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Abstract

Generalizing eye tracking to new subjects/environments

remains challenging for existing appearance-based meth-

ods. To address this issue, we propose to leverage on eye

movement dynamics inspired by neurological studies. S-

tudies show that there exist several common eye movement

types, independent of viewing contents and subjects, such

as fixation, saccade, and smooth pursuits. Incorporating

generic eye movement dynamics can therefore improve the

generalization capabilities. In particular, we propose a nov-

el Dynamic Gaze Transition Network (DGTN) to capture

the underlying eye movement dynamics and serve as the top-

down gaze prior. Combined with the bottom-up gaze mea-

surements from the deep convolutional neural network, our

method achieves better performance for both within-dataset

and cross-dataset evaluations compared to state-of-the-art.

In addition, a new DynamicGaze dataset is also constructed

to study eye movement dynamics and eye gaze estimation.

1. Introduction

Eye gaze is one of the most important approaches for

people to interact with each other and with the visual world.

Eye tracking has been applied to different fields, including

psychology study [1], social network [2, 3, 4, 5], web search

[6, 7, 8], marketing and advertising [9], human computer

interaction [10, 11, 12]. In addition, since neurological activ-

ities affect the way to process visual information (reflected

by eye movements), eye tracking, therefore becomes one of

the most effective tools to study neuroscience. The estimat-

ed eye movements, eye gaze patterns can help attentional

studies like object-search mechanisms [6], understand neu-

rological functions during perceptual decision making [13],

and medical diagnosis like schizophrenia, post-concussive

syndrome, autism, Fragile X, etc. Despite the importance

of eye tracking to neuroscience studies, researchers ignored

that neurological studies on eyes can also benefit eye track-

ing. It is revealed that eye tracking is not a random process

but involves strong dynamics. There exist common eye

movement dynamics 1 that are independent of the viewing

content and subjects. Exploiting eye movement dynamics

can significantly improve the performance of eye tracking.

From neuroanatomy studies, there are several major types

of eye movements 2: vergence, saccade, fixation and smooth

pursuit. Vergence movements are to fixate on objects at dif-

ferent distances where two eyes move in opposite direction.

As vergence is less common in natural viewing scenarios,

we mainly focus on fixation, saccade, and smooth pursuit

eye movements. Saccadic movement is rapid eye movement

from one fixation to another, its duration is short and the

amplitude is linearly correlated with the duration. There

are also study on microsaccade [14] which is not the focus

of this paper. Fixation is to fixate on the same object for a

period of time, eye movements are very small (miniature)

and can be considered as a stationary or random walk. S-

mooth pursuit is eye movement which smoothly tracks a

slowly moving object. It cannot be triggered voluntarily and

typically require a moving object.

Existing work (see [15] for a comprehensive survey) on

eye gaze estimation are static frame-based, without explic-

itly considering the underlying dynamics. Among them,

model-based methods [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]

estimate eye gaze based on a geometric 3D eye model. Eye

gaze can be estimated by detecting key points in the geomet-

ric 3D eye model. Differently, appearance-based methods

[26, 27, 28, 29, 30, 31] directly learn a mapping function

from eye appearance to eye gaze.

Unlike traditional static frame-based methods, we pro-

pose to estimate eye gaze with the help of eye movement dy-

namics. Since eye movement dynamics can generalize across

subjects and environments, the proposed method therefore

achieves better generalization capabilities. The system is

illustrated in Fig. 1. For online eye tracking, the static gaze

estimation network first estimates the raw gaze xt from input

frame. Next, we combine top-down eye movement dynamics

with bottom-up image measurements (Alg. 1) to get a more

accurate prediction yt. In addition, yt is further fed back to

refine the static network so that we can better generalize to

1In this work, eye movement refers to actual gaze movement on screens.
2https://www.ncbi.nlm.nih.gov/books/NBK10991/
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Figure 1. Overview of the proposed system. For online eye tracking, we combine static gaze estimation network with dynamic gaze transition

network to obtain better gaze estimation. In addition, the feedback mechanism of the system allows model refinement, so that we can better

generalize the static network to unseen subjects or environments.

current user and environment (Alg. 2). The proposed method

makes following contributions:

• To the best of our knowledge, we are the first to take

advantage of dynamic information to improve gaze esti-

mation. Combining top-down eye movement dynamics

with bottom-up image measurements gives better gen-

eralization and accuracy (%15 improvement), and can

automatically adapt to unseen subjects and environ-

ments.

