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Abstract

Handwritten signature verification is an important tech-
nique for many financial, commercial, and forensic appli-
cations. In this paper, we propose an inverse discriminative
network (IDN) for writer-independent handwritten signa-
ture verification, which aims to determine whether a test
signature is genuine or forged compared to the reference
signature. The IDN model contains four weight-shared neu-
ral network streams, of which two receiving the original sig-
nature images are the discriminative streams and the other
two addressing the gray-inverted images form the inverse
streams. Multiple paths of attention modules connect the
discriminative streams and the inverse streams to propa-
gate messages. With the inverse streams and the multi-path
attention modules, the IDN model intensifies the effective
information of signature verification. Since there was no
proper Chinese signature dataset in the community, we col-
lected a large-scale Chinese signature dataset with approx-
imately 29,000 images of 749 individuals’ signatures. We
test our method on the Chinese signature dataset and oth-
er three signature datasets of different languages: CEDAR,
BHSig-B, and BHSig-H. Experiments prove the strength
and potential of our method.

1. Introduction

When a myriad of significant financial, commercial, and
forensic documents are signed worldwide everyday, verify-
ing the authenticity of the signatures is a critical issue to be
concerned. Considering the huge amounts and wide appli-
cations of handwritten signatures, developing an automatic,
accurate, and efficient signature verification technique is be-
coming particularly important and necessary.

This paper addresses the problem of writer-independent
handwritten signature verification, which aims to determine
whether a test signature is genuine or forged compared with
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Figure 1. Illustration of handwritten signature verification.

the reference signature of any writer, as shown in Fig. 1.
While the past decades have witnessed remarkable progress
in signature verification [2, 12, 18, 35, 34], several exist-
ing challenges make it still an open problem. First, there
was no proper Chinese signature dataset, which impedes
the research and application of Chinese signature verifica-
tion. Second, in a signature image the information of the
signature is very sparse, because the signature strokes are
often extremely thin and a large area of the image is the
background. Third, most individual’s signature styles are
somewhat arbitrary, which makes the same individual’s sig-
natures on different occasions appear notably different. On
the other hand, some skillfully forged signatures appear ex-
tremely similar to the genuine ones.

In this paper, we propose a novel inverse discriminative
network (IDN) model for writer-independent handwritten
signature verification. This network contains four weight-
shared streams, of which two streams are the discriminative
streams and the other two are the inverse streams. The two
discriminative streams respectively receive a reference sig-
nature image and a test signature image as inputs, and ex-
tract the signature features via four cascaded convolution-
al modules. The two inverse streams receive the inverse-
gray reference and test signature images, respectively. The
discriminative streams and the inverse streams are connect-
ed by multiple paths of attention modules which propa-
gate messages at different scales to intensify the effective
stroke information. The features from different discrimi-
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native streams and inverse streams are merged to three dif-
ferent feature maps with convolutional modules, which are
then fed to three fully-connected layers to make decisions.
The whole IDN model is trained in an end-to-end way.

Our IDN model introduces two mechanisms which aim
to resolve the sparse information issue of signatures. The
first one is the inverse supervision mechanism which takes
the inverse-gray reference signature and test signature as in-
puts and pushes the model to focus on the signature strokes
rather than the image backgrounds. This mechanism is built
on the fact that a model that focuses on the signature strokes
rather the image should make the same verification deci-
sion when the gray values of the signature image are in-
verted. The second one is the multi-path attention mecha-
nism which propagates messages between inverse streams
and discriminative streams via multiple attention modules
at different feature scales. The attention mechanism aims
to enforce the model to learn and extract important features
for signature verification.

Since there was no proper Chinese signature dataset in
the community, we collected a large-scale and challenging
Chinese signature dataset (CSD). We test our method on the
collected Chinese signature dataset and other three public
signature datasets of different languages: CEDAR Dataset
[21], BHSig-B Dataset [27], and BHSig-H [27]. Extensive
experiments demonstrate the effectiveness and strength of
the proposed method.

1.1. Related Work

For the significance in financial, commercial, and foren-
sic applications, signature verification has been extensive-
ly studied over the past decades [38, 34, 16, 18, 8], and
many datasets were publicly released, such as CEDAR [21],
MCYT-75 [14], BHSig [27], and GPDS [12, 13]. Howeyv-
er, there was no large-scale Chinese signature dataset in the
community, which impedes the research and applications on
Chinese signature verification. This motivates us to collect
a new Chinese signature dataset.

