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Abstract

Semantic segmentation is an important computer vision

task, which aims to allocate a semantic label to each pixel

in an image. When training a segmentation model, it is com-

mon to fine-tune a classification network pre-trained on a

large-scale dataset. However, as an intrinsic property of

the classification model, invariance to spatial perturbation

resulting from the lose of detail-sensitivity prevents segmen-

tation networks from achieving high performance. The use of

standard poolings is one of the key factors for this invariance.

The most common standard poolings are max and average

pooling. Max pooling can increase both the invariance to

spatial perturbations and the non-linearity of the networks.

Average pooling, on the other hand, is sensitive to spatial

perturbations, but is a linear function. For semantic seg-

mentation, we prefer both the preservation of detailed cues

within a local feature region and non-linearity that increases

a network’s functional complexity. In this work, we propose a

polynomial pooling (P-pooling) function that finds an inter-

mediate form between max and average pooling to provide

an optimally balanced and self-adjusted pooling strategy for

semantic segmentation. The P-pooling is differentiable and

can be applied into a variety of pre-trained networks. Exten-

sive studies on the PASCAL VOC, Cityscapes and ADE20k

datasets demonstrate the superiority of P-pooling over other

poolings. Experiments on various network architectures and

state-of-the-art training strategies also show that models

with P-pooling layers consistently outperform those directly

∗the authors contribute equally
†corresponding author

fine-tuned using pre-trained classification models.

1. Introduction

Semantic segmentation is a critically important and highly

challenging computer vision task, which has a wide range of

practical industrial use cases, such as medical imaging and

autonomous driving. Benefiting from advancements in deep

learning, deep segmentation networks have enabled dramatic

improvement in performance for this task. The essence of

semantic segmentation is to perform pixel-wise classification

for an input image. For this purpose a deep segmentation

network needs to be detail-sensitive. Additionally, for a

segmentation network to be both a robust feature extractor

and classifier, it must be highly non-linear and complex.

Compared to image-level labels, pixel-wise annotations

require much more human effort and, as such, the amount

of pixel-wise annotated data is limited. Thus, to obtain

improved performance, it is common to fine-tune classifi-

cation networks that have been pre-trained on large-scale

datasets. However, classification and segmentation net-

works are designed with contradicting purposes, where the

former requires the pre-trained models to be invariant to

small spatial perturbations on input images (e.g., small trans-

lations, scalings or rotations), and the latter requires the

network to be aware of detailed variance within local re-

gions. Previous approaches tackled this contradiction mainly

with new network components [3, 37, 22, 1, 27], modified

convolutions [33, 30, 4, 9], different network architectures

[23, 24, 21, 11, 25, 36] or learned optimal receptive fields

[32, 35, 9, 6, 34].

However, improving pre-trained classification models by
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effectively modifying the pooling layers of segmentation

networks has been largely overlooked in previous works.

Among existing pooling layers, max pooling and average

pooling are the two most commonly applied mechanisms in

convolutional neural networks (CNN). The max pooling con-

tributes significantly to the spatial perturbation invariance

and non-linearity of a classification network, while the av-

erage pooling is linear and sensitive to spatial perturbations.

For semantic segmentation, we favor a pooling mechanism

that is: (a) sensitive to trivial spatial perturbations and (b)

highly non-linear so as to extend the network’s capacity.

To this end, we propose a polynomial pooling (P-pooling)

mechanism that has (i) an optimal balance between non-

linearity and detail-sensitivity, (ii) a differentiable form that

allows end-to-end training, (iii) sufficient flexibility and the

potential to be dynamically adjusted for various data, and

(iv) compatibility with any pre-trained classification model.

We highlight our three main contributions as follows:

• To our best knowledge, this paper is the first work to pro-

pose a novel pooling function for semantic segmentation.

The proposed P-pooling enhances the detail-sensitivity

of a segmentation network while maintaining its high

non-linearity.

• P-pooling is a learnable function with a dynamically

adjustable mechanism that offers a tradeoff between the

detail-sensitivity and the non-linearity with arbitrary de-

grees. P-pooling is also differentiable to allow end-to-

end training.

