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Abstract

Deep learning-based, single-view depth estimation

methods have recently shown highly promising results.

However, such methods ignore one of the most important

features for determining depth in the human vision sys-

tem, which is motion. We propose a learning-based, multi-

view dense depth map and odometry estimation method that

uses Recurrent Neural Networks (RNN) and trains utilizing

multi-view image reprojection and forward-backward flow-

consistency losses. Our model can be trained in a super-

vised or even unsupervised mode. It is designed for depth

and visual odometry estimation from video where the in-

put frames are temporally correlated. However, it also gen-

eralizes to single-view depth estimation. Our method pro-

duces superior results to the state-of-the-art approaches for

single-view and multi-view learning-based depth estimation

on the KITTI driving dataset.

1. Introduction

The tasks of depth and odometry (also called ego-

motion) estimation are longstanding tasks in computer vi-

sion providing valuable information for a wide variety of

tasks, e.g. autonomous driving, AR/VR applications, and

virtual tourism.

Recently, convolutional neural networks (CNN) [20, 4,

8, 42, 32] have begun to produce results of comparable qual-

ity to traditional geometric computer vision methods for

depth estimation in measurable areas and achieve signifi-

cantly more complete results for ambiguous areas through

the learned priors. However, in contrast to traditional meth-

ods, most CNN methods treat depth estimation as a single

view task and thus ignore the important temporal informa-

tion in monocular or stereo videos. The underlying ratio-

nale of these single view depth estimation methods is the

possibility of human depth perception from a single im-

age. However, they neglect the fact that motion is actually

more important for the human to infer distance [28]. We

are constantly exposed to moving scenes, and the speed of

things moving in the image is related to the combination of

Figure 1: Example results from our method. The first row shows

the source image. The second row illustrates the projection of the

source image into the target image. The third row shows the target

image. The fourth row illustrates the estimated depth map and the

last row illustrates the estimated optical flow.

their relative speed and effect inversely proportional to their

depth.

In this work, we propose a framework that simultane-

ously estimates the visual odometry and depth maps from a

video sequence taken by a monocular camera. To be more

specific, we use convolutional Long Short-Term Memory

(ConvLSTM) [35] units to carry temporal information from

previous views into the current frame’s depth and visual

odometry estimation. We have improved upon existing deep

single- and two-view stereo depth estimation methods by

interleaving ConvLSTM units with the convolutional layers

to effectively utilize multiple previous frames in each es-

timated depth maps. Since we utilize multiple views, the

image reprojection constraint between multiple views can

be incorporated into the loss, which shows significant im-

provements for both supervised and unsupervised depth and

camera pose estimation.

In addition to the image reprojection constraint, we fur-

ther utilize a forward-backward flow-consistency constraint

[38]. Such a constraint provides additional supervision to

image areas where the image reprojection is ambiguous.

Moreover, it improves the robustness and generalizability

of the model. Together these two constraints can even al-
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low satisfactory models to be produced when groundtruth

is unavailable at training time. Figure 1 shows an example

of forward-backward image reprojection and optical flow as

well as the resulting predicted depth maps.

We summarize our innovations as follows: 1) An RNN

architecture for monocular depth and odometry estimation

that uses multiple consecutive views. It does so by incor-

porating LSTM units, as used in natural language process-

ing, into depth and visual odometry estimation networks.

2) These LSTM units importantly allow the innovation of

using depth and camera motion estimation to benefit from

the richer constraints of a multi-view process. In partic-

ular, they use multi-view image reprojection and forward-

backward flow-consistency constraints to produce a more

accurate and consistent model. 3) This design allows two

novel capabilities: a) it can be trained in both supervised

and unsupervised fashion; b) it can continuously run on ar-

bitrary length sequences delivering a consistent scene scale.

We demonstrate on the KITTI [10] benchmark dataset

that our method can produce superior results over the state-

of-the-art for both supervised and unsupervised training.

We will release source code upon acceptance.

2. Related work

Traditionally, the 3D reconstruction and localization are

mostly solved by pure geometric reasoning. SfM and

SLAM are the two most prevalent frameworks for sparse

3D reconstruction of rigid geometry from images. SfM is

typically used for offline 3D reconstruction from unordered

image collections, while visual SLAM aims for a real-time

solution using a single camera [3, 26]. More recent works

on SLAM systems include ORB-SLAM [25] and DSO [5].