• Propose the DGTN that effectively captures the transi-

tions of different eye movements as well as their under-

lying dynamics.

• Construct the DynamicGaze dataset, which not only

provides another benchmark for evaluating static gaze

estimation but benefits the community for studying eye

gaze and eye movement dynamics.

2. Related Work

Static eye gaze estimation. The most relevant work to

our static gaze estimation is from [27]. The authors proposed

to estimate gaze on mobile devices with face, eye and head

pose information using a deep convolutional neural network.

Though they can achieve good performance within-dataset,

they cannot generalize well to other datasets.

Eye gaze estimation with eye movement dynamics.

Eye movement is a spatial-temporal process. Most exist-

ing work only uses spatial eye movements, also known as

saliency map. In [32, 18, 33], the authors approximated

the spatial gaze distribution with the saliency map extracted

from image/video stimulus. However, their purpose is to

perform implicit personal calibration instead of improving

gaze estimation accuracy, since spatial saliency map is scene-

dependent. In [34], the authors used the fact that over 80%
chance that first two fixations are on faces to help estimate

eye gaze. However, their approximation is too simple and

cannot apply to more natural scenarios.

For temporal eye movements, the authors in [35] pro-

posed to estimate the future gaze positions for recommender

systems with a Hidden Markov Model (HMM), where fixa-

tion is assumed to be a latent state, and user actions (clicking,

rating, dwell time, etc) are the observations. Their method is

however very much task-dependent and cannot generalize

to different tasks. In [36], the authors proposed to use a

similar HMM to predict gaze positions to reduce the delay

of networked video streaming. They also considered three

states corresponding to fixation, saccade, and smooth pursuit.

However, their approach ignores the different duration for

the three states, and their detailed modeling of the dynamics

for each state is relatively simpler. In addition, it requires

a commercial eye tracker, while the proposed method is an

appearance-based gaze estimator, which can perform on-

line real-time eye tracking with a simple web-camera. Fur-

thermore, the proposed method supports model-refinement

which can generalize to new subjects and environments.

Eye Movement Analysis. Besides eye tracking, there are

plenty of work on identifying the eye movement types given

eye tracking data. It includes threshold-based [37, 38] and

probabilistic-based [39, 40, 41]. Both methods require mea-

surements from eye tracking data like dispersion, velocity or

acceleration. Analyzing the underlying distribution of these

measurements can help identify the eye movement types.

However, these approaches are not interested in modeling

the gaze transitions for improving eye tracking.

3. Proposed Framework

We first discuss the eye movement dynamics and the

DGTN in Sec. 3.1. Next, we briefly introduce the static gaze

estimation network in Sec. 3.2. Then we talk about how to

perform online eye tracking with top-down eye movement

dynamics and bottom-up gaze measurements in Sec. 3.3.

Finally in Sec. 3.4, we focus on the refinement of the static

gaze estimation network.
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Figure 2. Eye movement dynamics. (a) Illustration of eye move-

ments while watching a video, (b) Graphical representation of

dynamic gaze transition network.

3.1. Eye Movement Dynamics and DGTN

We first take a look at the eye movements while watching

a video. As shown in Fig. 2 (a), the user is first attracted

by the motorcyclist on the sky. After spending some time

fixating on the motorcyclist, the user shifts the focus on the

recently appeared car (due to shooting angle change). A

saccade is in between of the two fixations. Next, the user

turns the focus back to the motorcyclist and starts following

the motion with smooth pursuit eye movement. We have

three observations regarding the eye movements: 1) each eye

movement has its own unique dynamic pattern, 2) different

eye movements have different durations, and 3) there exists

special transition patterns across different eye movements.

