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Abstract

Region anchors are the cornerstone of modern object

detection techniques. State-of-the-art detectors mostly rely

on a dense anchoring scheme, where anchors are sampled

uniformly over the spatial domain with a predefined set of

scales and aspect ratios. In this paper, we revisit this foun-

dational stage. Our study shows that it can be done much

more effectively and efficiently. Specifically, we present an

alternative scheme, named Guided Anchoring, which lever-

ages semantic features to guide the anchoring. The pro-

posed method jointly predicts the locations where the cen-

ter of objects of interest are likely to exist as well as the

scales and aspect ratios at different locations. On top of

predicted anchor shapes, we mitigate the feature incon-

sistency with a feature adaption module. We also study

the use of high-quality proposals to improve detection per-

formance. The anchoring scheme can be seamlessly inte-

grated into proposal methods and detectors. With Guided

Anchoring, we achieve 9.1% higher recall on MS COCO

with 90% fewer anchors than the RPN baseline. We also

adopt Guided Anchoring in Fast R-CNN, Faster R-CNN

and RetinaNet, respectively improving the detection mAP

by 2.2%, 2.7% and 1.2%. Code is available at https:

//github.com/open-mmlab/mmdetection.

1. Introduction

Anchors are regression references and classification can-

didates to predict proposals (for two-stage detectors) or final

bounding boxes (for single-stage detectors). Modern object

detection pipelines usually begin with a large set of densely

distributed anchors. Take Faster RCNN [27], a popular ob-

ject detection framework, for instance, it first generates re-

gion proposals from a dense set of anchors and then classi-

fies them into specific classes and refines their locations via

bounding box regression.

There are two general rules for a reasonable anchor de-

∗Equal contribution.

sign: alignment and consistency. Firstly, to use convo-

lutional features as anchor representations, anchor centers

need to be well aligned with feature map pixels. Secondly,

the receptive field and semantic scope should be consistent

with the scale and shape of anchors on different locations of

a feature map. The sliding window is a simple and widely

adopted anchoring scheme following the rules. For most de-

tection methods, the anchors are defined by such a uniform

scheme, where every location in a feature map is associated

with k anchors with predefined scales and aspect ratios.

Anchor-based detection pipelines have been shown ef-

fective in both benchmarks [6, 20, 7, 5] and real-world sys-

tems. However, the uniform anchoring scheme described

above is not necessarily the optimal way to prepare the an-

chors. This scheme can lead to two difficulties: (1) A neat

set of anchors of fixed aspect ratios has to be predefined for

different problems. A wrong design may hamper the speed

and accuracy of the detector. (2) To maintain a sufficiently

high recall for proposals, a large number of anchors are

needed, while most of them correspond to false candidates

that are irrelevant to the object of interests. Meanwhile, a

large number of anchors can lead to significant computa-

tional cost especially when the pipeline involves a heavy

classifier in the proposal stage.

In this work, we present a more effective method to pre-

pare anchors, with the aim to mitigate the issues of hand-

picked priors. Our method is motivated by the observation

that objects are not distributed evenly over the image. The

scale of an object is also closely related to the imagery con-

tent, its location and geometry of the scene. Following this

intuition, our method generates sparse anchors in two steps:

first identifying sub-regions that may contain objects and

then determining the shapes at different locations.

Learnable anchor shapes are promising, but it breaks the

aforementioned rule of consistency, thus presents a new

challenge for learning anchor representations for accurate

classification and regression. Scales and aspect ratios of an-

chors are now variable instead of fixed, so different feature

map pixels have to learn adaptive representations that fit the

corresponding anchors. To solve this problem, we introduce
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an effective module to adapt the features based on anchor

geometry.

We formulate a Guided Anchoring Region Proposal Net-

work (GA-RPN) with the aforementioned guided anchoring

and feature adaptation scheme. Thanks to the dynamically

predicted anchors, our approach achieves 9.1% higher re-

call with 90% substantially fewer anchors than the RPN

baseline that adopts dense anchoring scheme. By predict-

ing the scales and aspect ratios instead of fixing them based

on a predefined list, our scheme handles tall or wide ob-

jects more effectively. Besides region proposals, the guided

anchoring scheme can be easily integrated into any de-

tectors that depend on anchors. Consistent performance

gains can be achieved with our scheme. For instance,

GA-Fast-RCNN, GA-Faster-RCNN and GA-RetinaNet im-

prove overall mAP by 2.2%, 2.7% and 1.2% respectively

on COCO dataset over their baselines with sliding window

anchoring. Furthermore, we explore the use of high-quality

proposals, and propose a fine-tuning schedule using GA-

RPN proposals, which can improve the performance of any

trained models, e.g., it improves a fully converged Faster

R-CNN model from 37.4% to 39.6%, in only 3 epochs.