Schönberger and Frahm [30] review the state-of-the-art in

SfM and propose an improved incremental SfM method.

Recently, CNNs are increasingly applied to 3D recon-

struction, in particular, to the problem of 3D reconstruction

of dense monocular depth, which is similar to the segmen-

tation problem and thus the structure of the CNNs can be

easily adapted to the task of depth estimation [21].

Supervised methods. Eigen et al. [4] and Liu et al.

[20] proposed end-to-end networks for single-view depth

estimation, which opened the gate for deep learning-based

supervised single-view depth estimation. Following their

work, Laina et al. [18] proposed a deeper residual net-

work for the same task. Qi et al. [27] jointly predicted

depth and surface normal maps from a single image. Fu et

al. [6] further improved the network accuracy and conver-

gence rate by learning it as an ordinal regression problem.

Li et al. [19] used modern structure-from-motion and multi-

view stereo (MVS) methods together with multi-view Inter-

net photo collections to create the large-scale MegaDepth

dataset providing improved depth estimation accuracy via

bigger training dataset size. We improve upon these single-

view methods by utilizing multiple views through an RNN

architecture to generate more accurate depth and pose.

Two-view or multi-view stereo methods have tradition-

ally been the most common techniques for dense depth es-

timation. For the interested reader, Scharstein and Szeliski

[29] give a comprehensive review on two-view stereo meth-

ods. Recently, Ummenhofer et al. [32] formulated two-

view stereo as a learning problem. They showed that by

explicitly incorporating dense correspondences estimated

from optical flow into the two-view depth estimation, they

can force the network to utilize stereo information on top

of the single view priors. There is currently a very lim-

ited body of CNN-based multi-view reconstruction meth-

ods. Choy et al. [2] use an RNN to reconstruct the object in

the form of a 3D occupancy grid from multiple viewpoints.

Yao et al. [37] proposed an end-to-end deep learning frame-

work for depth estimation from multiple views. They use

differentiable homography warping to build a 3D cost vol-

ume from one reference image and several source images.

Kumar et al. [16] proposed an RNN architecture that can

learn depth prediction from monocular videos. However,

their simple training pipeline, e.g., no explicit temporal con-

straints, failed to explore the full capability of the network.

Our method is trained with more sophisticated multi-view

reprojection losses and can perform both single-view and

multi-view depth estimation.

Unsupervised methods. Recently, by incorporating el-

ements of view synthesis [43] and Spatial Transformer Net-

works [14], monocular depth estimation has been trained

in an unsupervised fashion. This was done by transform-

ing the depth estimation problem into an image reconstruc-

tion problem where the depth is the intermediate product

that integrates into the image reconstruction loss. Godard et

al.[11], and Garg et al.[8] use stereo pairs to train CNNs to

estimate disparity maps from single views. Luo et al. [22]

leverage both stereo and temporal constraints to generate

improved depth at known scale. Zhou et al. [42] further re-

lax the needs of stereo images to monocular video by com-

bining a single view depth estimation network with a multi-

view odometry estimation network. Following Zhou et al.

[42]’s work, Mahjourian et al. [23] further enforced con-

sistency of the estimated 3D point clouds and ego-motion

across consecutive frames. In addition to depth and ego-

motion, Yin et al. [38] also jointly learn optical flow in

an end-to-end manner which imposed additional geometric

constraints. However, due to scale ambiguity and the lack of

temporal constraints, these methods cannot be directly ap-

plied for full trajectory estimation on monocular videos. By

leveraging recurrent units, our method can run on arbitrary

length sequences delivering a consistent scene scale.
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Figure 2: Training pipeline of our proposed RNN-based depth and visual odometry estimation network. During training our framework

takes forward and backward 10-frame subsequences as input and uses multi-view image reprojection, flow-consistency, and optionally

groundtruth depth to train our depth and visual odometry networks. DGM is a differentiable geometric module.
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Figure 3: Overall network architecture of our RNN-based depth

and visual odometry estimation framework. The height of each

rectangle represents the size of its feature maps, where each

smaller feature map is half the size of the preceding feature map.

