporal

non-stationarity. More specifically, this work attempts to sta-

tionarize the complicated spatiotemporal processes and make

their deterministic components in the future more predictable

by proposing new RNNs architecture for non-stationarity.

3. Methods

As mentioned above, the spatiotemporal non-stationarity

remains under-explored and its differential features have

not been fully exploited by previous methods using neural

networks. In this section, we first present the Memory In

Memory (MIM) blocks for learning about the higher-order

non-stationarity from RNNs memory transitions. We then

discuss a new RNN architecture, which interlinks multiple

MIM blocks with diagonal state connections, for modeling

the differential information in the spatiotemporal predic-

tion. By stacking multiple MIM blocks, we could potentially

learn higher-order non-stationarity from spatiotemporal dy-

namics. The proposed MIM state transition approach can

be integrated into all LSTM-like units. We choose the Spa-

tiotemporal LSTM (ST-LSTM) [32] as our base network

for a trade-off between prediction accuracy and computa-

tion simplicity. ST-LSTM is characterized by a dual-memory

structure, Cl
t

and Ml
t
, as shown in Figure 2 (left). The corre-

sponding zigzag memory flow of Ml
t
, as illustrated by the

black arrows in Figure 4, strengthens its short-term modeling

capability by increasing the recurrent transition depth.

3.1. Memory In Memory Blocks

We observe that the complex dynamics in spatiotemporal

sequences can be handled more effectively as a combination

of stationary variations and non-stationary variations. Sup-

pose we have a video sequence showing a person walking

at a constant speed. The velocity can be seen as a stationary

variable and the swing of the legs should be considered as a

non-stationary process, which is apparently more difficult to

predict. Unfortunately, the forget gate in previous LSTM-like

models is a simple gating structure that struggles to capture

the non-stationary variations in spacetime. In preliminary

experiments, we find that the majority of forget gates in the

recent PredRNN model [32] are saturated, implying that the

units always remember stationary variations.

The Memory In Memory (MIM) block is enlightened

by the idea of modeling the non-stationary variations us-

ing a series of cascaded memory transitions instead of the

simple, saturation-prone forget gate in ST-LSTM. As com-

pared in Figure 2 (the smaller dashed boxes), two cascaded

temporal memory recurrent modules are designed to re-

place the temporal forget gate ft in ST-LSTM. The first

module additionally taking Hl−1

t−1 as input is used to cap-

ture the non-stationary variations based on the differencing

(Hl−1
t −Hl−1

t−1) between two consecutive hidden represen-

tations. So we name it the non-stationary module (shown

as MIM-N in Figure 3). It generates differential features

Dl
t

based on the difference-stationary assumption [22]. The

other recurrent module takes as inputs the output Dl
t

of the

MIM-N module and the outer temporal memory Cl
t−1 to

capture the approximately stationary variations in spatiotem-

9156



it

gt

ft

Nt

ot

l

Ct-1 it

St-1

gt

ft

St

ot

l

l

Ht-1
l-1

Ht
l-1

Nt-1
l

MIM-S

 (Stationary)

MIM-N 

(Non-stationary)

l

Dt
l

Tt
l

Figure 3: The non-stationary module (MIM-N) and the stationary

module (MIM-S), which are interlinked in a cascaded structure in

the MIM block. Non-stationarity is modeled by differencing.

poral sequences. So we call it the stationary module (shown

as MIM-S in Figure 3). By replacing the forget gate with the

final output T l
t

of the cascaded non-stationary and stationary

modules (as shown in Figure 2), the non-stationary dynamics

can be captured more effectively. Key calculations inside a

MIM block can be shown as follows:

gt = tanh(Wxg ∗ Hl−1

t +Whg ∗ Hl
t−1 + bg)

it = σ(Wxi ∗ H
l−1

t +Whi ∗ H
l
t−1 + bi)

Dl
t = MIM-N(Hl−1

t ,Hl−1

t−1,N
l
t−1)