• P-pooling method consistently improves standard fine-

tuned segmentation models with various network archi-

tectures, datasets and different training strategies.

2. Related Works

Improving pooling in CNN models has been long studied.

In the literature on parsing, [16, 12] proposed to use dynamic

kernel sizes or strides for input features with various sizes

in order to obtain results at a fixed length. [9] proposed a

deformable sampling scheme to select input features in a

data-driven way. Although [32, 35] were originally proposed

to adaptively regularize receptive fields in convolutional

layers, they can also be directly transferred to determine

pooling kernel sizes.

Other works that focused on pooling kernel functions

mainly performed their studies in the context of the image

classification task. Among them, [13] used Lp norm (or

Minkowski norm) to extend max pooling. The authors man-

ually selected intermediate pooling functions between max

and average pooling to better fit the distribution of input data.

[20] generalized pooling methods by using a learned linear

combination of max and average pooling. Detail-Preserving

Pooling (or DPP) [26] borrows ideas from Detail-Preserving

Image Downscaling (DPID) method in [31] which was orig-
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Figure 1. The structure of a P-pooling unit. A side-branch net takes

the features to be pooled as input and generates α values that are

used in P-pooling.

inally proposed for the graphics task. DPP learns weighted

summations of pixels over different pooling regions, where

more importance is given to salient pixels in order to achieve

higher visual satisfaction on pooled results. Offering an al-

ternative to pooling methods, [29] replaced all max pooling

layers with strided convolutions and activation functions in a

small classification model that was trained from scratch and

achieved better performance. Recent classification networks,

such as [17], have also used strided convolution layers for

feature down-sampling.

However, the related works in question are either limited

to improving the usage of pooling layers rather than the

kernel functions, or focus primarily on classification models

that are trained from scratch rather than during the training

process of segmentation networks. More discussions on the

aforementioned methods will be provided in Section 3.6.

3. Polynomial Pooling (P-pooling)

3.1. Notations

For convenience and better understanding, notations that

will be used throughout the paper are first defined. For a

pooling layer, the input feature map is denoted as X and the

output feature map as Y . The j-th element yj on the output

feature map Y is the result of the j-th pooling region Rj on

X . Rj = {x1, x2, ...xN} contains a set of N input elements

on X within the j-th pooling region. For the gradients,

assume that the (l)th layer’s backward gradient ∂E
∂yi

is δli.
Given a specific pooling function f , the general pooling is:

Y = f(X).

3.2. Definition of P-Pooling

In this paper, a new polynomial form of pooling function

(denote as P-pooling) is proposed as

yj = fp(Rj) =

∑
xi∈Rj

xα+1

i∑
xi∈Rj

xα
i

. (1)
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The P-pooling function has a parameter α ∈[0,+∞),
which controls its polynomial order and then functional be-

haviors. In this work, the specific value of α is dependent

on the corresponding input data making it a data-driven pa-

rameter. Details about the learning and prediction of α are

further elaborated in Section 3.5.

In practice, as most pooling functions in deep network

are appended after the convolution and ReLU layers, it can

usually be assumed that all elements in the input feature map

are non-negative, which ensures that polynomial terms will

not generate imaginary numbers. However, for the less com-

mon situations where negative input values are inevitable,

we propose an approximating form of P-pooling. Assume

the minimum value of X is xmin, then

yj = f̂p(Rj) = fp(Rj − xmin) + xmin . (2)

Although the approximation function differs slightly from

Eq. 1, it shares almost the same properties with the original

P-pooling function.

3.3. Analysis of Boundary Conditions

P-pooling is proposed as a superset representation of

standard poolings. This is because max and average poolings

are simply special cases of the P-pooling function, forming

the boundary conditions when α = 0 and α → +∞. By

learning α values within [0,+∞), P-pooling behaves as an

intermediate function between max and average poolings,

inheriting advantages from both to different degrees. The

following propositions provide formal descriptions of P-

pooling’s boundary conditions.

Proposition 1: P-pooling is equivalent to average pool-

ing when α = 0.

Proposition 2: P-pooling behaves as max pooling when

α → +∞.