3. Method

In this section we introduce our method for multi-view

depth and visual odometry estimation. We first describe our

recurrent neural network architecture and then the multi-

view reprojection and forward-backward flow-consistency

constraints for the network training.

3.1. Network Architecture

Our architecture, shown in Figure 3, is made up of two

networks, one for depth and one for visual odometry.

Our depth estimation network uses a U-shaped net-

work architecture similar to DispNet [24]. Our main inno-

vation is to interleave recurrent units into the encoder which

allows the network to leverage not only spatial but also

temporal information in the depth estimation. The spatial-

temporal features computed by the encoder are then fed into

the decoder for accurate depth map reconstruction. The ab-

lation study in Secion 4.5 confirms our choice for the place-

ments of the ConvLSTM [35] units. Table 1 shows the de-

tailed network architecture. The input to the depth estima-

tion network is a single RGB frame It and the hidden states

hd
t−1 from the previous time-step (hd

t−1 are initialized to be

all zero for the first time-step). The hidden states are trans-

mitted internally through the ConvLSTM units. The output

of our depth estimation network are the depth map Zt and

the hidden states hd
t for the current time-step .

Our visual odometry network uses a VGG16 [31] ar-

chitecture with recurrent units interleaved. Table 2 shows

the detailed network architecture. The input to our visual

odometry network is the concatenation of It and Zt to-

gether with the hidden states h
p
t−1 from the previous time-

step. The output is the relative 6DoF camera pose Pt→t−1

between the current view and the immediately preceeding

view. The main differences between our visual odometry

network and most current deep learning-based visual odom-

etry methods are 1) At each time-step, instead of a stack

of frames, our visual odometry network only takes the cur-

rent image as input; the knowledge about previous frames is

in the hidden layers. 2) Our visual odometry network also

takes the current depth estimation as input, which ensures a

consistent scene scale between depth and camera pose (im-

portant for unsupervised depth estimation, where the scale

is ambiguous). 3) Our visual odometry network can run on a

full video sequence while maintaining a single scene scale.
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Type Filters Output size

Input 128×416× 3

Conv+ConvLSTM 32@3×3× 3 64×208× 32

Conv+ConvLSTM 64@3×3× 32 32×104× 64

Conv+ConvLSTM 128@3×3× 64 16×52× 128

Conv+ConvLSTM 256@3×3× 128 8×26× 256

Conv+ConvLSTM 256@3×3× 256 4×13× 256

Conv+ConvLSTM 256@3×3× 256 2×7× 256

Conv+ConvLSTM 512@3×3× 256 1×4× 512

Deconv+Concat+Conv 256@3×3× 512 2×7× 256

Deconv+Concat+Conv 128@3×3× 256 4×13× 128

Deconv+Concat+Conv 128@3×3× 128 8×26× 128

Deconv+Concat+Conv 128@3×3× 128 16×52× 128

Deconv+Concat+Conv 64@3×3× 128 32×104× 64

Deconv+Concat+Conv 32@3×3× 64 64×208× 32

Deconv 16@3×3× 32 128×416× 16

Conv (output) 1@3×3× 16 128×416× 1

Table 1: Detailed depth estimation network architecture. Every

convolution in the encoder uses stride 2 for downsampling. Be-

fore the output a sigmoid activation function is used to ensure the

output is in range [0, 1]; All the other convolutions and decovolu-

tions are followed by batch norm and LeakyRELU activation.

Type Filters Output size

Input 128×416× 4

Conv+ConvLSTM 32@3×3× 3 64×208× 32

Conv+ConvLSTM 64@3×3× 32 32×104× 64

Conv+ConvLSTM 128@3×3× 64 16×52× 128

Conv+ConvLSTM 256@3×3× 128 8×26× 256

Conv+ConvLSTM 256@3×3× 256 4×13× 256

Conv+ConvLSTM 256@3×3× 256 2×7× 256

Conv+ConvLSTM 512@3×3× 256 1×4× 512

Conv (output) 6@1×1× 512 1×1× 6

Table 2: Detailed visual odometry network architecture. Every

convolution (except for output layer) is followed by batch normal-

ization and RELU as activation.