These observations inspire us to construct the dynamic model

shown in Fig. 2 (b) to model the overall gaze transitions.

Specifically, we employ the semi-Markov model to model

the durations for each eye movement type. In Fig. 2 (b), the

red curve on the top shows a sample gaze pattern with 3
segments of fixation, saccade, and smooth pursuit respec-

tively. The top row represents the state chain st, where

st = {fix, sac, sp} can take three values corresponding

to fixation, saccade, and smooth pursuit respectively. Each

state can generate a sequence of true gaze positions {yt}
d
t=1,

where d represents the duration for the state. Though the

state st is constant for a long period, its value is copied for

all time slices within the state to ensure a regular structure.

The true gaze yt not only depends on the current state but

also depends on previous gaze positions. For example, the

moving direction for smooth pursuit is determined by sever-

al previous gaze positions. Given the true gaze yt, we can

generate the noisy measurements xt, which are the outputs

from the static gaze estimation methods.

In the following, we will discuss in details 1) within-

state dynamics (Sec. 3.1.1), 2) eye movement duration and

transition (Sec. 3.1.2), 3) measurement model (Sec. 3.1.3),

and 4) parameter learning (Sec. 3.1.4).

3.1.1 Within-state Dynamics
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Figure 3. Visualization of eye movements. top-left: 3D plot of x-y-

t; top-right: projected 2D plot on y-t plane; bottom-left: projected

2D plot on x-t plane; bottom-right: projected 2D plot on x-y plane.

Fixation. Fixation is to fixate eye gaze on the same static

object for a period of time (Fig. 3 (d)). We propose to model

it with random walk : yt = yt−1 + wfix, where wfix is

the Gaussian noise with zero-mean and covariance matrix of

Σfix.

Saccade. Typically, saccade is fast eye movement be-

tween two fixations. The trajectory is typically a straight line

or generalized exponential curves (Fig. 3). In this work, we

approximate the trajectory with piece-wise linear functions.

The first saccade point y1 is actually the end point of last

fixation. Predicting the position of second saccade point y2

is difficult without knowing the image content. However, ac-

cording to [42], horizontal saccades are more frequent than

vertical saccades, which provide strong cues to the second

saccade point. Specifically, we assume second point can be

estimated by transiting first point with certain amplitude and

direction (angle) on 2D plane: y2 = y1+λ[cos(θ), sin(θ)]T ,

where amplitude λ ∼ N (µλ, σλ) and angle θ ∼ N (µθ, σθ)
both follow Gaussian distributions. The histogram plot of

amplitude (Fig. 4 (a)) and angle (Fig. 4 (b)) from real data

also validates the feasibility of Gaussian distributions.
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Figure 4. Saccade characteristics. (a) Amplitude distribution, (b) Angle distribution, (c) Amplitude change from adjacent saccade points.

The rest saccade points can be estimated with the previous

two points: yt = Bi
1yt−1+Bi

2yt−2+wsac, where Bd
1 and

Bi
2 are the regression matrices, the superscript i indicates

the index of current saccade point, or how many frames

have past when we enter the state. The value of i equals

the duration variable d in Eq. (1). It might be easier if we

assume Bi
1 and Bi

2 remain the same for different indexes

i, but saccade movements have certain characteristics. For

example as in (Fig. 4 (c)), the amplitude changes between

adjacent saccade points first increases than decreases. Using

index-dependent regression matrices can better capture the

underlying dynamics. wsac is the Gaussian noise with zero-

mean and covariance matrix of Σsac.