Geometric features in images are often used for signature
verification [2, 10, 11, 35, 34, 30, 29], such as the signature
heights, widths, areas, [2, 10, 11], or local patch features,
such as LBP [35, 34, 30] and SIFT [29]. These features have
laid a solid foundation for signature verification and per-
formed well on some datasets. However, the hand-crafted
features are vulnerable to noise and complex backgrounds,
which makes them less effective on some complex data.

To overcome the drawbacks of hand-crafted features,
neural network approaches are widely applied to signature
verification [17, 18, 8, 1, 37, 28, 33, 22] and related tasks
[36, 7, 23, 31]. Hafemann et al. [17] utilized convolution-
al neural networks to learn features in a writer-independent
way, and presented a multi-task model [18] which both uses
genuine signature and forgeries to train the networks. Dey

et al. [8] modeled an offline writer independent signature
verification with a Siamese convolutional network. Alvarez
et al. [1] proposed a CNN-based architecture which com-
bines a positive sample and a negative sample into a sin-
gle image. Zhang et al. [37] presented an offline signature
verification with deep convolutional generative adversarial
networks [15]. Compared to the traditional methods, neural
network methods have achieved impressive performance on
signature verification. However, most existing approaches
indeed address the problem of signature verification in the
way of image classification rather than modeling the signa-
ture itself, which may lead to incorrect predictions on com-
plex signature images.

We propose a four-stream network model which takes in
two pairs of signature images: one pair contains the refer-
ence signature image and the test signature image, and an-
other pair contains the inverse gray reference signature im-
age and test signature image. With this strategy, our model
not only extracts features from signature images but also
specifically mines the signature stroke information.

Signature information is very sparse in images because
signatures are often composed of thin strokes. Attention
mechanism [32, 4, 19] is an effective way to enhance weak
information and improves performance in object and image
recognition. Chen et al. [6] designed a reverse attention
method to detect salient objects. Huang et al. [20] utilized
a reverse attention mechanism for semantic segmentation.
Inspired by these attention models, we develop a multi-path
attention approach which supervises the model to focus on
and mine the signature stroke information.

2. Chinese Signature Dataset

Since there was no proper Chinese signature dataset, we
collected a large scale and challenging Chinese signature
dataset (CSD). Some examples are shown in Fig. 2. The
dataset includes genuine signatures and forged signatures.
To collect the genuine signatures, volunteers using Chinese
wrote their names 20 times on a writing paper at differ-
ent time. For forged signatures, each name has 10 simple
forgeries and 10 skilled forgeries. The simple forgeries of
each name were wrote by 10 different volunteers with their
own writing styles and habits. The skilled forgeries of each
name were wrote by calligraphers after they have carefully
observed, learned, and imitated the genuine signatures.

All the writing papers with signatures were scanned to
images from which all the handwritten signature patches
were cropped and resized into image samples with the same
size. With the OTSU algorithm [26] and non-standard Bina-
rization, these signature images are preprocessed so that the
background pixel values are 255 (white) and the signature
strokes maintain the original gray values. In this way, each
name has 20 genuine handwritten signature image samples
and 20 forged handwritten signature samples. The dataset
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Figure 2. Samples of our Chinese Signature Dataset. In each row are the same name’s signatures. The left eight samples are the genuine

signatures and the right eight samples are the forged signatures.

includes a total of 749 names and approximately 29,000 sig-
nature image samples.

Our dataset has several characteristics which make it u-
nique and challenging. First, our dataset is a large scale
Chinese signature dataset, which we believe will contribute
to the studies of Chinese signature verification and other
related tasks. Second, it has a large number of individu-
al’s real handwritten signatures, which were all manually
collected in natural settings. Third, since the genuine signa-
tures were collected at different time and at different scenes,
the same individual’s signatures may appear notably dif-
ferent, as shown in Fig. 2. On the other hand, since the
skilled forgeries were wrote by professional calligraphers,
the forged signatures may appear extremely similar to the
genuine ones. All these aspects make it a challenging and
valuable signature dataset.