3.2. Loss Functions

3.2.1 Multi-view Reprojection Loss

Zhou et al. [42] showed that the learning of depth and visual

odometry estimation can be formulated as an image recon-

struction problem using a differentiable geometric module

(DGM). Thus we can use the DGM to formulate an image

reconstruction constraint between It and It−1 using the es-

timated depth Zt and camera pose Pt→t−1 as introduced in

the previous subsection. However, such a pairwise photo-

metric consistency constraint is very noisy due to illumina-

tion variation, low texture, occlusion, etc. Recently, Iyer

et al. [13] proposed a composite transformation constraint

for self-supervised visual odometry learning. By combining

the pairwise image reconstruction constraint with the com-

posite transformation constraint, we propose a multi-view

image reprojection constraint that is robust to noise and pro-

vides strong self-supervision for our multi-view depth and

visual odometry learning. As shown in Figure 2(c), the out-

put depth maps and relative camera poses together with the

input sequence are fed into a differentiable geometric mod-

ule (DGM) that performs differentiable image warping of

every previous view of the sub-sequence into the current

view. Denote the input image sequence (shown in Figure

2(a)) as {It|t = 0...N − 1}, the estimated depth maps as

{Zt|t = 0...N−1}, and the camera poses as the transforma-

tion matrices from frame t to t−1: {Pt→t−1|t = 0...N−1}.

The multi-view reprojection loss is

Lfw =
N−1∑

t=0

t−1∑

i=0

∑

Ω

λi
t ω

i
t |It − Îit | (1)

where Îit is the ith view warped into tth view, Ω is the image

domain, ωi
t is a binary mask indicating whether a pixel of

It has a counterpart in Ii, and λi
t is a weighting term that

decays exponentially based on t− i. Image pairs that are far

away naturally suffer from larger reprojection error due to

interpolation and moving foreground so we use λi
t to reduce

the effect of such artifacts. ωi
t and Îit are obtained as

ωi
t, Î

i
t , Ft→i = φ(Ii, Zt, Pt→i,K) (2)

where Ft→i is a dense flow field for 2D pixels from view t

to view i, which is used to compute flow consistency. K is

the camera intrinsic matrix. The pose change from view t

to i, Pt→i can be obtained by a composite transformation as

Pt→i = Pi+1→i · ... · Pt−1→t−2 · Pt→t−1 (3)

The function φ in Equation 2 warps image Ii into It us-

ing Zt and Pt→i. The function φ is a DGM [39], which

performs a series of differentiable 2D-to-3D, 3D-to-2D pro-

jections, and bi-linear interpolation operations [14].

In the same way, we reverse the input image sequence

and perform another pass of depth {Zt|t = N − 1...0} and

camera pose {Pt→t+1|t = N − 1...0} estimation, obtain-

ing the backward multi-view reprojection loss Lbw. This

multi-view reprojection loss can fully exploit the temporal

information in our ConvLSTM units from multiple previous

views by explicitly putting constraints between the current

view and every previous view.

A trivial solution to Equation 1 is ωi
t to be all zeros. To

prevent the network from converging to the trivial solution,

we add a regularization loss Lreg to ωi
t, which gives a con-

stant penalty to locations where ωi
t is zero.

3.2.2 Forward-backward Flow Consistency Loss

A forward-backward consistency check has become a pop-

ular strategy in many learning-based tasks, such as optical

flow[12], registration [41], and depth estimation [38, 11,

33], which provides additional self-supervision and regu-

larization. Similar to [38, 33] we use the dense flow field as
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a hybrid forward-backward consistency constraint for both

the estimated depth and pose. We first introduce a forward-

backward consistency constraint on a single pair of frames

and then generalize to a sequence. Let us denote a pair of

consecutive frames as IA and IB , and their estimated depth

maps and relative poses as ZA, ZB , PA→B , and PB→A.

We can obtain a dense flow field FA→B from frame IA to

IB using Equation 2. Similarly we can obtain FB→A us-

ing ZB , PB→A. Using FB→A we can compute a pseudo-

inverse flow F̂A→B (due to occlusion and interpolation) as

ωB
A , F̂A→B , FA→B = φ(−FB→A, ZA, PA→B ,K) (4)

This is similar to Equation 2 except that we are interpolating

FA→B from −FB→A instead of It from Ii. Therefore, we

can formulate the flow consistency loss as

Lflowconsit = ωB
A ·|FA→B−F̂A→B |+ωA

B ·|FB→A−F̂B→A|
(5)

This is performed for every consecutive pair of frames in

the input sequence. Unlike the multi-view reprojection loss

we only compute flow-consistency on pairs of consecutive

frames given the fact that the magnitude of the flow in-

creases, for frame pairs that are far apart, leading to inac-

curate pseudo-inverses due to interpolation.