Smooth Pursuit. Smooth pursuit is to keep track of a

slowly moving object. Therefore we can approximate the

moving trajectory by piece-wise linear functions similar to

saccade points. For the second smooth pursuit point, we in-

troduce amplitude and angle variable {λsp, θsp). For remain-

ing smooth pursuit points, we introduce index-dependent

regression matrices: yt = Ci
1yt−1 +Ci

2yt−2 +wsp. wsp

is the Gaussian noise with zero-mean and covariance matrix

of Σsp.

3.1.2 Eye Movement Duration and Transition

The hidden semi-Markov model has been well studied in
[43], we adopt a similar formulation for our model in terms
of state duration and transition modeling. Besides random
variables st, yt and xt for state, true gaze position and mea-
sured gaze position, we introduce another discrete random
variable dt (range {0, 1, ..., D}) representing the remaining
duration of state st. The state st and the remaining duration
dt are discrete random variables and follows multinomial
(categorical) distribution. The CPDs for the state transition
are defined as follows:

P (st = j|st−1 = i, dt = d) =

{

δ(i, j) if d > 0
A(i, j) if d = 0

P (dt = d
′|dt = d, st = k) =

{

δ(d′, d− 1) if d > 0
pk(d

′) if d = 0
(1)

where δ(i, j) = 1 if i = j else 0. When we enter a new state

st = i, the duration dt is drawn from a prior multinomial

distribution qi(·) = [pi(1), ..., pi(D)]. The duration is then

counts down to 0. When dt = 0, the state transits to a

different state with the state transition matrix A and the

duration for the new state is drawn again from qi(·).

3.1.3 Measurement Model

The measurement model P (xt|yt) is independent of the type

of eye movement, and we assume: xt = Dyt +wn, where

D is the regression matrix, and wn is multi-variate Gaussian

noise with zero-mean and covariance matrix of Σn.

3.1.4 Parameter Learning

The DGTN parameters are summarized in Table 1.

For simplicity, we denote all the parameters as α =
[αst,αsd,αfix,αsac,αsp,αm] and the DGTN is represent-

ed as G(α). All the random variables in Fig. 2 (b) are

observed during learning (the states and true gaze are not

known during online gaze tracking). Given the fully ob-

served K sequences ({skt ,y
k
t ,x

k
t }

Tk

t=1) each with length Tk,

we can use Maximum log likelihood to estimate all the pa-

rameters:

α
∗ = argmax

α

log

K∏

k=1

P ({skt ,y
k
t ,x

k
t }

Tk

t=1|α) (2)

= argmax
α

K∑

k=1

log

Tk∏

t=1

∑

dk
t

P (skt , d
k
t )P (yk

t |s
k
t , d

k
t )P (xk

t |y
k
t )

With fully-observed data, the above optimization problem

can be factorized to following sub-problems, each of which

can be solved independently:

α∗

m = argmax
αm

K∑

k=1

log

Tk∏

t=1

P (xk
t |y

k
t ,αm), (3)

{αst,αsd}
∗ = arg max

αst,αsd

K∑

k=1

log

Tk∏

t=1

∑

dk
t

P (skt , d
k
t ) (4)

α
∗

j = argmax
αj

Nj∑

n=1

log

Tn∏

t=1

P (yk
t |s

k
t = j, dkt = Tn,αj)

∀j ∈ {fix, sac, sp}. (5)
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Table 1. Summary of model parameters.

State tran-

sition αst
State duration αsd

Fixation

αfix
Saccade αsac Smooth Pursuit αsp

Measurement

αm

A
qi = [pi(1), ..., pi(Di)]
for i ∈ {fix, sac, sp}

Σfix
{µλ, σλ, µθ, σθ}

sac,

{Bi
1,B

i
2}

Dsac
i=3

,Σsac

{µλ, σλ, µθ, σθ}
sp,

{Ci
1,C

i
2}

Dsp

i=3
,Σsp

D,Σn

3.2. Static Eye Gaze Estimation

Figure 5. Architecture of static gaze estimation network.

The raw gaze measurements xt is estimated with a stan-

dard deep convolutional neural network (Fig. 5) [44, 45].