The mathematical proofs for these propositions are pre-

sented in the supplementary file. Note the proofs show that

both the forward and backward processes of P-pooling are

identical to those of max and average poolings. This is signif-

icant as some other methods, including the Lp norm function

(see Section 3.6), ignore the equivalence of the backward

process.

3.4. Properties of Non­Linearity and Detail­
Sensitivity

As an intermediate form between max and average pool-

ings, P-pooling inherits the merits of both standard poolings.

Figures 2, 3 provide simple and clear demonstrations on

the effectiveness of P-pooling’s properties under different

conditions and parameters.

The ability for detailed structure preservation in feature

space is shown in Figure 2. When α = 2, P-pooling suc-

ceeds in maintaining the information of both white and gray

corner points. This illustrates its strong ability to distinguish

input feature

ave 

max 

input feature max 

ave 

DPP(λ = 4)

DPP(λ = 4)

P pooling(α=2)

P pooling(α=2)

Figure 2. A demonstration on the functionalities of different pooling

methods. All poolings are performed with a kernel size of 2 and

stride of 1. A brighter color represents a high response value and a

darker color stands for a lower response.

different details, behaving similarly to average pooling. In

contrast, in Figure 3, the function surface of P-pooling when

α = 2 plotted for 2D input data, has a much more significant

curve degree than average pooling. Importantly, the curve

of P-pooling’s function surface is very close to that of max

pooling, indicating these two pooling methods have similar

degrees of non-linearity. These demonstrations show that

the P-pooling is able to unify the superior detail-sensitivity

and high non-linearity in a single function.

In Section 3.6, we provide further insight on the merits

and special properties of P-pooling through comparisons

with other recent and relevant pooling functions, as well as

down-sampling methods.

3.5. Learning Adaptive Polynomial Pooling Kernels

With α being positive and all input features being non-

negative, the P-pooling function is differentiable and can

participate in the joint end-to-end training with the whole

network. Thus we have

∂E

∂xi
=

∑

j

∂E

∂yj

∂yj
∂xi

=
∑

j

(α+ 1)xα
i

∑
xi∈Rj

xα
i − αxα−1

i

∑
xi∈Rj

xα+1

i

(
∑

xi∈Rj

xα
i )

2
δl+1

j ,

(3)∂E

∂α
=

∂E

∂yj

∂yj
∂α

=
∑

xi∈Rj

ln(xi)x
α+1

i

∑
i∈Rj

xα
i − ln(xi)x

α
i

∑
xi∈Rj

xα+1

i

(
∑

xi∈Rj

xα
i )

2
δl+1

j .

(4)
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Standard pooling Lp-norm pooling Gated pooling P pooling
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Figure 3. A demonstration of the pooling function surfaces for 2-dimensional input data. The standard poolings together with Lp norm [13],

gated pooling [20] and P-pooling with different parameters are displayed. The DPP [26] is unnecessary to show as it is always equal to

average pooling on 2D data.

To give P-pooling the highest flexibility to adjust itself

according to specific input data, the values of α for each pool-

ing window are dynamically predicted with a side-branch

network. Each side prediction branch takes the feature just

before pooling as its input and then outputs a dense α map

that has the same size as the pooled feature maps. The j-th

α value in a dense α map corresponds to the pooling region

Rj and is obtained by

αj = Convside_branch(Rj) . (5)

Figure 1 shows the structure of a P-pooling unit. This

unit is able to replace pooling layers in most network back-

bones. Inside the unit, the side-branch is composed of two

depth-wise convolutional layers with a pReLU [15] activa-

tion. To avoid numerical issues, the output values from the

side-branch are clipped to (0, C], where C is a predefined

positive constant. The depth-wise convolution disentangles

the cross-channel correlations so that α values are solely

based on input data from the corresponding regions. It also

introduces a very limited number of additional parameters

and computational cost. In the VGG-16 model, for example,

the side-branches account for less than 0.08% of the overall

parameters. The side-branch is totally differentiable. Given

the gradients with respect to α, the side-branches can also

be trained in an end-to-end fashion.