T l
t = MIM-S(Dl

t, C
l
t−1,S

l
t−1)

Cl
t = T l

t + it ⊙ gt

g′t = tanh(W ′

xg ∗ Hl−1

t +Wmg ∗Ml−1

t + b′g)

i′t = σ(W ′

xi ∗ H
l−1

t +Wmi ∗M
l−1

t + b′i)

f ′

t = σ(W ′

xf ∗ Hl−1

t +Wmf ∗Ml−1

t + b′f )

Ml
t = f ′

t ⊙Ml−1

t + i′t ⊙ g′t

ot = σ(Wxo ∗ H
l−1

t +Who ∗ H
l
t−1 +Wco ∗ C

l
t +Wmo ∗M

l
t + bo)

Hl
t = ot ⊙ tanh(W1×1 ∗ [C

l
t,M

l
t]),

(1)

where S and N denote the horizontally-transited memory

cells in the non-stationary module (MIM-N) and stationary

module (MIM-S) respectively; D is the differential features

learned by MIM-N and fed into MIM-S; T is the memory

passing the virtual “forget gate”; and ∗ denotes convolution.

The cascaded structure enables end-to-end modeling of

different orders of non-stationary dynamics. It is based on

the difference-stationary assumption that differencing a non-

stationary process repeatedly will likely lead to a stationary

one [22]. A schematic of MIM-N and MIM-S is presented

in Figure 3. We present the detailed calculations of MIM-N

as follows:

gt = tanh(Wxg ∗ (Hl−1

t −Hl−1

t−1) +Wng ∗ N l
t−1 + bg)

it = σ(Wxi ∗ (H
l−1

t −Hl−1

t−1) +Wni ∗ N
l
t−1 + bi)

ft = σ(Wxf ∗ (Hl−1

t −Hl−1

t−1) +Wnf ∗ N l
t−1 + bf )

N l
t = ft ⊙N l

t−1 + it ⊙ gt

ot = σ(Wxo ∗ (H
l−1

t −Hl−1

t−1) +Wno ∗ N
l
t + bo)

Dl
t = MIM-N(Hl−1

t ,Hl−1

t−1,N
l
t−1) = ot ⊙ tanh(N l

t ),

(2)

where all gates gt, it, ft and ot are updated by incorporating

the frame difference (Hl−1
t −Hl−1

t−1), which highlights the

non-stationary variations in the spatiotemporal sequence.

The detailed calculations of MIM-S are shown as follows:

gt = tanh(Wdg ∗ Dl
t +Wcg ∗ Cl

t−1 + bg)

it = σ(Wdi ∗ D
l
t +Wci ∗ C

l
t−1 + bi)

ft = σ(Wdf ∗ Dl
t +Wcf ∗ Cl

t−1 + bf )

Sl
t = ft ⊙ Sl

t−1 + it ⊙ gt

ot = σ(Wdo ∗ D
l
t +Wco ∗ C

l
t−1 +Wso ∗ S

l
t + bo)

T l
t = MIM-S(Dl

t, C
l
t−1,S

l
t−1) = ot ⊙ tanh(Sl

t),

(3)

which takes the memory cells Cl
t−1 and the differential fea-

tures Dl
t

generated by MIM-N as input. As can be validated,

the stationary module provides a gating mechanism to adap-

tively decide whether to trust the original memory Cl
t−1 or

the differential features Dl
t
. If the differential features vanish,

indicating that the non-stationary dynamics is not prominent,

then MIM-S will mainly reuse the original memory. Other-

wise, if the differential features are prominent, then MIM-S

will overwrite the original memory and focus more on the

non-stationary dynamics.

3.2. Memory In Memory Networks

Stacking multiple MIM blocks, our model has a chance

to capture higher orders of non-stationarity, gradually sta-

tionarizes the spatiotemporal process and makes the future

sequence more predictable. The key idea of this architecture

is to deliver necessary hidden states for generating differen-

tial features and best facilitating non-stationarity modeling.