The input are left and right eyes (both of size 36× 60) and

the 6-dimension head pose information (rotation and trans-

lation: pitch, yaw, roll angles and x, y, z). The left and

right eye branch share the same weights of the convolutional

layers. Each convolution layer is followed by a max-pooling

layer with size 2. RELU is used for the activation of fully-

connected layers. Detailed layer configuration are as follows:

CONV-R1, CONV-L1: 5 × 5/50, CONV-R2, CONV-L2:

5× 5/100, FC-RT1: 512, FC-E1, FC-RT2: 256, FC-1: 500,

FC-2: 300, FC-3: 100. For simplicity, we denote static gaze

estimation as xt = f(It;w), where I and w are input frame

and model parameters respectively.

3.3. Online Eye Gaze Tracking

Traditional static-based methods only output the mea-
sured gaze x from static gaze estimation network. In this
work, we propose to output the true gaze y with the help of
DGTN:

yt = argmax p(yt|x1,x2, ...,xt)

= argmax

∫

st

p(yt, st|x1,x2, ...,xt)dst (6)

Solving the problem in Eq. (6) directly is intractable be-

cause of the integral over the hidden state. Alternatively we

propose to first draw samples of possible state st ([43]) from

its posterior. Given state, gaze estimation is a standard infer-

ence problem of LDS or Kalman filter ([46]). The algorithm

is summarized in Alg. 1.

3.4. Model Refinement

The static gaze estimation network is learned from sub-

jects during the offline stage. They may not generalize well

Algorithm 1: Online eye tracking

while getting a new frame It, do
- Draw samples of state st ([43]) from its posterior:

sit ∼ P (st|xt−k, ...,xt), ∀i = 1, ..., N .

- According to the sample values of state st, using

the corresponding LDS in Eq. (1)([46]) to predict

the true gaze: yi
t =

argmaxyi
t
P (yi

t|xt−k, ...,xt, s
i
t) ∀i = 1, ..., N .

- Average the results from N samples:

yt ≈
1
N

∑N

i=1 y
i
t.

to new subjects or environments. Therefore we propose to

leverage on the refined true gaze to refine the static gaze

estimation network (last two fully-connected layers). The

algorithm is illustrated in Alg. 2. Notice we do not use the

exact values of y, but instead assuming the temporal gaze

distribution from the static network (p(xt)) matches the true

gaze distribution (p(yt)). Similar to Fig. 3 (b) and (c), we

treat the x − t curve and y − t curve as two categorical

distributions(p = [p1, ..., pT ]), whose range is from 1 to T,

and the value pi equals to the normalized gaze positions. By

minimizing the KL-divergence between the two gaze distri-

butions, we can gradually refine the parameters of the static

network. The proposed algorithm may not give good accura-

cy in the beginning, but it can be performed incrementally

and gives better predictions as we collect more frames.

Algorithm 2: Model refinement for static gaze estima-

tion network.

1. Input: Static gaze estimation network f(·) with

initial parameters w0.

2. while getting a new frame It, do
- Gather last k true gaze point yt = (at, bt) from

Alg. 1 and construct two categorical distributions

for horizontal and vertical gaze:

px = 1∑
ai
[at−k, ..., at],py = 1∑

bi
[bt−k, ..., bt].

- Gather last k raw gaze point (ât, b̂t) = f(It;w)
and construct bottom-up categorical distributions:

qx(w) = 1∑
âi
[ât−k, ..., ât],

qy(w) = 1∑
b̂i
[b̂t−k, ..., b̂t].