3.2.3 Smoothness Loss

Local smoothness is a common assumption for depth esti-

mation. Following Zhan et al. [39], we use an edge-aware

smoothness constraint which is defined as

Lsmooth =

N−1∑

t=0

∑

Ω

|∇ξt| · e
−|∇It| (6)

where ξt is the inverse depth.

3.2.4 Absolute depth loss

The combination of multi-view reprojection loss Lfw, Lbw

defined in Equation 1, forward-backward flow-consistency

loss Lflowconsist defined in Equation 5, and smoothness

loss Lsmooth defined in Equation 6 can form an unsuper-

vised training strategy for the network. This manner of

training is suitable for cases where there is no groundtruth

depth available, which is true for the majority of real world

scenarios. However, the network trained in this way only

produces depth at a relative scale. So optionally, if there is

groundtruth depth available, even sparsely, we can train a

network to estimate depth at absolute scale by adding the

absolute depth loss defined as

Ldepth =

N−1∑

t=0

∑

Ω

|ξt − ξ̂t| (7)

In addition, we can replace the local smoothness loss in

Equation 6 by a gradient similarity to the groundtruth depth,

which can be defined as

Lsmooth =

N−1∑

t=0

∑

Ω

|∇ξt −∇ξ̂t| (8)

3.3. Training Pipeline

The full training pipeline of our method is shown in Fig-

ure 2. Every N consecutive key frames (we use N = 10
in all our experiments) are grouped together as an input

sequence Sfw. The frames are grouped in a sliding win-

dow fashion such that more training data can be generated.

Here the key frame selection is based on the motion be-

tween successive frames. Because the image reprojection

constraints are ambiguous for very small baselines, we dis-

card frames with baseline motion smaller than σ. Before

passing the sequence to the network for training, we also

reverse the sequence to create a backward sequence Sbw,

which not only serves as a data augmentation but also is

used to enforce the forward-backward constraints. The in-

put sequence Sfw is generated offline during the data prepa-

ration stage while the backward sequence Sbw is generated

online during the data preprocessing stage. Sfw and Sbw are

fed into two networks with shared weights; each generates a

sequence of depth maps and camera poses as shown in Fig-

ure 2. The estimated depth maps and camera poses are then

utilized to generate dense flows to warp previous views to

the current view through a differentiable geometric module

(DGM) [43, 38]. Furthermore, we utilize DGMs to generate

the pseudo-inverse flows for both the forward and backward

flows. By combining image warping loss, flow-consistency

loss, and optionally absolute depth loss, we form the full

training pipeline for our proposed framework.

Once trained, our framework can run on arbitrary length

sequences without grouping frames into fixed length sub-

sequences. To bootstrap the depth and pose estimation, the

hidden states for the ConvLSTM units are initialized by

zero for the first frame. All following estimations will then

depend on the hidden states from the previous time-step.

4. Experiments

In this section we show a series of experiments using the

KITTI driving dataset [9, 10] to evaluate the performance

of our RNN-based depth and visual odometry estimation

method. As mentioned in Section 1, our architecture can be

trained in a supervised or unsupervised mode. Therefore,

we evaluated both supervised and unsupervised versions of

our framework. In the following experiments we named the

supervised version as ours-sup and the unsupervised ver-

sion as ours-unsup. We also performed detailed ablation

studies to show the impact of the different constraints, ar-

chitecture choices, and estimations at different time-steps.
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Input GT Yang et al[36] Kuznietsov et al.[17] Godard et al. [11] Garg et al. [8] Ours unsup Ours sup

Figure 4: Visual comparison between the state-of-the-art methods. For visualization the groundtruth depth is interpolated. Our method

captures more details in thin structures, such as the motorcycle and columns in the lower right corner of figure rows 2 and 3.