The main contributions of this work lie in several as-

pects. (1) We propose a new anchoring scheme with the

ability to predict non-uniform and arbitrary shaped anchors

other than dense and predefined ones. (2) We formulate

the joint anchor distribution with two factorized conditional

distributions, and design two modules to model them re-

spectively. (3) We study the importance of aligning fea-

tures with the corresponding anchors and design a feature

adaption module to refine features based on the underlying

anchor shapes. (4) We investigate the use of high-quality

proposals for two-stage detectors and propose a scheme to

improve the performance of trained models.

2. Related Work

Sliding window anchors in object detection. Generat-

ing anchors with the sliding window manner in feature

maps has been widely adopted by anchor-based various

detectors. The two-stage approach has been the leading

paradigm in the modern era of object detection. Faster R-

CNN [27] proposes the Region Proposal Network (RPN)

to generates object proposals. It uses a small fully con-

volutional network to map each sliding window anchor to

a low-dimensional feature. This design is also adopted in

later two-stage methods [3, 18, 12]. MetaAnchor [32] in-

troduces meta-learning to anchor generation. There have

been attempts [8, 9, 23, 31, 33, 34, 1, 2] that apply cas-

cade architecture to reject easy samples at early layers or

stages, and regress bounding boxes iteratively for progres-

sive refinement. Compared to two-stage approaches, the

single-stage pipeline skips object proposal generation and

predicts bounding boxes and class scores in one evaluation.

Although the proposal step is omitted, single-stage meth-

ods still use anchor boxes produced by the sliding window.

For instance, SSD [21] and DenseBox [14] generate anchors

densely from feature maps and evaluate them like a multi-

class RPN. RetinaNet [19] introduces focal loss to address

the foreground-background class imbalance. YOLOv2[26]

adopt sliding window anchors for classification and spatial

location prediction so as to achieve a higher recall than its

precedent.

Comparison and difference. We summarize the differ-

ences between the proposed method and conventional meth-

ods as follows. (i) Primarily, previous methods (single-

stage, two-stage and multi-stage) still rely on dense and

uniform anchors by sliding window. We discard the slid-

ing window scheme and propose a better counterpart to

guide the anchoring and generate sparse anchors, which

has not been explored before. (ii) Cascade detectors adopt

more than one stage to refine detection bounding boxes pro-

gressively, which usually leads to more model parameters

and a decrease in inference speed. These methods adopt

RoI Pooling or RoI Align to extract aligned features for

bounding boxes, which is too expensive for proposal gen-

eration or single-stage detectors. (iii) Anchor-free meth-

ods [14, 15, 25] usually have simple pipelines and produce

final detection results within a single stage. Due to the ab-

sence of anchors and further anchor-based refinement, they

lack the ability to deal with complex scenes and cases. Our

focus is the sparse and non-uniform anchoring scheme and

use of high-quality proposals to boost the detection perfor-

mance. Towards this goal, we have to solve the misalign-

ment and inconsistency issues which are specific to anchor-

based methods. (iv) Some single-shot detectors [33, 30] re-

fine anchors by multiple regression and classification. Our

method differs from them significantly. We do not refine an-

chors progressively, instead, we predict the distribution of

anchors, which is factorized as locations and shapes. Con-

ventional methods fail to consider the alignment between

anchors and features so they regress anchors (represented by

[x, y, w, h]) for multiple times and breaks the alignment as

well as consistency. On the contrary, we emphasize the im-

portance of the two rules, so we only predict anchor shapes

but fix anchor centers and adapt features based on the pre-

dicted shapes.

3. Guided Anchoring

Anchors are the basis in modern object detection

pipelines. Mainstream frameworks, including two-stage

and single-stage methods, mostly rely on a uniform arrange-

ment of anchors. Specifically, a set of anchors with prede-

fined scales and aspect ratios will be deployed over a fea-

ture map of size W × H , with a stride of s. This scheme

is inefficient, as many of the anchors are placed in regions

where the objects of interest are unlikely to exist. In addi-
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Figure 1: An illustration of our framework. For each output feature map in the feature pyramid, we use an anchor generation module with

two branches to predict the anchor location and shape, respectively. Then a feature adaption module is applied to the original feature map

to make the new feature map aware of anchor shapes.

tion, such hand-picked priors unrealistically assume a set of

fixed shape (i.e., scale and aspect ratio) for objects.