- Update static gaze estimation network: wt =
argminw DKL(px||qx(w)) +DKL(py||qy(w)),

where DKL(p||q) =
∑

i p(i) log
p(i)
q(i) .
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4. DynamicGaze Dataset

Existing datasets for gaze estimation and eye movement

dynamics have little overlap. On one hand, gaze-related

benchmark datasets are all frame-based. Subjects are asked

to look at markers on the screen, where their face images

and groundtruth gaze are recorded. However, there are no

natural dynamic gaze patterns in the dataset. On the other

hand, eye movement related datasets focus on collecting data

while subjects watch natural video stimulus. Though the col-

lected data involves dynamics, there are no bottom-up image

measurements. To bridge the gap between these two fields,

we construct a new dataset which records both images and

groundtruth gaze positions while subjects perform natural

operations (browsing websites, watching videos). Clear eye

movement dynamics can be observed from the dataset.

To acquire the groundtruth gaze positions, we use a com-

mercial eye tracker which runs at the back-end. In the mean-

time, the front-facing camera of the laptop records the video

stream of the subjects. The video stream and the gaze stream

are synchronized during post-processing. The Tobii 4C eye

tracker gives less than 0.5 error after calibration, and we

believe the accuracy is sufficient to construct a dataset for

the webcam-based eye gaze tracking system.

4.1. Data collection procedure

We invite 15 male subjects and 5 female subjects, whose

age ranges from 20 to 30, to participate in the dataset con-

struction. We collected 3 sessions of data: 1) frame-based;

2) video-watching 3) website-browsing.

Frame-based. There are two purposes: 1) provide anoth-

er benchmark for static eye gaze estimation and 2) train our

generic static gaze estimation network. Subjects are asked

to look at some random moving objects on the screen, the

random moving objects are to ensure subjects’ gaze spread

on the entire screen. Each subject takes 3-6 trials at differ-

ent days, locations. We also ask subjects to sit at different

positions in front of the laptop to introduce more variations.

Finally, we end up with around 370000 valid frames.

Video-watching. The subjects are asked to watch 10
video stimulus (Tab. 2) from 3 eye tracking research datasets.

The collection procedure is similar to the previous session,

and finally we collect a total of around 145000 valid frames.

Website-browsing. Similarly, subjects are asked to

browse websites freely on the laptop for around 5− 6 min-

utes, and a total of around 130000 frames are collected.

4.2. Data visualization and statistics

Fig. 6 shows sample eye images from the 20 subjects.

There are occlusions like glasses and reflections. Fig. 7

shows the spatial gaze distributions on a monitor with reso-

lution 2880× 1620. For frame-based data , the gaze appears

uniformly distributed. For video-watching data, the gaze

Table 2. Information about different video stimulus.
Dataset Name Description

CRCNS [47]
1. saccadetest Dots moving across the screen.

2. beverly07 People walking and running.

[48]
3. 01-car-pursuit Car driving in a roundabout.

4. 02-turning-car Car turning around.

DIEM [49]

5. advert bbc4 bees Flying bees on BBC logo.

6. arctic bears Arctic bears in the ocean.

7. nightlife in mozambique One crab hunting for fishes.

8. pingpong no bodies Pingpong bouncing around.

9. sport barcelona extreme Extreme sports cut.

10. sport scramblers Extreme sports for scramblers.

Figure 6. Sample eye images from the dataset.
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Figure 7. Spatial gaze distributions for the DynamicGaze dataset.
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Figure 8. Sample dynamic gaze patterns from 8 subjects watching

the same video.

appears center-biased, which is the most common pattern

when watching videos. Finally, for website-browsing, the

gaze pattern is focused on the left side of the screen mainly

due to the design of the website. Since the major goal of

the dataset is to explore gaze dynamics, we also take a look

at the dynamic gaze patterns from 8 subjects watching the

same video stimuli. As shown in Fig. 8, different subjects

share similar overall gaze patterns, though the exact values

of horizontal and vertical gaze positions are different.

5. Experiments and Analysis

For DGTN, the measurement model P (xt|yt) is learned

with the data from DynamicGaze, where we have both

groundtruth gaze yt and measured gaze from the static gaze

estimation network. The remaining part of the model is

learned with the data from CRCNS [47], where we have the

groundtruth state annotations st and the groundtruth gaze.
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CRCNS consists of 50 video clips and 235 valid eye move-

ment traces from 8 subjects. For the static gaze estimation

network, we use Tensorflow as our backend engine.