3. Inverse Discriminative Networks

Signature strokes are the decisive features to determine
a signature’s identity. However, a typical characteristic of
a signature image is that the effective information for sig-
nature verification in the image is very sparse because the
signature strokes are often extremely thin and most part of
the signature image is the background. In this sparse infor-
mation setting, if the signature stroke information was not
effectively modeled and utilized, the background will be the
dominant information and signature verification would be-
come a common image classification problem. Thus, how
to make the model focus on the signature strokes rather than
the background is a key concern in signature verification.

To solve this problem, we propose a novel inverse dis-
criminative network (IDN) model. The basic idea is that a
robust model that captures the characteristics of signature
strokes rather than the image itself will make the same ver-
ification decision when the gray values of the signature im-
age are inverted. We use Fig. 3 to illustrate this point. The
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Figure 3. A robust signature verfication model should make the
same decisions for the three reference-test pairs, i.e. the decision
1, the decision 2, and the decision 3 are the same.

image 1 and the image 2 are the reference signature and the
test signature respectively, which have black backgrounds
and gray signature strokes. The image 3 and the image 4
with white backgrounds are the inverse gray images of the
image 1 and the image 2, respectively. The four signature
images produce three reference-test pairs: the pair 1 (image
1, image 2), the pair 2 (image 2, image 3), and the pair 3
(image 1, image 4). The signature verification model tak-
ing the three pairs respectively as inputs would output three
verification decisions: the decision 1, the decision 2, and
the decision 3, respectively.

Since the three reference-test pairs originate from the
same pair, if a signification verification model was well de-
signed for characterizing the stroke information rather than
the image color information, it should make the same ver-
ification decisions for the pair 1, the pair 2, and the pair 3,
i.e. the decision 1, the decision 2, and the decision 3 are
the same. For example, compared with pair 1, the reference
signature in pair 2 is gray-inverse. If the model focuses on
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Figure 4. Architecture of the proposed inverse discriminative network. The discrininative and the inverse streams are connected by multi-
path attention (A) modules, shown as the red boxes. Through a global average pooling (GAP) layer, the merged features are fed into the

fully-connected (FC) layers to compute the verification results.

the signature stroke information, it will make the same de-
cisions for the pair 1 and the pair 2 regardless of the image
colors. Since the three pairs have different gray values, the
common information should be related to the stroke infor-
mation. Training the model with this strategy will force the
model to focus on the signature strokes rather than the im-
age colors.

Driven by this inverse supervision idea, we design the
inverse discriminative network architecture.

3.1. Architecture

The proposed inverse discriminative network (IDN) is
illustrated in Fig. 4. The input reference and test signa-
ture images to the model are with black backgrounds and
gray signature strokes. The inverse images are with white
backgrounds and gray strokes. The network contains four
weight-shared streams, of which two are the discriminative
streams and the other two are the inverse streams.

The two discriminative streams respectively take a refer-
ence signature image and a test signature image as inputs,
and extract the signature features via cascaded convolution-
al modules [31]. Each convolutional module contains two
convolutional layers (the kernel size is 3 x 3 and the strip
is 1) activated by the ReLU function and one max-pooling
layer (the kernel size is 2 X 2 and the strip is 2). The ker-
nel numbers of the four modules in each stream are 32, 64,
96, and 128, respectively. The two inverse streams take the
inverse-gray reference and test signature images as input-

s, respectively. Each inverse stream has the same structure
with the discriminative stream.

Between the discriminative and the inverse streams there
are eight paths of attention modules connecting the convo-
lutional modules of the two streams. As the red box shown
in Fig. 4, each attention module is composed of a forward
process and a backward process. The forward process re-
ceives features output from the first layer of the convolu-
tional module in the discriminative stream. The backward
process propagates attention information from the inverse
stream to the second layer of the convolutional module in
the discriminative stream. The inside structures of the at-
tention module will be detailed in Section 3.2.

With three convolutional modules (two convolutional
layers and a max-pooling layer with 256 kernels), the fea-
tures from different streams are merged to three feature
maps, which correspond to three pairs: the reference sig-
nature and the test signature, the inverse-gray reference sig-
nature and the test signature, the reference signature and the
inverse-gray test signature. Through a global average pool-
ing (GAP) layer, the three merged features are respectively
input into three fully-connected layers to compute the veri-
fication results.