In this work, we aim to develop a more efficient anchor-

ing scheme to arrange the anchors with learnable shapes,

considering the non-uniform distribution of objects’ loca-

tions and shapes. The guided anchoring scheme works as

follows. The location and the shape of an object can be

characterized by a 4-tuple in the form of (x, y, w, h), where

(x, y) is the spatial coordinate of the center, w the width,

and h the height. Suppose we draw an object from a given

image I , then its location and shape can be considered to

follow a distribution conditioned on I , as follows:

p(x, y, w, h|I) = p(x, y|I)p(w, h|x, y, I). (1)

This factorization captures two important intuitions: (1)

given an image, objects may only exist in certain regions;

and (2) the shape, i.e., scale and aspect ratio, of an object

closely relates to its location.

Following this formulation, we devise an anchor gener-

ation module as shown in the red dashed box of Figure 1.

This module is a network comprised of two branches for lo-

cation and shape prediction, respectively. Given an image I ,

we first derive a feature map FI . On top of FI , the location

prediction branch yields a probability map that indicates the

possible locations of the objects, while the shape predic-

tion branch predicts location-dependent shapes. Given the

outputs from both branches, we generate a set of anchors

by choosing the locations whose predicted probabilities are

above a certain threshold and the most probable shape at

each of the chosen locations. As the anchor shapes can vary,

the features at different locations should capture the visual

content within different ranges. With this taken into consid-

eration, we further introduce a feature adaptation module,

which adapts the feature according to the anchor shape.

The anchor generation process described above is based

on a single feature map. Recent advances in object detec-

tion [18, 19] show that it is often helpful to operate on mul-

tiple feature maps at different levels. Hence, we develop

a multi-level anchor generation scheme, which collects an-

chors at multiple feature maps, following the FPN architec-

ture [18]. Note that in our design, the anchor generation

parameters are shared across all involved feature levels thus

the scheme is parameter-efficient.

3.1. Anchor Location Prediction

As shown in Figure 1, the anchor location prediction

branch yields a probability map p(·|FI) of the same size as

the input feature map FI , where each entry p(i, j|FI) corre-

sponds to the location with coordinate ((i+ 1

2
)s, (j + 1

2
)s)

on I , where s is stride of the feature map, i.e., the distance

between neighboring anchors. The entry’s value indicates

the probability of an object’s center existing at that location.

In our formulation, the probability map p(i, j|FI) is pre-

dicted using a sub-network NL. This network applies a

1 × 1 convolution to the base feature map FI to obtain a

map of objectness scores, which are then converted to prob-

ability values via an element-wise sigmoid function. While

a deeper sub-network can make more accurate predictions,

we found empirically that a convolutional layer followed

by a sigmoid transform strikes a good balance between ef-

ficiency and accuracy.

Based on the resultant probability map, we then deter-

mine the active regions where objects may possibly exist

by selecting those locations whose corresponding probabil-

ity values are above a predefined threshold ǫL. This pro-

cess can filter out 90% of the regions while still maintain-

ing the same recall. As illustrated in Figure 4(b), regions

like sky and ocean are excluded, while anchors concentrate

densely around persons and surfboards. Since there is no

need to consider those excluded regions, we replace the en-

suing convolutional layers by masked convolution [17, 28]

for more efficient inference.
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3.2. Anchor Shape Prediction

After identifying the possible locations for objects, our

next step is to determine the shape of the object that may

exist at each location. This is accomplished by the an-

chor shape prediction branch, as shown in Figure 1. This

branch is very different from conventional bounding box re-

gression, since it does not change the anchor positions and

will not cause misalignment between anchors and anchor

features. Concretely, given a feature map FI , this branch

will predict the best shape (w, h) for each location, i.e., the

shape that may lead to the highest coverage with the nearest

ground-truth bounding box.

While our goal is to predict the values of the width w and

the height h, we found empirically that directly predicting

these two numbers is not stable, due to their large range.

Instead, we adopt the following transformation:

w = σ · s · edw, h = σ · s · edh. (2)

The shape prediction branch will output dw and dh , which

will then be mapped to (w, h) as above, where s is the stride

and σ is an empirical scale factor (σ = 8 in our experi-

ments). This nonlinear transformation projects the output

space from approximate [0, 1000] to [−1, 1], leading to an

easier and stable learning target. In our design, we use a

sub-network NS for shape prediction, which comprises a

1 × 1 convolutional layer that yields a two-channel map

that contains the values of dw and dh, and an element-wise

transform layer that implements Eq.(2).