3.6. Comparative Studies on P-Pooling

In the literature for other computer vision tasks, i.e. image

classification, there are several pooling and down-sampling

methods that address relevant issues. In this section, the

merits of P-pooling are further elaborated by making com-

parisons with these methods.

Lp norm pooling (or Minkowski norm) is used in

[13, 29, 2] to unify standard poolings and is defined as:

fLp
(Rj) = (

∑
xi∈Rj

xp
i )

1/p. However, compared to P-

pooling, there are two factors that makes it inappropriate

as a pooling alternative in end-to-end training. First, its out-

puts can be greater than any of the input elements, resulting

in a slight shift in the data distribution. This phenomenon

can be observed in Figure 3(b), especially when p = 3. In

addition to this, the imperfections in the backward process

make Lp norm unsuitable for end-to-end training. This is not

only because ∂E/∂xi is not equal to the gradient in average

(p = 1) or max (p → +∞) pooling, but also because its

gradient will explode when p = 0 or 1, making optimization

more difficult. In fact, [13] choose to manually select p order

values rather than learn to improve the network. The detailed

backward formulas are presented in the supplementary file.

Gated Pooling [20] is used to fuse max and average pool-

ing with a linear combination whose weights are generated

from input data. Compared with P-pooling, gated pooling

is a simple solution to finding an intermediate function be-

tween max and average pooling The function’s complexity

is exchanged for its ease to use. As shown in Figure 3, the

function surface consists of two planes that fold at different

angles making it much less non-linear than P-pooling.

Detail-Preserving Pooling [26] borrows the idea from
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Method

VOC 2012 Cityscapes ADE20K

VGG ResNet VGG ResNet VGG ResNet

Max 53.9* 60.0 57.2* 54.3 25.4* 23.5

Average 52.8 59.6 53.5 52.1 24.7 23.7

Strided-C [29, 17] 50.9
60.3*

56.1
55.9*

23.9
23.9*

All-C [29, 17] not converge 25.2 not converge

Gated [20] 53.3 59.5 56.7 53.3 25.1 23.7

DPP [26] 54.2 60.1 57.8 54.4 25.3 24.1

P-pooling (ours) 55.1 61.1 58.6 56.3 25.9 24.7

Table 1. Quantitative comparisons for baselines w.r.t. mIoU on the validation sets of the PASCAL VOC 2012, Cityscapes and ADE20K

datasets. For ResNet-based models, ‘Strided-C’ and ‘All-C’ refer to the same structure. * represents the original settings of the pre-trained

network. The full results are shown in the supplementary file.

Detail-Preserving Image Downscaling (DPID) [31] in com-

puter graphics which assumes that prominent pixels con-

tribute more to visual satisfactory on preserving details. Es-

sentially DPP is a weighted average of input elements giving

higher importance to more anomalous feature. In contrast

to P-pooling, the hypothesis of DPP doesn’t hold in the

segmentation task. This is because each input value in the

feature space represents the response of a certain pattern.

When the function selects a low value as the pooling result

over a region filled with high responses, this can be mislead-

ing. As shown in Figure 2, the output of DPP can completely

convert the input features where both the white and dark

corner points disappear in the result.

Strided Convolutions are used to replace pooling layers

in works such as [29, 17]. In [29], the authors propose two

different types of strided convolutions: ‘Strided-C’ which re-

moves a pooling layer and increase the stride for the previous

conv layer and ‘All-C’ which replaces poolings with newly

initialized stride conv layers. Compared with P-pooling,

(a) strided convolution is still rigid as it applies the same

kernels on all spatial regions and thus is non-responsive to

different data distributions. It is obviously difficult for a

single conv layer to acquire non-linearity that is compara-

ble with a max pooling. (b) The newly initialized layers in

the pretrained models brought by ‘All-C’ can easily cause

divergence during further fine-tuning.

4. Experiments

To verify the effectiveness of the proposed P-pooling,

extensive experiments are conducted on different dataset

with various network backbones.

4.1. Comparative Studies

P-pooling is compared with several of the most related

methods. Experimental settings are as follows.

Datasets: Models are trained and tested on the PASCAL

VOC 2012 [10], Cityscapes [8] and ADE20K [38] datasets.