In the IDN architecture, the discriminative streams and
the inverse streams are closely connected by the multi-path
attention processes. With these connections, the whole IDN
model is trained in an end-to-end way. This model uses two
mechanisms to enforce the model to focus on the signature
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modules of the four streams.

strokes rather than the whole image. The first is the inverse
supervision mechanism. Based on the fact that inverting the
gray values of signature images should not change the veri-
fication result, the inverse supervision mechanism will drive
the feature extraction to focus on the signature strokes. The
second one is the multi-path attention mechanism which en-
forces the model to extract important features for signature
verification.

Fig. 5 shows some feature maps output from the cas-
caded convolutional modules of the four streams. This fig-
ure demonstrates that after cascaded attention and inverse
supervision, the information for signature verification con-
centrates around signature strokes.

3.2. Multi-path Attention Modules

In the IDN framework, eight paths of attention modules
propagate information between the discriminative streams
and the inverse streams to force the model to extract impor-
tant features for signature verification. Each attention mod-
ule connects a convolutional module in the discriminative
stream and a convolutional module in the inverse stream,
as the red boxes shown in Fig. 4. Our attention module is
inspired by the previous attention models in image-related
tasks [32, 4, 19] but re-designed for connecting the discrim-
inative streams and the inverse streams.

Fig. 6 shows the message flows inside an attention mod-
ule. The feature map output from the convolutional mod-
ule in the inverse stream is input into a up-sample structure
which performs a up sampling with nearest neighbor algo-
rithm and a convolution operation with sigmoid activation,
as shown in the left side of Fig. 6. Let g be the output
of the up-sample structure. Suppose h is the output from
the first layer of the convolutional module in the discrim-
inative stream. In the attention module, multiplying h by
g element-wise and then adding h produce the intermedi-
ate attention measurement h - g + h, where ‘-’ indicates
element-wise multiplication. A following global average
pooling (GAP) layer and a fully-connected layer (FC) with
sigmoid activation receive the intermediate attention mea-

inverse stream

.. .
discrimnative |
stream |
|
|

(h-g+h)xf

discriminative stream
Figure 6. Attention module in the IDN framework. ‘FC’ denotes
‘fully-connected’ and ‘GAP’ indicates ‘global average pooling’.
‘4’ and ‘-’ indicate element-wise addition and multiplication, re-
spectively. ‘X’ means multiplying each channel with a weight.

surement and output the weight vector f, as shown in the
right side of Fig. 6. Multiplying each channel of the in-
termediate attention measurement by each element of f re-
spectively generates the final attention mask (h-g+h) x f,
which is fed back to the second layer of the convolutional
module in the discriminative stream.

Since our attention module connects both the discrim-
inative stream and the inverse stream, the final attention
mask will guide the network to learn discriminative fea-
tures for signature verification and restrain the misleading
information. The whole IDN architecture has eight paths of
attention modules connecting different convolutional mod-
ules, which applies the attention mechanism to different s-
cales and resolution. With the multi-path attention mech-
anism, the important features for signature verification are
enhanced.

3.3. Loss Function

As we discussed above, the signature verification deci-
sion should be independent of the signature image colors if
the model correctly characterizes the signature stroke infor-
mation. By inverting the gray values of the signature im-
ages, our model produces merged features for three pairs:
the reference signature and the test signature, the inverse-
gray reference signature and the test signature, the refer-
ence signature and the inverse-gray test signature, as shown
in Fig. 4. In training, by forcing the model making the
same decisions of signature verification for the merged fea-
tures of the three pairs, the model will be guided to focus
on the signature stroke information. We propose an inverse
supervision loss function based on the cross entropy error.

Suppose y is a binary ground truth label of a test signa-
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ture with respect to the reference signature, where 1 indi-
cates the test signature is genuine and 0 indicates forged.
9:(1 = 1,2, 3) are the predicted probability values for the
three pairs of the reference signature and the test signature,
the inverse-gray reference signature and the test signature,
the reference signature and the inverse-gray test signature,
respectively. Based on the cross-entropy error function of
binary classifiers, the inverse supervision loss for a single
example is defined as:

3
L=-Y aylmgi+ 1 -y -g), @
=1

where «; is a hyper-parameter which adjusts the three pairs’
weights.