Note that this design differs essentially from the conven-

tional anchoring schemes in that every location is associated

with just one anchor of the dynamically predicted shape in-

stead of a set of anchors of predefined shapes. Our experi-

ments show that due to the close relations between locations

and shapes, our scheme can achieve much higher recall than

the baseline scheme. Since it allows arbitrary aspect ratios,

our scheme can better capture those extremely tall or wide

objects.

3.3. AnchorGuided Feature Adaptation

In the conventional RPN or single stage detectors where

the sliding window scheme is adopted, anchors are uni-

form on the whole feature map, i.e., they share the same

shape and scale in each position. Thus the feature map can

learn consistent representation. In our scheme, however, the

shape of anchors varies across locations. Under this condi-

tion, we find that it may not be a good choice to follow

the previous convention [27], in which a fully convolutional

classifier is applied uniformly over the feature map. Ideally,

the feature for a large anchor should encode the content over

a large region, while those for small anchors should have

smaller scopes accordingly. Following this intuition, we

further devise an anchor-guided feature adaptation compo-

nent, which will transform the feature at each individual lo-

cation based on the underlying anchor shape, as

f
′

i = NT (fi, wi, hi), (3)

where fi is the feature at the i-th location, (wi, hi) is the

corresponding anchor shape. For such a location-dependent

transformation, we adopt a 3× 3 deformable convolutional

layer [4] to implement NT . As shown in Figure 1, we first

predict an offset field from the output of anchor shape pre-

diction branch, and then apply deformable convolution to

the original feature map with the offsets to obtain f ′

I . On

top of the adapted features, we can then perform further

classification and bounding-box regression.

3.4. Training

Joint objective. The proposed framework is optimized in

an end-to-end fashion using a multi-task loss. Apart from

the conventional classification loss Lcls and regression loss

Lreg , we introduce two additional losses for the anchor lo-

calization Lloc and anchor shape prediction Lshape. They

are jointly optimized with the following loss.

L = λ1Lloc + λ2Lshape + Lcls + Lreg. (4)

Anchor location targets. To train the anchor localization

branch, for each image we need a binary label map where 1
represents a valid location to place an anchor and 0 oth-

erwise. In this work, we employ ground-truth bounding

boxes for guiding the binary label map generation. In par-

ticular, we wish to place more anchors around the vicin-

ity of an object’s center, while fewer of them far from

the center. Firstly, we map the ground-truth bounding box

(xg, yg, wg, hg) to the corresponding feature map scale, and

obtain (x′

g, y
′

g, w
′

g, h
′

g). We denote R(x, y, w, h) as the

rectangular region whose center is (x, y) and the size of

w×h. Anchors are expected to be placed close to the center

of ground truth objects to obtain larger initial IoU, thus we

define three types of regions for each box.

(1) The center region CR = R(x′

g, y
′

g, σ1w
′, σ1h

′) defines

the center area of the box. Pixels in CR are assigned as

positive samples.

(2) The ignore region IR = R(x′

g, y
′

g, σ2w
′, σ2h

′)\CR is

a larger (σ2 > σ1) region excluding CR. Pixels in IR are

marked as “ignore” and excluded during training.

(3) The outside region OR is the feature map excluding CR

and IR. Pixels in OR are regarded as negative samples.

Previous work [14] proposed the “gray zone” for bal-

anced sampling, which has a similar definition to our loca-

tion targets but only works on a single feature map. Since

we use multiple feature levels from FPN, we also consider

the influence of adjacent feature maps. Specifically, each

level of feature map should only target objects of a specific

scale range, so we assign CR on a feature map only if the
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Figure 2: Anchor location target for multi-level features. We

assign ground truth objects to different feature levels according

to their scales, and define CR, IR and OR respectively. (Best

viewed in color.)

feature map matches the scale range of the targeted object.

The same regions of adjacent levels are set as IR, as shown

in Figure 2. When multiple objects overlap, CR can sup-

press IR, and IR can suppress OR. Since CR usually ac-

counts for a small portion of the whole feature map, we use

Focal Loss [19] to train the location branch.

Anchor shape targets. There are two steps to determine the

best shape target for each anchor. First, we need to match

the anchor to a ground-truth bounding box. Next, we will

predict the anchor’s width and height which can best cover

the matched ground-truth.