These three common segmentation benchmarks cover both

object and scene segmentation, which enable us to analyze

the properties of P-pooling under different conditions. All

models are evaluated in terms of their mean-intersection-

over-union (mIoU, or mean Jaccard Similarity).

The PASCAL VOC 2012 segmentation dataset is com-

posed of the official segmentation benchmark [10] and extra

annotations provided by [14]. There are 10,582 images for

training and 1499 images for validation, consisting of 20

foreground object classes and one background class.

Cityscapes [8] is a dataset of street scene images from 50

different European cities. The dataset provides fine-grained

pixel-level annotations for 19 categories. The training set

has 2975 images and the validation set has 500 images.

ADE20K [38] is a scene parsing dataset which provides

dense labels for 150 classes on more than 20K scene images.

The categories include a large variety of objects (e.g., person,

car, etc.) and stuff (e.g., sky, road, etc.). The validation set

consists of 2000 images.

Networks: Pre-trained VGG [28] and ResNet [17] mod-

els are used in our experiments. The VGG model is a stan-

dard single-path network and is the basis for developing

more complex network architectures. For the ResNet model,

we mainly focus on comparing the pre-trained strided con-

volutions. VGG and ResNet models were selected because

they are the most common network backbones used in seg-

mentation task e.g., [21, 32, 3, 4, 35, 23]. These models are

also very basic so that the conclusions drawn on them can be

used to generalize P-pooling towards other existing works.

The VGG-16 model [28] is used in the experiment. To

build up a segmentation model, the stride in pool5 layer is

removed to enlarge feature maps in higher layers, producing

an overall stride of 16. A bilinear interpolation at the end

of the network restores resolutions of the predictions. For

baseline models, different pooling methods replace the five

original max-pooling layers. The ResNet-50 model [17] is

also used. In practice, the final global average pooling layer

is removed and the overall stride is 32. To build up base-

line models and make specific comparisons with pre-trained

strided convolutions, the pool1 layer remains unchanged. All

strides in conv1, res3a, res4a and res5a stages are removed.

Different pooling methods are inserted after the conv1 layer

and res2c, res3d and res4f layers.

Training Settings: Essentially, the training settings for
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Figure 4. A demonstration of the segmentation results for the VGG-based baseline model (w/ max pooling) and the proposed model (w/

P-pooling) on the VOC and Cityscapes datasets. More demonstrations are shown in the supplementary file.

the comparative studies follow the general fine-tuning prac-

tice of most fully convolutional networks. Take the VGG16-

based network trained on the VOC dataset as an example,

the learning rate is 2× 10−7 and the model iterates 10, 000
times and steps at 6, 000. For side-branches, as they are

newly initialized layers, their learning rates are multiplied by

3 and input features are scaled up 100 times to speed up their

convergence. For initialization, bias terms in the last convo-

lutional layers of each side-branch are set to a large positive

value (e.g., 20) enabling the P-pooling to begin from max

pooling and thus keep the pre-trained model unchanged at

the start of fine-tuning. Additionally, due to potential over-

flow issues, α values are restricted to being smaller than a

given constant number, i.e. 35 for the VGG16-based net-

work. Our implementation is based on the Caffe library [19].

All experiments are performed on DGX-1 workstations with

NVIDIA V100 graphic cards.

Baselines: A series of baseline models are compared to

verify the effectiveness of P-pooling over the other most

relevant pooling methods used in semantic segmentation.

The baseline models include standard poolings (max and

average poolings), gated pooling [20], DPP [26] and strided

convolutions [29, 17]. Among them, we implement the

recommended ‘gated, layer-wise’ version of gated pooling

as described in [20]. The DPP uses its ‘sym lite’ version.

For the VGG based networks, we implement the strided

convolutions strategies ‘Strided-C’ and ‘All-C’. For ResNet

based networks, the baselines use their vanilla networks.

Evaluation Results: Models trained with baseline pool-

ing methods as well as P-pooling are evaluated on the valida-

tion sets of PASCAL VOC 2012, Cityscapes and ADE20K.