A schematic of our proposed diagonal recurrent archi-

tecture is shown in Figure 4. We deliver the hidden states

Hl−1

t−1 and Hl−1
t to the Memory In Memory (MIM) block

at timestamp t 6= 1 and layer l 6= 1 to generate the differ-

enced features for further use. These connections are shown

as diagonal arrows in Figure 4. As the first layer does not

have any previous layer, we simply use the Spatiotemporal

LSTM (ST-LSTM) [32] to generate its hidden presentations.

Note that, the temporal differencing is performed by subtract-

ing hidden state Hl−1
t from the hidden state Hl−1

t−1 in MIM.

Compared to differencing neighboring raw images directly,

differencing temporally adjacent hidden states can reveal

the non-stationarity more evidently, as the spatiotemporal

variations in local areas have been encoded into the hidden

representations through the bottom ST-LSTM layer.

Another distinctive feature of the MIM networks resides

in the horizontal state transition paths. As the MIM blocks

have two cascaded temporal memory modules to capture

the non-stationary and stationary dynamics respectively, we

further deliver the two temporal memories (denoted by N
for the non-stationary memory and by S for the stationary

memory) along the blue arrows in Figure 4.
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Figure 4: A MIM network with three MIMs and one ST-LSTM.

Red arrows: the diagonal state transition paths of H for differ-

ential modeling. Blue arrows: the horizontal transition paths of

the memory cells C, N and S. Black arrows: the zigzag state

transition paths of M. Input: the input can be either the ground

truth frame for input sequence, or the generated frame at previous

timestamp. Output: one frame is generated at each timestamp.

The MIM networks generate one frame at one timestamp.

Calculations of the entire model with one ST-LSTM and

(L− 1) MIMs can be presented as follows (for 2 ≤ l ≤ L).

Note that there is no MIM block that is marked as MIM1.

H1

t , C
1

t ,M
1

t = ST-LSTM1(Xt,H
1

t−1, C
1

t−1,M
L
t−1)

Hl
t, C

l
t,M

l
t,N

l
t ,S

l
t = MIMl(H

l−1

t ,Hl
t−1, C

l
t−1,M

l−1

t ,

N l
t−1,S

l
t−1).

(4)

We formulate high-order non-stationarity as high-order

polynomials based on Cramér’s Decomposition [4]. In the

space-time contexts, it refers to the varying trends of statis-

tics of pixel values. The order of non-stationary polynomials

can be reduced by a couple of differencing operations. We

blend this idea from time-series analysis with deep learning:

stacking MIMs with differential inputs layer by layer.

4. Experiments

In this section, we evaluate the proposed MIM model

using four datasets for spatiotemporal prediction: a synthetic

dataset with moving digits, a real traffic flow dataset, a real

radar echo dataset, and a human action dataset. Here are

some common settings all over these datasets. Our model

has four layers in all experiments, including one ST-LSTM

PredRNN

Causal LSTM

FRNN

Input sequence

t=2

Ground truth and predictions

t=6 t=10 t=12 t=14 t=16 t=18 t=20

MIM

MIM*

Figure 5: Prediction examples on the standard Moving MNIST. All

models predict 10 frames into the future by observing 10 previous

frames. The output frames are shown at two frames intervals.

layer as the first layer and three MIMs. The number of feature

channels in each MIM block is 64, as a trade-off of prediction

accuracy and memory efficiency. All models are trained with

the ℓ2 loss, using the ADAM optimizer [15] with a learning

rate of 0.001. The mini-batch size is set to 8. We apply the

layer normalization [1] to the compared models in order to

reduce the covariate shift problem [12]. Besides, we apply

the scheduled sampling [2] to all models to stitch the discrep-

ancy between training and inference. Code and models are

available at https://github.com/Yunbo426/MIM.

4.1. Moving MNIST

The standard Moving MNIST is a synthetic dataset with

grayscale image sequences of flying digits. We follow exactly

the experimental settings in PredRNN [32].