Previous work [27] assign a candidate anchor to the

ground truth bounding box that yields the largest IoU value

with the anchor. However, this process is not applicable in

our case, since w and h of our anchors are not predefined but

variables. To overcome this problem, we define the IoU be-

tween a variable anchor awh = {(x0, y0, w, h)|w > 0, h >

0} and a ground truth bounding box gt = (xg, yg, wg, hg)
as follows, denoted as vIoU.

vIoU(awh, gt) = max
w>0,h>0

IoUnormal(awh, gt), (5)

where IoUnormal is the typical definition of IoU and w and

h are variables. Note that for an arbitrary anchor loca-

tion (x0, y0) and ground-truth gt, the analytic expression of

vIoU(awh, gt) is complicated, and hard to be implemented

efficiently in an end-to-end network. Therefore we use an

alternative way to approximate it. Given (x0, y0), we sam-

ple some common values of w and h to simulate the enu-

meration of all w and h. Then we calculate the IoU of

these sampled anchors with gt, and use the maximum as

an approximation of vIoU(awh, gt). In our experiments, we

sample 9 pairs of (w, h) to estimate vIoU during training.

Specifically, we adopt the 9 pairs of different scales and as-

pect ratios used in RetinaNet[19]. Theoretically, the more

pairs we sample, the more accurate the approximation is,

while the computational cost is heavier. We adopt a vari-

ant of bounded iou loss [29] to optimize the shape predic-

tion, without computing the target. The loss is defined in

Eq. (6), where (w, h) and (wg, hg) denote the predicted an-

chor shape and the shape of the corresponding ground-truth
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Figure 3: IoU distribution of RPN and GA-RPN proposals. We

show the accumulated proposal number with decreasing IoUs.

bounding box. L1 is the smooth L1 loss.

Lshape = L1(1−min( w
wg

,
wg

w
)) + L1(1−min( h

hg

,
hg

h
)). (6)

3.5. The Use of Highquality Proposals

RPN enhanced by the proposed guided anchoring

scheme (GA-RPN) can generate much higher quality pro-

posals than the conventional RPN. We explore how to

boost the performance of conventional two-stage detectors,

through the use of such high-quality proposals. Firstly, we

study the IoU distribution of proposals generated by RPN

and GA-RPN, as shown in Figure 3. There are two signifi-

cant advantages of GA-RPN proposals over RPN proposals:

(1) the number of positive proposals is larger, and (2) the

ratio of high-IoU proposals is more significant. A straight-

forward idea is to replace RPN in existing models with the

proposed GA-RPN and train the model end-to-end. How-

ever, this problem is non-trivial and adopting exactly the

same settings as before can only bring limited gain (e.g.,

less than 1 point). From our observation, the pre-requisite

of using high-quality proposals is to adapt the distribution of

training samples in accordance to the proposal distribution.

Consequently, we set a higher positive/negative threshold

and use fewer samples when training detectors end-to-end

with GA-RPN compared to RPN.

Besides end-to-end training, we find that GA-RPN pro-

posals are capable of boosting a trained two-stage detec-

tor by a fine-tuning schedule. Specifically, given a trained

model, we discard the proposal generation component, e.g.,

RPN, and use pre-computed GA-RPN proposals to finetune

it for several epochs (3 epochs by default). GA-RPN pro-

posals are also used for inference. This simple fine-tuning

scheme can further improve the performance by a large mar-

gin, with only a time cost of a few epochs.

4. Experiments

4.1. Experimental Setting

Dataset. We perform experiments on the challenging MS

COCO 2017 benchmark [20]. We use the train split for
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Table 1: Region proposal results on MS COCO.

Method Backbone AR100 AR300 AR1000 ARS ARM ARL runtime (s/img)

SharpMask [24] ResNet-50 36.4 - 48.2 6.0 51.0 66.5 0.76 (unfair)