Table 1 and Figure 4 demonstrate the quantitative and quali-

tative results, respectively. Figure 5 compares the changes at

category level performance .

As concluded from Table 1, P-pooling outperforms all

the baselines. For the VGG-based networks, compared to

the max pooling, which is widely used for segmentation,

P-pooling achieves mIoU improvements of 1.2/1.4/0.5 for

（a） （b） （c）

Figure 5. Top positive changes brought by P-pooling, comparing

to directly fine tuning from original pre-trained VGG on (a) VOC,

(b) Cityscapes and (c) ADE20K datasets.

the VOC/Cityscapes/ADE20K datasets, respectively. For

ResNet-based networks, P-pooling also consistently per-

forms the best, showing 0.8/0.4/0.8 improvement over the

default settings. Although ResNet-based networks and VGG-

based ones for the Cityscapes and ADE20K datasets, respec-

tively, appear to make less significant improvements, they

still shows a notable effect considering the smaller changes

obtained by other baselines. Moreover, compared to the

recently proposed DPP method, P-pooling shows steady

advantages in all cases.

Figure 4 demonstrates several segmentation results for

all datasets. Overall, using P-pooling enable the networks

to build up more robust feature representation for details

compared to directly fine-tuning on pre-trained models. On

the Cityscapes and ADE20K datasets, the P-pooling helps

to preserve more detailed structures, such as ‘poles’, while

the vanilla VGG model simply ignores many. On the VOC

dataset, P-pooling has a more significant effect on suppress-

ing false positives near object boundaries, indicating a better

perception for details.

From Figure 5, it can be concluded that P-pooling ele-

vates the performance for many categories on all the VOC,

Cityscapes and ADE20K datasets. Specifically, P-pooling
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Deeplab
× 91.2 76.8 33.4 75.2 62.1 67.0 83.2 77.9 79.9 30.5 67.7 49.6 73.2 65.3 70.4 78.4 46.0 71.7 39.8 74.9 53.7 65.1

X 91.1 78.1 33.9 75.4 61.2 66.6 83.5 76.2 79.8 31.1 67.7 50.2 72.9 66.5 70.6 78.0 49.0 71.4 41.9 75.2 57.8 65.6

FCN
× 90.4 78.6 32.8 74.4 55.2 65.7 76.8 73.6 76.0 23.1 58.1 30.2 66.3 59.6 62.3 76.6 42.0 67.8 36.9 70.9 54.3 60.6

X 91.3 80.0 34.7 75.9 54.7 66.0 81.1 76.1 77.0 27.0 60.1 42.0 65.0 60.7 65.9 78.2 43.5 66.1 32.1 72.5 56.9 62.3

Deeplabv3
× 93.2 80.9 37.2 85.7 66.1 76.5 92.0 82.6 90.9 30.9 86.5 47.7 87.2 85.0 80.2 82.3 51.5 85.5 52.5 82.4 72.0 73.8

X 93.3 81.6 38.2 85.9 65.0 77.6 91.9 82.7 91.9 31.5 87.5 48.2 87.0 85.6 83.6 82.4 51.8 86.9 46.1 86.2 73.0 74.2

Table 2. Quantitative evaluation results on PASCAL VOC 2012 test set w.r.t. state-of-the-art models w/ and w/o P-pooling layer. All results

are averaged over 5 models that are trained separately to get rid of training fluctuations. The models are evaluated with mean IoU metric.
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Deeplab
× 91.9 79.7 36.1 76.9 59.9 63.5 83.8 78.5 79.7 27.1 70.1 54 75.1 71.2 79.7 78.4 52.4 77.8 47.1 71.3 58.5 67.27