We visualize a sequence of predicted frames on the stan-

dard Moving MNIST test set in Figure 5. This example

is challenging, as severe occlusions exist near the junction

of the input sequence and the output sequence. The occlu-

sions can be viewed as information bottleneck, in which

the mean and variance of the spatiotemporal process meet

drastic changes, indicating the presence of a high-order non-

stationarity. The generated images of MIM are more satis-

factory, less blurry than those of other models. Actually, we

cannot even tell the digits in the last frames generated by

other models. We may conclude that MIM shows more capa-

bility in capturing complicated non-stationary variations.

We use the per-frame structural similarity index measure

(SSIM) [33], the mean square error (MSE) and the mean

absolute error (MAE) to evaluate our models. A lower MSE

or MAE, or a higher SSIM indicates a better prediction. As
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Model SSIM MSE MAE

FC-LSTM [26] 0.690 118.3 209.4

ConvLSTM [24] 0.707 103.3 182.9

TrajGRU [25] 0.713 106.9 190.1

CDNA [9] 0.721 97.4 175.3

DFN [5] 0.726 89.0 172.8

FRNN [20] 0.813 69.7 150.3

VPN baseline [14] 0.870 64.1 131.0

PredRNN [32] 0.867 56.8 126.1

Causal LSTM [31] 0.898 46.5 106.8

MIM 0.874 52.0 116.5

MIM* 0.910 44.2 101.1

Table 1: A comparison for predicting 10 frames on Moving MNIST

dataset. All models have comparable numbers of parameters.

MIM* is network using Causal LSTM [31] as the first layer, and

integrating the cascaded MIM-N and MIM-S modules into the

Causal LSTM memory cells. This result shows that MIM is a

generic mechanism for improving recurrent memory transitions.

shown in Table 1, our proposed MIM model approaches

the state-of-the-art results on the standard Moving MNIST

dataset. In particular, we construct another model named

MIM* by using Causal LSTM [31] as the first layer, and

integrating the cascaded MIM-N and MIM-S modules into

the Causal LSTM memory cells, using them to replace the

temporal forget gates in Causal LSTMs. This result shows

that the memory in memory mechanism is not specifically de-

signed for the ST-LSTM; instead, it is a generic mechanism

for improving RNNs memory transitions. Though in other

parts of this paper, we use ST-LSTM as our base structure for

a trade-off between prediction accuracy and computational

complexity, we can see that MIM performs better than its

ST-LSTM (PredRNN) baseline, while MIM* also performs

better than its Causal LSTM baseline. We also adopt the

gradient-based sharpness metric from [19] to measure the

sharpness of the generated images. As shown in Table 2,

MIM rises the sharpness score by 16% over PredRNN.

Model Gradient-Based Sharpness

FRNN [20] 24.99

PredRNN [32] 23.29

MIM 27.05

Table 2: Sharpness evaluation on Moving MNIST.

We further testify the necessity of cascading inner re-

current modules by respectively removing the stationary

modules or non-stationary modules. As illustrated in Table

3, the MIM network without MIM-N works slightly better

than that without MIM-S. Also, either of them has signifi-

cant improvements over the PredRNN model in MSE/MAE,

showing the necessity of cascading them in a unified net-

work. When MIM-N and MIM-S are interlinked, the entire

MIM model achieves the best performance.

Model SSIM MSE MAE

MIM (without MIM-N) 0.858 54.4 124.8

MIM (without MIM-S) 0.853 55.7 125.5

MIM 0.874 52.0 116.5

Table 3: Ablation study with respect to the MIM block.

We study the sensitivity of our model to the number of

MIM blocks. As stacking 2–4 recurrent layers is a common

practice, we evaluate models with 2/3/4 MIMs on Moving

MNIST. The proposed model with 3 MIMs performs best. It

is a trade-off: applying too few MIMs leads to inadequate

non-stationary modeling capability while the excessively

deep recurrent model leads to training difficulty.