Fixation is a one-order LDS, saccade, and smooth pursuit

can be considered as second-order LDS, therefore the value

k in Alg.1 is either 1 or 2. The value k in Alg.2 is set to 50
(around 2 seconds of data), where we use them to update the

parameters of the static network. For overall gaze estimation,

the static gaze estimation (GPU Tesla 54 K40c) takes less

than 1 ms, while the online part (Alg. 1) with Intel Xeon CPU

E5-2620 v3 @2.4GHz takes around 50-60 ms. In practice,

for real-time processing, the model refinement runs with a

separate thread other than the gaze estimation thread.

The performance is evaluated using the angular error in

degree. We first compute the Euclidean pixel error on the

monitor(2880×1620), which can be transformed to centime-

ter error errd given monitor dimensions. The angular error

is approximated by erra = arctan(errd/tz), where tz is

the estimated depth of subject’s head relative to the camera.

5.1. Baseline for Static Gaze Estimation Network

Table 3. Comparison of different input data channels.

L R F L,R L,R,F L,R,P L,R,F,P

Error 5.38 5.27 5.56 4.70 5.29 4.27 4.47

We experiment with different input combinations. As

shown in Table 3, the symbol L, R, F, P represent left eye im-

age, right eye image, face image, and head pose respectively.

According to the results, we decide to use both eyes and head

pose. To obtain head pose, we perform offline detection of

the facial landmarks [50], then we can solve the head pose

angle with a 3D shape model [51, 52]. Note that adding

face is not helpful, since subjects have very different facial

texture than eye texture, which makes it hard to generalize

to new subjects. In addition, adding face may significantly

increase the inference time.

5.2. Evaluation on Different Model Components

The proposed model consists of two major components:

1) gaze estimation with eye movement dynamics and 2)

refinement model to better fit current users/environments.

To study the contributions of each component, we compare

following 3 variants of the proposed model:

• Static: this model outputs the raw gaze prediction x

and serves as the baseline.

• EMD (Eye movement dynamics): this model only us-

es eye movement dynamics (Alg. 1) without model

refinement and output the true gaze prediction y.

• Full: this is our full model contains both eye movement

dynamics and model refinement.
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Figure 9. Gaze estimation error for all subjects.

We perform cross-subject evaluation and Fig. 9 shows

the performance of the 3 models. First, the Full model

shows improved performance over the Static model for most

subjects. The average estimation error reduces from 5.34

degrees to 4.65 degrees ((pitch, yaw) = (2.67, 3.81), 13%

improvement) for video-watching and 4.97 degrees to 4.07

degrees ((pitch, yaw) = (2.23, 3.41), 18% improvement)

for web-browsing. Second, compare EMD (gray bar) with

Static (black bar), we can always achieve better results for

both scenarios, demonstrating the importance of incorporat-

ing dynamics, especially in practical scenarios where user’s

gaze patterns have strong dynamics. The average improve-

ments with eye movement dynamics are 6.9% and 7.9% for

video-watching and website-browsing respectively. Third,

the difference between Full (white bar) with EMD (gray

bar) demonstrates the effect of Model Refinement. We can

clearly observe that the Static model cannot generalize well

to some subjects. With Model Refinement, we significantly

reduce the error for some subjects (Eg. Subj 6, 15, 16, 18

in video-watching and Subj 15, 16, 18 in website-browsing).

We also observe that model refinement may not always help,

it may increase the error for some subjects (Eg. Subj 4, 5, 7

in video-watching). Averagely speaking, Model Refinement

improves 6.4% and 11.2% for video-watching and website-

browsing respectively. Overall, both components can help

reduce the error of eye gaze estimation and combining the

two further reduces the error.