X 92.0 78.7 35.6 77.4 60.7 64.2 82.9 79.8 81.1 28.3 71.3 57.0 75.6 73.2 81.8 78.5 53.9 78.1 46.0 70.1 60.0 67.95

FCN
× 90.7 76.7 36.3 70.1 52.2 61.4 73.7 70.4 74.2 20.0 56.3 38.1 64.7 68.6 74.2 75.6 45.9 68.3 45.7 68.0 49.7 61.01

X 91.5 82.6 35.5 67.6 54.5 64.7 76.9 75.2 73.7 24.3 59.7 51.2 63.5 66.8 75.8 77.1 47.7 72.8 43.3 65.3 52.9 62.99

Deeplabv3
× 93.5 87.7 39.2 86.5 69.7 73.7 90.6 85.7 91.5 35.3 83.4 59.5 87.1 84.1 86.0 82.1 56.7 84.3 54.8 82.6 68.6 75.37

X 93.8 88.4 39.4 81.9 69.6 73.9 90.5 84.5 92.4 34.9 83.8 63.4 88.4 85.9 83.9 82.1 58.7 83.3 53.5 84.7 71.5 75.64

Table 3. Quantitative evaluation results on PASCAL VOC 2012 validation set w.r.t. state-of-the-art models with and without P-pooling layer.

All models are evaluated with mean IoU metric. URLs of the results on VOC evaluation servers are also provided.

Backbones Training Strategies Settings

VGG16-20M [3] Deeplab [3] 16s, Large_FOV

InceptionV2-BN [18] FCN [23] 8s

Xception-38 [7] Deeplab v3 [5] 16s, ASPP

Table 4. State-of-the-art models and their specific settings used in

the experiment.

has a particularly significant positive effect on small objects

or other objects with many detailed structures, such as ‘pole’

or ‘traffic sign’ for the Cityscapes dataset, ‘chandelier’, ‘ra-

diator’ or ‘armchair’ for the ADE20K dataset and ‘table’ or

‘plant’ in the VOC dataset. For large objects or categories,

such as ‘wall’, ‘sidewalk’, ‘mountain’, etc., P-pooling still

provides improvement, though to a smaller degree.

4.2. Effectiveness on State­of­the­Art Models

The P-pooling module is then applied to several state-of-

the-art semantic segmentation pipelines to further verify its

effectiveness under these more complex settings.

Network: We re-implement three types of state-of-the-art

models with their typical settings, which are listed in Table

4. In this experiment, we address P-pooling’s performances

under the conditions of: (a) more powerful and complicated

network backbones, and, more importantly, (b) the other

detail-recovery methods adopted by these models.

Among the selected network backbones, VGG16-20 [3]

is the truncated version of the standard VGG16 model. The

stride of the pool5 layer is removed and the number of chan-

nels of the fc layers are reduced to 1, 024. The weights

of the fc6 layers are replaced with dilated 3 × 3 convolu-

tional kernels. All of these changes minimize the size of

model and make the network more suitable for segmentation.

InceptionV2-BN [18] and Xception-38 [7] adopt multi-scale

feature extraction and fusion mechanisms in order to pro-

mote the stability to feature variance, including adding more

detail-sensitivity.

The different training strategies contain additional detail-

recovery modules that are specially designed for the segmen-

tation task, such as the Large Field of View [3], the ASPP

module [5] and skip layers [23]. These methods noticeably

reduce the inconsistency between extracting high level se-

mantic features in larger receptive fields and keeping low

level detailed structure information in local areas. In this

experiment we demonstrate that P-pooling can further im-

prove a model’s detail-sensitivity even when it is applied

together with the detail-recovery methods in question.

Experimental Settings: In general, we use the same

experimental settings as the original papers. P-pooling re-

places all down-sampling operations as well as other pooling

layers whose stride is 1. To focus the comparisons on down-

sampling modules, irrelevant techniques such as pre-training

on additional dataset, data augmentation during testing and

post processing are removed. As a result, some of the re-

implemented models may have inferior performances than

the originally reported ones. All the models are evaluated on

the PASCAL VOC val/test set and ADE20K val set.

Evaluation Results: Quantitative results are shown in

Table 2, 3 and 5. It can be seen that P-pooling further

improves all models with different training strategies and

detail-recovery modules. In particular, P-pooling achieves

the most significant improvements on the Inceptionv2-based

models and increases the mean IoU scores by 1.7/1.9/2.3

on the VOC validation/VOC test/ADE20K validation sets.