# MIM blocks SSIM MSE

2 0.870 54.6

3 0.874 52.0

4 0.859 53.7

Table 4: The sensitivity of our model to the number of MIM blocks.

The forget gates are easily saturated in PredRNN as

well as other LSTM-based spatiotemporal prediction models

such as ConvLSTM [24]. As shown in Figure 6, a great por-

tion of forget gates of these models are close to 0, indicating

that the long short-term memories do not work properly. As

the non-stationary signals within short-term variations are

hard to be captured, these models have to refresh the mem-

ory states to convey these short-term hidden representations.

Our model mitigates this problem and makes better use of

long-term variations through the proposed MIM block. As

MIM-N mainly reduces the non-stationarity, short-term ten-

dencies become easier to be captured and more neurons in

MIM-S can be used for handling long-term variations.

Figure 6: The saturated rate of forget gates that corresponds to

|Tt/Ct−1| < 0.1 for MIM, and ft < 0.1 for other models.

4.2. TaxiBJ Traffic Flow

Traffic flows are collected from the chaotic real-world

environment. They will not vary uniformly over time, and
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there are strong temporal dependencies between the traffic

conditions at neighboring timestamps. Each frame in TaxiBJ

is a 32× 32× 2 grid of image. Two channels represent the

traffic flow entering and leaving the same district. We nor-

malize the data to [0, 1] and follow the experimental settings

of ST-ResNet [37], which yields the previous state-of-the-art

results on this dataset. Each sequence contains 8 consecu-

tive frames, 4 for the inputs and 4 for the predictions. We

show the quantitative results in Table 5 and the qualitative

results in Figure 7. To make the comparisons conspicuous,

we also visualize the difference between the predictions and

the ground truth images. Obviously, MIM shows the best

performance in all predicted frames among all compared

models, with the lowest difference intensities.

Model Frame 1 Frame 2 Frame 3 Frame 4

ST-ResNet [37] 0.460 0.571 0.670 0.762

VPN [14] 0.427 0.548 0.645 0.721

FRNN [20] 0.331 0.416 0.518 0.619

PredRNN [32] 0.318 0.427 0.516 0.595

Causal LSTM [31] 0.319 0.399 0.500 0.573

MIM 0.309 0.390 0.475 0.542

Table 5: Per-frame MSE calculated with data in the range of [0, 1]
on the TaxiBJ dataset. All compared models take 4 historical traffic

flow images as inputs, and predict the next 4 images (traffic flows

for the next two hours).

4.3. Radar Echo

The radar echo dataset contains evolving radar maps that

were collected every 6 minutes, from May 1st, 2014 to June

30th, 2014. Each frame is a 64× 64× 1 grid of image, cov-

ering 64× 64 square kilometers. We predict 10 timestamps

into the future at a time interval of 6 minutes, covering the

next hour. We visualize the generated radar maps in Figure

8. We can see that the evolution of radar echoes is a highly

non-stationary process. The accumulation, deformation, and

dissipation of the radar echoes are happening at every mo-

ment. In this showcase, the echoes in the bottom left corner

aggregate while those in the upper right corner dissipate.

Only MIM captures the movement of the echoes correctly.

Model MSE CSI-30 CSI-40 CSI-50

FRNN [20] 52.5 0.254 0.203 0.163

PredRNN [32] 31.8 0.401 0.378 0.306

Causal LSTM [31] 29.8 0.362 0.331 0.251

MIM 27.8 0.429 0.399 0.317

Table 6: A comparison for predicting 10 frames on the subsets of

the radar dataset. All of the models are also trained with 10 target

frames and made to predict 10 future frames at test time.

We evaluate the generated radar echoes by MSE in Table

6, and then convert pixel values to radar echo intensities in

PredRNN

Causal LSTM

FRNN

Input sequence Ground truth and predictions

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

Predicted 

Frames

Predicted 

Frames

|GT-P|

Predicted 

Frames

|GT-P|

Predicted 

Frames

|GT-P|

MIM

|GT-P|

Figure 7: Prediction examples on TaxiBJ dataset. For ease of com-

parison, we also visualize the difference between the ground truth

frames (GT) and predicted frames (P).