5.3. Performance of gaze estimation over time

Fig. 10 shows the gaze estimation error over time. The er-

ror is averaged from all subjects from their first 8000 frames.

For both scenarios, the improvement for the first period of

time is small (sometimes even decrease), but gradually there

is more significant improvements as we have more data.
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Figure 10. Gaze estimation error over time. Red curve represents

error from Static model, green curve represents error from Full

model and green curve shows the reduced error.

This demonstrates that with enough frames, the proposed

method can significantly improve the accuracy of eye gaze

estimation.

5.4. Comparison with different dynamic models

Table 4. Average error of all subjects with different dynamic mod-

els.
Static Mean Median LDS s-LDS RNN Ours

Video 5.34 5.18 5.16 5.20 5.14 5.15 4.97

Web 4.97 4.85 4.84 4.70 4.66 4.71 4.58

In this experiment, we compare with several baseline

dynamic models. The experimental results are illustrated in

Table 4. First, we find incorporating dynamics outperforms

the static method. Even the simple mean/median filters

can improve the results. The LDS model trained on entire

sequence without consideration of different eye movement

types cannot give good results. Once we consider different

eye movement types, the switching-LDS can improve the

results even without duration modeling. RNN [53, 54] gives

reasonably good results but ignores the characteristics of

different eye movements and therefore our proposed method

can still outperform it. Overall, we believe the proposed

dynamic modeling can better explain the underlying eye

movement dynamics and help improve the accuracy of eye

gaze estimation.

5.5. Comparison with state­of­the­art

We compare with the state-of-the-art appearance-based

method [27] for both within-dataset and cross-dataset ex-

periments. Specifically, we re-implement the model in [27]

using Tensorflow by following the same architecture and

architecture-related hyperparameters. For training-related

Table 5. Comparison with state-of-the-art.
Exp. Within-dataset Cross-dataset

Video Website Video Website

1. Static network (ours) 5.34 4.97 9.12 9.65

2. Static network ([27]) 4.97 4.86 8.73 9.17

3. Static network (ours) + DGTN 4.65 4.07 7.15 7.87

4. Static network ([27]) + DGTN 4.51 4.00 7.05 7.59

hyperparameters (e.g. learning rate, epochs), we do not

follow the one in [27] and adjust them based on cross-

validation.

For within-dataset experiments, the two models are

trained on the frame-based data from DynamicGaze and

are tested on web and video data from DynamicGaze. For

cross-dataset experiments, the two models are trained with

data from EyeDiap ([55]) and are tested on web and video

data from DynamicGaze.

The results are shown in Table 5. We have following

observations: 1) Compare Exp.1 and Exp.2, we can see

both static networks give reasonable accuracy, and the more

complex one ([27]) gives better performance than ours; 2)

Compare Exp.2 and Exp.4, adding DGTN to static network

significantly reduces the gaze estimation error; 3) similarly

compare Exp.2 and Exp.4, adding DGTN module to state-of-

the-art static network can still achieve better performance; 4)

the improvement for cross-dataset setting is more significant

than the within-dataset case, demonstrating better generaliza-

tion by incorporating eye movement dynamics; 5) compare

Exp.2 and Exp.3, we can find that our proposed method (Ex-

p.3) outperforms current state-of-the-art (Exp.2), especially

in the cross-dataset case.

6. Conclusion

In this paper, we propose to leverage on eye movement

dynamics to improve eye gaze estimation. By analyzing the

eye movement patterns when naturally interacting with the

computer, we construct a dynamic gaze transition network

that captures the underlying dynamics of fixation, saccade,

smooth pursuit, as well as their durations and transition-

s. Combining top-down gaze transition prior from DGTN

with the bottom-up gaze measurements from the deep model,

we can significantly improve the eye tracking performance.

Furthermore, the proposed method allows online model re-

finement which helps generalize to unseen subjects or new

environments. Quantitative results demonstrate the effec-

tiveness of the proposed method and the significance of

incorporating eye movement dynamics into eye tracking.
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