Methods Dataset Supervised Error metric Accuracy metric

depth pose RMSE RMSE log Abs Rel Sq Rel δ < 1.25 δ < 1.25
2

δ < 1.25
3

Zhou et al. [42] CS+K 6.709 0.270 0.183 1.595 0.734 0.902 0.959

Liu et al. [20] K X 6.523 0.275 0.202 1.614 0.678 0.895 0.965

Eigen et al. [4] K X 6.307 0.282 0.203 1.548 0.702 0.890 0.958

Yin et al.[38] K 5.857 0.233 0.155 1.296 0.806 0.931 0.931

Zhan et al. [40] K X 5.585 0.229 0.135 1.132 0.820 0.933 0.971

Zou et al. [44] K 5.507 0.223 0.150 1.124 0.793 0.933 0.973

Godard et al. [11] CS+K X 5.311 0.219 0.124 1.076 0.847 0.942 0.973

Atapour et al. [1] K+S* X 4.726 0.194 0.110 0.929 0.923 0.967 0.984

Kuznietsov et al. [17] K X X 4.621 0.189 0.113 0.741 0.875 0.964 0.988

Yang et al. [36] K X 4.442 0.187 0.097 0.734 0.888 0.958 0.980

Fu et al. (ResNet) [7] K X 2.727 0.120 0.072 0.307 0.932 0.984 0.994

Ours-unsup (multi-view) K 2.320 0.153 0.112 0.418 0.882 0.974 0.992

Ours-sup (single-view) K X 1.949 0.127 0.088 0.245 0.915 0.984 0.996

Ours-sup (multi-view) K X 1.698 0.110 0.077 0.205 0.941 0.990 0.998

Table 3: Quantitative comparison of our network with other state-of-the-art CNN-based methods on KITTI [10] dataset using the Eigen

Split [4]. Ours sup (Single-view) is the evaluation of single view depth estimation result. Ours sup (mult-view) is the result generated with

the assistance of nine previous views. Even though our method is not restricted to a fixed number of frames per sequence during prediction

or evaluation, we still use 10-frame sequence here for the consistency with the training. We discuss continuous estimation results in the

ablation study Section 4.5. The bold numbers are results that rank first and the underlined results those that rank second. All results are

capped at 80m depth.

4.1. Implementation Details

We set the weights for depth loss, smoothness loss,

forward-backward consistency loss, and mask regulariza-

tion to 1.0, 1.0, 0.05, and 0.05, respectively. The weight

for the image reprojection loss is 1

2δ−1
, where δ is the num-

ber of frame intervals between source and target frame. We

use the Adam [15] optimizer with β1 = 0.9, β2 = 0.999.

The initial learning rate is 0.0002. The training process is

very time-consuming for our multi-view depth and odome-

try estimation network. One strategy we use to speed up our

training process, without losing accuracy, is first to pretrain

the network with the consecutive view reprojection loss for

20 epochs. Then we fine-tune the network with the multi-

view reprojection loss for another 10 epochs.

4.2. Training datasets

We used the KITTI driving dataset [10] to evaluate our

proposed framework. To perform a consistent comparison

with existing methods, we used the Eigen Split approach [4]

to train and evaluate our depth estimation network. From

the 33 training scenes, we generated 45200 10-frame se-

quences. Here we used the stereo camera as two monocular

cameras. A sequence of 10 frames contains either 10 left-

camera or 10 right-camera frames. We resized the images

from 375 × 1242 to 128×416 for computational efficiency

and to be comparable with existing methods. The image re-

projection loss is driven by motion parallax, so we discarded

all static frames with baseline motion less than σ = 0.3 me-

ters during data preparation. 697 frames from the 28 test

scenes were used for quantitative evaluation. For odometry

evaluation we used the KITTI Odometry Split [10], which

contains 11 sequences with ground truth camera poses. We

follow [42, 39], which use sequences 00-08 for training and

09-10 as evaluation.