The inverse supervision loss has three components but
with the same ground truth, which is different from the tra-
ditional cross entropy loss. Since the four streams of the
network share the parameters, the model will be forced to
focus on and mine the signature stroke information.

4. Experiments

We test our approach on four datasets: our Chinese
Signature Dataset (CSD), CEDAR Dataset [21], BHSig-B
Dataset [27], and BHSig-H [27], which belong to four d-
ifferent languages respectively: Chinese, English, Bengali,
and Hindi. We also carry out the cross-language experi-
ments, i.e. training on a dataset of a language and test on
another dataset of a different language.

We train the model based on TensorFlow 1.4 platform
with NIDIA 1080Ti and i7-8700 CPU. We use the mini-
batch SGD with base learning rate 0.01.

4.1. Evaluation Metrics

We use Fasle Rejection Rate (FRR), False Acceptance
Rate (FAR), Equal Error Rate (EER), Area Under the Curve
(AUC), and Accuracy (Acc) to comprehensively evaluate
our approach and compare it with other existing approaches.

FRR is defined as the ratio of the number of false rejec-
tions divided by the number of genuine samples and FAR is
defined as the ratio of the number of false acceptances divid-
ed by the number of forged samples. Since FRR and FAR
are mutually restricted, EER is applied to evaluate the equi-
librium point where FRR equals to FAR. The lower EER is,
the better model performance is. AUC is the area under the
ROC curve, which is a comprehensive metric. Accuracy is
the ratio of the number of correctly predictions divided by
the number of all test samples.

4.2. Chinese Signature Dataset

Our Chinese Signature Dataset has 749 individuals’ sig-
nature samples and each individual has 20 genuine samples
and 20 forged samples. Among all the 749 individuals, we

Model Acc FRR FAR EER AUC

CNN OSV[1] 8275 1051 19.05 19.63 88.63
Single Stream  88.06 10.98 13.07 15.57 92.28
Double Stream  88.26  8.99 12.64 1578 91.85

Our IDN 90.17 547 11.52 10.83 95.79

Table 1. Comparison on Chinese Signature Dataset (%).

use 375 individuals’ samples as training data, 187 individu-
als’ samples as validation data, and the rest as testing data.
For each individual, we have 190 (20 x 19/2) pair sam-
ples of the reference and the genuine signature. We ran-
domly select 10 genuine signatures as the references and 19
forgeries to form 190 pair samples of the reference and the
forged signature. Thus, for each individual, we have a to-
tal of 380 pair samples, of which 190 are reference-genuine
pairs and 190 are reference-forgery pairs. Since our forged
samples include simple forgeries and skilled forgeries, we
separated the simple forgeries and skilled forgeries in test-
ing. The final performance is based on the average results
of the simple forgeries and skilled forgeries.

We compare our IDN method with other three approach-
es. The CNN OSV method [1] uses a convolutional neural
network model to verify signatures in an offline way. The
Single Stream method concatenates the reference signature
and the test signature into one image and uses one stream of
our IDN model to extract the features of the concatenated
image and determine its label. The Double Stream method
takes in the reference signature and the test signature in the
two discriminative streams of our IDN model respectively,
but without inverse streams and multi-path attention mod-
ules. Our IDN model have four streams which exploit the
multi-path attention and the inverse mechanism for signa-
ture verification.

Table 1 shows the results of different approaches and Fig.
7 (a) shows the ROC curves of the Single Stream, the Dou-
ble Stream, and our IDN. The results show that our IDN
model outperforms other approaches by a large margin in
all evaluation metrics. The reason why our IDN outper-
forms other approaches is that it takes advantage of the in-
verse supervision mechanism and the multi-path attention
mechanism. This point is clearly demonstrated in the com-
parison with the Single Stream and the Double Stream ap-
proaches. The Single Stream method uses one stream of
IDN to extract features and make decisions. The Double
Stream method extracts the features of the reference and the
test signatures respectively in two discriminative streams.
Compared with these two baseline methods, the IDN has
inverse streams and multi-path attention modules, which
makes the IDN outperform the two baselines by a large mar-
gin. This proves the effectiveness of the inverse supervision
and multi-path attention mechanisms.
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Model Type FRR FAR EER
Morphology [24] Wl 1239 1123 11.59
Surroundness [25] WI 8.33 8.33 -

Chain Code [3] WD 9.36 7.84 -

Graph Matching [S] WD 7.7 8.2 -
SigNet-F [18] WD - - 4.63
Single Stream WI 1196  7.25 10.0
Double Stream WI 3.04 8.19 4.86
Our IDN WI 2.17 5.87 3.62

Table 2. Comparison on CEDAR Dataset (%).