PredRNN

Causal LSTM

Input sequence

t=2

Ground truth and predictions

t=6 t=10 t=12 t=14 t=16 t=18 t=20

MIM

Figure 8: Examples of the next-hour predictions of radar echoes,

where higher pixel values indicate higher precipitation probabilities.

dBZ. We respectively choose 30 dBZ, 40 dBZ and 50 dBZ as

thresholds to calculate the Critical Success Index (CSI). CSI

is defined as CSI = hits
hits+misses+falsealarms

, where hits corre-

sponds to true positive, misses corresponds to false positive,

and false alarms corresponds to false negative. A higher CSI

denotes a better prediction result. MIM consistently outper-

forms other models in both MSE and CSI. Figure 9 shows

the frame-wise MSE/CSI. CSI-40 and CSI-50 indicate the
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Figure 9: Frame-wise comparisons of the next 10 generated radar

maps. Lower MSE curves or higher CSI curves indicate better

forecasting results. The MIM network is the most high-performing

method over all timestamps in the forecasting horizon.

probabilities of severe weather conditions. MIM performs

best though predicting severe weather is non-trivial due to

the long tail distributions of the pixel values.

4.4. Human3.6M

The Human3.6M dataset [13] contains human actions of

17 scenarios, including 3.6 million poses and corresponding

images. We train the models using only the “Walking” sce-

nario. The RGB images in Human3.6M dataset are originally

1000 × 1000 × 3, and resized to 128 × 128 × 3 in our ex-

periments. We generate 4 future frames given the previous 4
RGB frames. We use subjects S1, S5, S6, S7, S8 for training,

and S9, S11 for testing.

As shown in Table 7 and Figure 10, the MIM network

outperforms the previous state-of-the-art models in both nu-

merical metrics and visual effects. The generated frames by

MIM are more accurate in motion positions, as indicated by

the orange boxes (versus the green boxes). We notice that

some work performs well on human-body datasets by model-

ing the structures of human joints, while the MIM network is

designed for non-structural, general-purpose spacetime data

such as RGB videos. The structural and non-structural meth-

ods can be integrated and jointly used in a complementary

manner, which is left for future work.

5. Conclusions

We investigate the underlying non-stationarity that forms

one of the main obstacles in spatiotemporal prediction. Ex-

isting LSTM-based models for spatiotemporal prediction

Model SSIM MSE MAE

FRNN [20] 0.771 497.7 1901.1

PredRNN [32] 0.781 484.1 1895.2

MIM 0.790 429.9 1782.8

Table 7: Quantitative results on the Human3.6M dataset.

t=5 t=6 t=7 t=8

t=5 t=6 t=7 t=8

t=5 t=6 t=7 t=8

t=5 t=6 t=7 t=8

F
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N
N

M
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G
ro

u
n
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P
re

d
R

N
N

Figure 10: Examples of the generated images on the Human3.6M

dataset. We zoom in to show the details of images.

are powerful in modeling difference-stationary sequences,

whose capability for modeling high-order non-stationary

process is limited by their relatively weak forget gates. This

paper proposes a new recurrent neural network to enable non-

stationary modeling in the spacetime contexts. We formulate

high-order non-stationarity as high-order polynomials with

respect to the statistically varying trends of pixel intensities.

The order of non-stationary polynomials can be reduced by

a couple of differencing operations. We leverage this idea

from time-series analysis: stacking MIMs with differential

inputs layer by layer. The Memory In Memory (MIM) block

is derived to model the complicated variations, which uses

two cascaded recurrent modules to handle the non-stationary

and approximately stationary components in the spatiotem-

poral dynamics. MIM achieves the state-of-the-art prediction

performance on four datasets: a synthetic dataset of flying

digits, a traffic flow prediction dataset, a weather forecasting

dataset, and a human pose video dataset.
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