4.3. Depth Estimation

To evaluate the depth estimation component of our multi-

view depth and odometry network, we compare to the

state-of-the-art CNN-based depth estimation methods. Our

network takes advantage of previous images and depths

through recurrent units and thus achieves best performance

when running on a continuous video sequence. However,

5560



it would be unfair to compare against single view methods

when our method uses multiple views. On the other hand,

if we also use only a single view for our method, then we

fail to reveal the full capacity of our framework. There-

fore, in order to present a more comprehensive depth evalu-

ation, we report both our depth estimation results with and

without previous views’ assistance. Ours-sup (single-view)

is the single view (or first view) depth estimation result of

our framework, which also shows the bootstrapping perfor-

mance of our approach. Ours-sup (multi-view) is the tenth

view depth estimation result from our network. As shown in

Table 3, ours-sup (multi-view) performs significantly better

than all of the other supervised [20, 4, 1, 36, 7, 17] and un-

supervised [42, 38, 44, 39, 11] methods. The unsupervised

version of our network outperforms the state-of-the-art un-

supervised methods as well as several supervised methods.

Both the supervised and unsupervised version of our net-

work outperform the respective state-of-the-art by a large

margin. Figure 4 shows a visual comparison of our method

with other methods. Our method consistently captures more

detailed structures, e.g., the motorcycle and columns in the

lower right corner of the figures in rows 2 and 3.

4.4. Pose Estimation

We used the KITTI Odometry Split to evaluate our visual

odometry network. For pose estimation we directly ran our

method through the whole sequence instead of dividing into

10-frame sub-sequences. We compared to the state-of-the-

art learning-based visual odometry methods [39, 42, 38] as

well as a popular monocular SLAM method: ORB-SLAM

[25]. We used the KITTI Odometry evaluation criterion

[10], which computes the average translation and rotation

errors over sub-sequences of length (100m, 200m, ... ,

800m).

Methods Seq 09 Seq 10

terr(%) rerr(deg/m) terr(%) rerr(deg/m)

ORB-SLAM [25] 15.30 0.003 3.68 0.005

GeoNet [38] 43.76 0.160 35.60 0.138

Zhou et al. [42] 17.84 0.068 37.91 0.178

Zhan et al. [39] 11.92 0.036 12.62 0.034

DeepVO et al. [34] - - 8.11 0.088

Our unsupervised 9.88 0.034 12.24 0.052

Our supervised 9.30 0.035 7.21 0.039

Table 4: Quantitative comparison of visual odometry results on the

KITTI Odometry dataset. terr is the percentage of average trans-

lational error and rerr is the average degree per meter rotational

error.

Both the monocular ORB-SLAM and the unsupervised

learning-based visual odometry methods are suffering from

scale ambiguity, so we aligned their trajectories with

groundtruth prior to evaluation using evo1. The supervised

1github.com/MichaelGrupp/evo

Figure 5: Visual comparison of full trajectories on Seq 09 (left)

and 10 (right). Our predictions are closest to groundtruth (GT 09

and GT 10).

version of our method (absolute depth supervision) and the

stereo supervised method [39] are able to estimate camera

translations at absolute scale, so there is no post-processing

for these two methods.

Table 4 shows quantitative comparison results based on

the KITTI Visual Odometry criterion. Figure 5 shows a vi-

sual comparison of the full trajectories for all the methods.

Including our method, all the full trajectories of learning-

based visual odometry methods are produced by integrat-

ing frame-to-frame relative camera poses over the whole

sequence without any drift correction.

The methods [42, 38] take a small sub-sequence (5

frames) as input and estimate relative poses between frames

within the sub-squence. There is no temporal correlation

between different sub-sequences and thus the scales are dif-

ferent between those sub-sequences. However, our method

can perform continuous camera pose estimation within a

whole video sequence for arbitrary length. The temporal

information is transmitted through recurrent units for ar-

bitrary length and thus maintains a consistent scale within

each full sequence.

4.5. Ablation study

In this section we investigate the important components:

placements of the recurrent units, multi-view reprojection

and forward-backward consistency constraints in the pro-

posed depth and visual odometry estimation network.

Placements of recurrent units. Convolutional LSTM

units are essential components for our framework to lever-

age temporal information in depth and visual odometry es-

timation. Thus we performed a series of experiments to

demonstrate the influence of these recurrent units as well

as the choice for the placements of recurrent units in the

network architecture. We tested three different architecture

choices which are shown in Figure 6. The first one is inter-

leaving LSTM units across the whole network (full LSTM).