GCN-NS [22] VGG-16 (SyncBN) 31.6 - 60.7 - - - 0.10

AttractioNet [10] VGG-16 53.3 - 66.2 31.5 62.2 77.7 4.00

ZIP [16] BN-inception 53.9 - 67.0 31.9 63.0 78.5 1.13

RPN

ResNet-50-FPN 47.5 54.7 59.4 31.7 55.1 64.6 0.09

ResNet-152-FPN 51.9 58.0 62.0 36.3 59.8 68.1 0.16

ResNeXt-101-FPN 52.8 58.7 62.6 37.3 60.8 68.6 0.26

RPN+9 anchors ResNet-50-FPN 46.8 54.6 60.3 29.5 54.9 65.6 0.09

RPN+Focal Loss [19] ResNet-50-FPN 50.2 56.6 60.9 33.9 58.2 67.5 0.09

RPN+Bounded IoU Loss [29] ResNet-50-FPN 48.3 55.1 59.6 33.0 56.0 64.3 0.09

RPN+Iterative ResNet-50-FPN 49.7 56.0 60.0 34.7 58.2 64.0 0.10

RefineRPN ResNet-50-FPN 50.2 56.3 60.6 33.5 59.1 66.9 0.11

GA-RPN ResNet-50-FPN 59.2 65.2 68.5 40.9 67.8 79.0 0.13

Table 2: Detection results on MS COCO 2017 test-dev.

Method AP AP50 AP75 APS APM APL

Fast R-CNN 37.1 59.6 39.7 20.7 39.5 47.1

GA-Fast-RCNN 39.4 59.4 42.8 21.6 41.9 50.4

Faster R-CNN 37.1 59.1 40.1 21.3 39.8 46.5

GA-Faster-RCNN 39.8 59.2 43.5 21.8 42.6 50.7

RetinaNet 35.9 55.4 38.8 19.4 38.9 46.5

GA-RetinaNet 37.1 56.9 40.0 20.1 40.1 48.0

training and report the performance on val split. Detection

results are reported on test-dev split.

Implementation details. We use ResNet-50 [13] with

FPN [18] as the backbone network, if not otherwise spec-

ified. As a common convention, we resize images to the

scale of 1333× 800, without changing the aspect ratio. We

set σ1 = 0.2, σ2 = 0.5. In the multi-task loss function, we

simply use λ1 = 1, λ2 = 0.1 to balance the location and

shape prediction branches. We use synchronized SGD over

8 GPUs with 2 images per GPU. We train 12 epochs in total

with an initial learning rate of 0.02, and decrease the learn-

ing rate by 0.1 at epoch 8 and 11. The runtime is measured

on TITAN X GPUs.

Evaluation metrics. The results of RPN are measured with

Average Recall (AR), which is the average of recalls at dif-

ferent IoU thresholds (from 0.5 to 0.95). AR for 100, 300,

and 1000 proposals per image are denoted as AR100, AR300

and AR1000. The AR for small, medium, and large objects

(ARS , ARM , ARL) are computed for 100 proposals. Detec-

tion results are evaluated with the standard COCO metric,

which averages mAP of IoUs from 0.5 to 0.95.

4.2. Results

We first evaluate our anchoring scheme by comparing

the recall of GA-RPN with the RPN baseline and previ-

Table 3: Fine-tuning results on a trained Faster R-CNN.

proposals AP AP50 AP75 APS APM APL

- 37.4 58.9 40.3 20.8 41.1 49.5

RPN 37.3 58.6 40.1 20.4 40.6 49.8

GA-RPN 39.6 59.3 43.0 22.0 42.8 52.6

ous state-of-the-art region proposal methods. Meanwhile,

we compare some variants of RPN. “RPN+9 anchors” de-

notes using 3 scales and 3 aspect ratios in each feature level,

while baselines use only 1 scale and 3 aspect ratios, fol-

lowing [18]. “RPN+Focal Loss” and “RPN+Bounded IoU

Loss” denotes adopting focal loss [19] and bounded IoU

Loss [29] to RPN by substituting binary cross-entropy loss

and smooth l1 loss, respectively. “RPN+Iterative” denotes

applying two RPN heads consecutively, with an additional

3 × 3 convolution between them. “RefineRPN” denotes a

similar structure to [33], where anchors are regressed and

classified twice with features before and after FPN.

As shown in Table 1, our method outperforms the RPN

baseline by a large margin. Specifically, it improves AR300

by 10.5% and AR1000 by 9.1% respectively. Notably, GA-

RPN with a small backbone can achieve a much higher re-

call than RPN with larger backbones. Our encouraging re-

sults are supported by the qualitative results shown in Fig-

ure 4, where we show the sparse and arbitrary shaped an-

chors and visualize the outputs of two branches. It is ob-

served that the anchors concentrate more on objects and

provides a good basis for the ensuing object proposal. In

Figure 5, we show some examples of proposals generated

upon sliding window anchoring and guided anchoring.