We also observe smaller but consistent gains for VGG16-

20M-based and Xception-38-based models in terms of their

overall performances. From the category level comparisons

demonstrated in Table 2 and 3, P-pooling is especially help-

ful for segmenting objects that have detailed structures. The

performances of all models on certain categories, such as

‘table’ and ‘plant’, are improved. In conclusion, even with

other detail recovering methods, P-pooling nevertheless can

enable the networks to preserve more detailed structural

information in a complementary way.
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Figure 6. The visualization on α maps from the different stages of

the ResNet-based model that is trained on the Cityscapes dataset.

(a) input image, (b) α maps in different channels, (c) mean α

values in each channel. Brighter pixels on α maps indicate greater

α values. For each plot in (b), the x-axis represents the channel’s ID

and y-axis stands for the mean α value on corresponding channel.

Methods P-pooling Pixel Accuracy mIoU

Deeplab
× 68.45 28.44

X 69.22 29.01

FCN
× 66.88 25.81

X 68.02 28.09

Deeplabv3
× 73.33 33.93

X 73.58 34.70

Table 5. Quantitative evaluation results on ADE20K test set w.r.t.

state-of-the-art models with and without P-pooling layer. All mod-

els are evaluated with pixel wise accuracy and mean IoU metrics.

4.3. Analysis on α Maps

Several examples of α maps predicted from a test image

are visualized in Figure 6. The α maps come from each

pooling stage of the ResNet-50 model. For each map, α
values vary for different positions on the image, indicating

the good flexibility of P-pooling for adapting to different

input data. Specifically, while subtle differences in the α
maps can be seen for large objects, the changes are more

significant near object edges or around small structures.

When comparing α maps across channels, some chan-

nels adopt smaller α values for small details (darker areas)

and greater values for large objects (brighter areas) while

the other channels behave in the opposite way. This means

different channels have various functionalities for extract-

ing features. Figure 6(c) shows the mean α values of each

channel. The α values have a wide distribution within the

predefined range and show diversity across all channels. In

higher levels, more mean values stay around their initialized

value. This is because the corresponding input feature maps

are sparser than those in lower layers and thus the output

of the side-branch in a P-pooling unit is also sparse. Then,

the bias terms in the last layer of a side-branch dominate the

predicted α map.

Method mIoU

replaced with P-pooling in

pool1 54.9

pool2 54.7

pool3 54.5

pool4 54.8

pool5 54.3

all max pooling 53.9

all P-pooling 55.1

Table 6. An ablation study on the effectiveness of P-pooling in

each network stages. All models are evaluated using a VGG-based

network on VOC.

4.4. ‘Details’ Are Not Local

The purpose of P-pooling is to add higher detail-

sensitivity to a segmentation model. However, ‘detail’ does

not solely refer to a local area on the input image. Instead, P-

pooling is able to preserve more information of many factors

within one pooling region, such as the values’ distribution

and the sequential order of input elements, and these infor-

mation are disentangled from the scales or levels of features.

From this perspective, P-pooling is effective in each stage

of the network. In Table 6, an ablation study is made where

only one P-pooling layer is used to replace the original

pool1-pool5 max pooling one by one. Although all single-

stage P-pooling models have inferior performances than the

5-p-pooling model, they nevertheless show noticeable im-

provement when compared to the 5-max-pooling network.

The P-poolings in each stage yield similar improvements.

5. Conclusion

In this paper, a new pooling function, polynomial pooling

(P-pooling) was proposed to enhance the detail-sensitivity

while preserving the non-linearity of a segmentation net-

work. The proposed P-pooling addresses the contradicting

purposes of classification models and semantic segmenta-

tion, with a function that finds a compromise between max

and average pooling. With an adjustable mechanism to pro-

vide a combination of detail-sensitivity and non-linearity to

arbitrary degrees, P-pooling can be dynamically adapted

to various data types so as to provide high flexibility inside

a network. P-pooling is differentiable so as to allow end-

to-end training, and it is universally compatible with any

pre-trained classification model. Extensive experiments on

the VOC, Cityscapes and ADE20k dataset showed the supe-

riority of P-pooling over directly fine-tuning the pre-trained

models using other pooling methods.
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