The second one is interleaving LSTM units across the en-

coder (encoder LSTM). The third one is interleaving LSTM
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(a) Full LSTM (b) Encoder LSTM (c) Decoder LSTM

Figure 6: Three different architectures depend on the placements

of recurrent units. (a) We put a convolutional LSTM after ev-

ery convolution or deconvolution layer. (b) We only place con-

volutional LSTM in the encoder. (c) We only place convolutional

LSTM in the decoder.

Method RMSE RMSE log Abs Rel Sq Rel

full LSTM 1.764 0.112 0.079 0.214

decoder LSTM 1.808 0.117 0.082 0.226

encoder LSTM 1.698 0.110 0.077 0.205

Table 5: Ablation study on network architectures. The evaluation

data and protocol are the same as table 3.

units across the decoder (decoder LSTM). Table 5 shows

the quantitative comparison results. It can be seen that the

encoder LSTM performs significantly better than the full

LSTM and the decoder LSTM. Therefore, we chose the en-

coder LSTM as our depth estimation network architecture.

Multi-view reprojection and forward-backward con-

sistency constraints. To investigate the performance gain

from the multi-view reprojection and forward-backward

consistency constraints, we conducted another group of ex-

periments. Table 6 shows the quantitative evaluation re-

sults. We compared among three methods: with only

the consecutive image reprojection constraint (Ours-d),

with the consecutive image reprojection constraint and the

forward-backward consistency constraint (Ours-dc), and

with the multi-view reprojection constraint and the forward-

backward consistency constraint (Ours-mc). The multi-

view reprojection loss is more important in the unsuper-

vised training, which is shown by the results of the last two

rows in Table 6. Figure 7 shows a qualitative comparison

between networks trained using consecutive image repro-

jection loss and those using multi-view reprojection loss. It

can be seen that multi-view reprojection loss provides better

supervision to areas that lack groundtruth depth.

Estimation with different temporal-window sizes. Ta-

ble 7 shows a comparison between depth estimation with

different temporal-window sizes, i.e., the number of frames

forming the temporal summary. Here we use the Eigen Split

697 testing frames for these sliding-window-based evalua-

tions. In addition, we also ran through each whole testing

sequence and again performed evaluation on those 697 test-

ing frames. The result demonstrates that 1) the performance

of the depth estimation is increasing with the number of

depth estimations performed before the current estimation;

(a) Input (b) Consecutive reproj. (c) Muti-view reproj.

Figure 7: Visual examples between networks trained using consec-

utive image reprojection loss and those using multi-view reprojec-

tion loss. Results in the first row are from ours-sup, and results in

the second row are from ours-unsup.

Method RMSE RMSE log Abs Rel Sq Rel

Ours-d 1.785 0.116 0.081 0.214

Ours-dc 1.759 0.113 0.079 0.215

Ours-mc 1.698 0.110 0.077 0.205

Ours-dc unsup 2.689 0.184 0.138 0.474

Ours-mc unsup 2.361 0.157 0.112 0.416

Table 6: Ablation study on multi-view reprojection and forward-

backward flow consistency constraints. d stands for consecutive

image reprojection. m stands for multi-view image reprojection.

c stands for forward-backward flow consistency constraint. The

first three rows are comparison between supervised training and

the last two rows are unsupervised.

Window size RMSE RMSE log Abs Rel Sq Rel

1 1.949 0.127 0.088 0.245

3 1.707 0.110 0.077 0.206

5 1.699 0.110 0.077 0.205

10 1.698 0.110 0.077 0.205

20 1.711 0.117 0.077 0.208

Whole seq. 1.748 0.119 0.079 0.214

Table 7: Depth estimation with different time-window sizes.

2) the performance of the depth estimation is not increasing

after 10 frames; 3) even though our network is trained on

10-frame based sub-sequences, it can succeed on an arbi-

trary length sequences.

4.6. Conclusion

In this paper we presented an RNN-based, multi-view

method for depth and camera pose estimation from monoc-

ular video sequences. We demonstrated that our method can

be trained either supervised or unsupervised and that both

produce superior results compared to the state-of-the-art in

learning-based depth and visual odometry estimation meth-

ods. Our novel network architecture and the novel multi-

vew reprojection and forward-backward consistency con-

straints let our system effectively utilize the temporal infor-

mation from previous frames for current frame depth and

camera pose estimation. In addition, we have shown that

our method can run on an arbitrary length video sequences

while producing temporally coherent results.
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