Iterative regression and classification (“RPN+Iterative”

and “RefineRPN”) only brings limited gain to RPN, which

proves the importance of the aforementioned rule of align-

ment and consistency, and simply refining anchors multiple
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Figure 4: Anchor prediction results. (a) input image and predict

anchors; (b) predicted anchor location probability map; (c) pre-

dicted anchor aspect ratio.
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Figure 5: Examples of RPN proposals (top row) and GA-

RPN proposals (bottom row).

times is not effective enough. Keeping the center of anchors

fixed and adapt features based on anchor shapes are crucial.

To investigate the generalization ability of guided an-

choring and its power to boost the detection performance,

we integrate it into both two-stage and single-stage de-

tection pipelines, including Fast R-CNN [11], Faster R-

CNN [27] and RetinaNet [19]. For two-stage detectors,

we replace the original RPN with GA-RPN, and for single-

stage detectors, the sliding window anchoring scheme is

replaced with the proposed guided anchoring. Results in

Table 2 show that guided anchoring not only increases the

proposal recall of RPN, but also improves the detection per-

formance by a large margin. With guided anchoring, the

mAP of these detectors are improved by 2.3%, 2.7% and

1.2% respectively.

To further study the effectiveness of high-quality propos-

als and investigate the fine-tuning scheme, we take a fully

converged Faster R-CNN model and finetune it with pre-

computed RPN or GA-RPN proposals. We finetune the de-

tector for 3 epochs, with the learning rate of 0.02, 0.002

and 0.0002 respectively. The results are in Table 3 illustrate

that RPN proposals cannot bring any gain, while the high-

quality GA-RPN proposals bring 2.2% mAP improvement

to the trained model with only a time cost of 3 epochs.

4.3. Ablation Study

Model design. We omit different components in our design

to investigate the effectiveness of each component, includ-

ing location prediction, shape prediction and feature adap-

tion. Results are shown in Table 4. The shape prediction

branch is shown effective which leads to a gain of 4.2%.

Table 4: The effects of each module in our design. L., S., and

F.A. denote location, shape, and feature adaptation, respectively.

L. S. F.A. AR100 AR300 AR1000 ARS ARM ARL

47.5 54.7 59.4 31.7 55.1 64.6

X 48.0 54.8 59.5 32.3 55.6 64.8

X 53.8 59.9 63.6 36.4 62.9 71.7

X X 54.0 60.1 63.8 36.7 63.1 71.5

X X X 59.2 65.2 68.5 40.9 67.8 79.0

Table 5: Results of different location threshold ǫL.

ǫL #anchors/image AR100 AR300 AR1000 fps

0 75583 (100.0%) 59.2 65.2 68.5 7.8

0.01 22274 (29.4%) 59.2 65.2 68.5 8.0

0.05 5251 (6.5%) 59.1 65.1 68.2 8.2

0.1 2375 (3.2%) 59.0 64.7 67.2 8.2
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Figure 6: (a) Anchor scale and (b) aspect ratio distributions of

different anchoring schemes. The x-axis is reduced to log-space

by apply log
2
(·) operator. GT, GA, SW indicates ground truth,

guided anchoring, sliding window, respectively.

The location prediction branch brings marginal improve-

ment. Nevertheless, the importance of this branch is re-

flected in its usefulness of obtaining sparse anchors leading

to more efficient inference. The obvious gain brought by the

feature adaption module suggests the necessity of rearrang-

ing the feature map according to predicted anchor shapes.

This module helps to capture information corresponding to

anchor scopes, especially for large objects.

Anchor location. The location threshold ǫL controls the

sparsity of anchor distribution. Adopting different thresh-

olds will yield different numbers of anchors. To reveal the

influence of ǫL on efficiency and performance, we vary the

threshold and compare the following results: the average

number of anchors per image, recall of final proposals and

the inference runtime. From Table 5 we can observe that the

objectness scores of most background regions are close to 0,

so a small ǫL can greatly reduce the number of anchors by

more than 90%, with only a minor decrease on recall rate. It

is noteworthy that the head in RPN is just one convolutional

layer, so the speedup is not apparent. Nevertheless, a signif-

icant reduction in the number of anchors offers a possibility

to perform more efficient inference with a heavier head.
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Table 6: The effects of alignment and consistency rules. C.A. and

F.A. denote center alignment (alignment rule) and feature adaption

(consistency rule) respectively.

C.A. F.A. AR100 AR300 AR1000 ARS ARM ARL

51.7 58.0 61.6 33.8 60.9 70.0

X 54.0 60.1 63.8 36.7 63.1 71.5

X 57.2 63.6 66.8 38.3 66.1 77.8

X X 59.2 65.2 68.5 40.9 67.8 79.0

Anchor shape. We compare the set of generated anchors

of our method with sliding window anchors of pre-defined

shapes. Since our method predicts only one anchor at each

location of the feature map instead of k (k = 3 in our base-

line) anchors of different scales and aspect ratios, the total

anchor number is reduced by 1

k
. We present the scale and

aspect ratio distribution of our anchors with sliding window

anchors in Figure 6. The results show great advantages of

the guided anchoring scheme over predefined anchor scales

and shapes. The predicted anchors cover a much wider

range of scales and aspect ratios, which have a similar dis-

tribution to ground truth objects and provide a pool of initial

anchors with higher coverage on objects.

Feature adaption. The feature adaption module improves

the recall by a large margin, proving that a remedy of

features consistency is essential. We claim that the im-

provement not only comes from adopting deformable con-

volution, but also results from our design of using an-

chor shape predictions to predict the offset of the de-

formable convolution layer. If we simply add a deformable

convolution layer after anchor generation, the results of

AR100/AR300/AR1000 are 56.1%/62.4%/66.1%, which

are inferior to results from our design.

Alignment and consistency rule. We verify the necessity

of the two proposed rules. The alignment rule suggests that

we should keep the anchor centers aligned with feature map

pixels. According to the consistency rule, we design the

feature adaption module to refine the features. Results in

Table 6 show the importance of these rules. 1) From row

1 and 2, or row 3 and 4, we learn that predicting both the

shape and center offset instead of just predicting the shape

harms the performance. 2) The comparison between row 1

and 3, or row 2 and 4 shows the impact of consistency.

The use of high-quality proposals. Despite with high-

quality proposals, training a good detector remains a non-

trivial problem. As illustrated in Figure 3, GA-RPN propos-

als provide more candidates of high IoU. This suggests that

we can use fewer proposals for training detectors. We test

different numbers of proposals and different IoU thresholds

to assign labels for foreground/background on Fast R-CNN.

From the results in Table 7, we observe that: (1) Larger

IoU threshold is important for taking advantage of high-

quality proposals. By focusing on positive samples of

Table 7: Exploration of utilizing high-quality proposals.

proposal num IoU thr AP AP50 AP75

RPN

1000 0.5 36.7 58.8 39.3

1000 0.6 37.2 57.1 40.5

300 0.5 36.1 57.6 39.0

300 0.6 37.0 56.3 39.5

GA-RPN

1000 0.5 37.4 59.9 40.0

1000 0.6 38.9 59.0 42.4

300 0.5 37.5 59.6 40.4

300 0.6 39.4 59.3 43.2

higher IoU, there will be fewer false positives and the fea-

tures for classification are more discriminative. Since we

assign negative labels to proposals with IoU less than 0.6

during training, AP0.5 will decrease while AP of high IoUs

will increase by a large margin, and the overall AP is much

higher. (2) Using fewer proposals during training and test-

ing can benefit the learning if the recall is high enough.

Fewer proposals lead to a lower recall, but will simplify

the learning process, since there are more hard samples

in low-score proposals. When training with RPN propos-

als, the performance will decrease if we use only 300 pro-

posals, because the recall is not sufficient and many ob-

jects get missed. However, GA-RPN guarantees high recall

even with fewer proposals, thus training with 300 proposals

could still boost the final mAP.

Hyper-parameters. Our method is insensitive to hyper-

parameters. (1) As we sample 3, 9, 15 pairs to approximate

Eq.(5), we respectively obtain AR@1000 68.3%, 68.5%,

68.5%. (2) We set λ2 = 0.1 to balance the loss terms by

default. We obtain 68.4% with λ2 = 0.2 or 0.05 and 68.3%
with λ2 = 0.02. (3) We vary σ1 within [0.1, 0.5] and σ2

within [0.2, 1.0], and the performance remains comparable

(between 68.1% and 68.5%).

5. Conclusion

We have proposed the Guided Anchoring scheme, which

leverages semantic features to guide the anchoring. It gen-

erates non-uniform anchors of arbitrary shapes by jointly

predicting the locations and anchor shapes dependent on lo-

cations. The proposed method achieves 9.1% higher recall

with 90% fewer anchors than the RPN baseline using the

sliding window scheme. It can also be applied to various

anchor-based detectors to improve the performance by as

much as 2.7%.
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