Model Type FRR  FAR Acc
SigNet [8] WI 1536 1536 84.64
Correlated Feature [9] WI 15.09 13.10 85.90
Texture Feature [27] WD 2447 2447 7553
Single Stream WI 13.39 11.73 87.44
Double Stream WI 1044 832 90.62
Our IDN WI 4.93 8.99  93.04

Table 4. Comparison on BHSig-H Dataset (%).

Train/ Test | Ours CEDAR BHSig-H BHSig-B‘

Model Type FRR  FAR Acc

SigNet [8] WI 13.89 13.89 86.11
Correlated Feature [9] WI 1443 1578 84.90
Texture Feature [27] WD 33.82 33.82 66.18
Single Stream WI 12.88  9.60 88.76
Double Stream WI 6.49 11.23  91.14
Our IDN WI 5.24 412 9532

Table 5. Signature verification accuracy of cross-language test (%).

Ours 90.17 50.0 57.96 64.53
CEDAR 50.03 95.98 50.36 50.01
BHSig-H 50.0 50.0 93.04 74.12
BHSig-B 50.0 50.0 74.30 95.32

Table 3. Comparison on BHSig-B Dataset (%).

4.3. CEDAR Dataset

The CEDAR signature dataset [21] contains signature
samples of English names. It is composed of 55 individ-
uals’ samples and each individual has 24 genuine and 24
forged signatures. Following other works, we use 50 indi-
viduals’ samples for training and 5 individuals’ samples for
test. For each individual, we have 276 reference-genuine
pairs and 276 reference-forgery pairs.

We compare our IDN method with other approach-
es: Morphology [24], Surroundness [25], Chain Code [3],
Graph Matching[5], SigNet-F [18], Single Stream, and
Double Stream. The Single Stream and Double Stream ap-
proaches are as the same definition in Section 4.2.

Table 2 shows the results of different approaches and
Fig. 7 (b) shows the ROC curves of the Single Stream,
the Double Stream, and our four stream IDN. In the ta-
ble, WI indicates writer-independent methods which build
one same model for any writers and WD means writer-
dependent methods which train different models for each
writer and often need more samples for training. It should
be noted that the writer-dependent methods adopt different
training methods from writer-independent methods. We list
the writer-dependent methods here as references.

On this dataset, our IDN model outperforms other ap-
proaches in all reported evaluation metrics, which proves
the strength of our method.

4.4. BHSig-B Dataset and BHSig-H Dataset

BHSig260 dataset [27] contains two subsets: BHSig-B
Dataset and BHSig-H Dataset. BHSig-B Dataset contains

signature samples of Bengali names. It contains 100 indi-
viduals’ signature samples. Each individual has 24 genuine
signatures and 30 forged signatures. Following other works,
we use 50 individuals’ samples for training and the rest indi-
viduals’ samples for test. For each individual, we have 276
reference-genuine pairs and 276 reference-forgery pairs.

BHSig-H Dataset contains signature samples of Hindi
names. It contains 160 individuals’ signature samples. Each
individual has 24 genuine signatures and 30 forged signa-
tures. Following other works, we use 100 individuals’ sam-
ples for training and the rest individuals’ samples for test.
For each individual, we have 276 reference-genuine pairs
and 276 reference-forgery pairs.

On both the two datasets, we compare our IDN method
with other approaches: SigNet [8], Correlated Feature [9],
Texture Feature [27], Single Stream, and Double Stream.
The Single Stream and Double Stream are as the same def-
inition in Section 4.2.

Table 3 and Table 4 show the results of different ap-
proaches on the two datasets, respectively. The performance
of the Correlated Feature method [9] here was reported in
the work SigNet [8]. Fig. 7 (c) and Fig. 7 (d) show the
ROC curves of the Single Stream, the Double Stream, and
our four stream IDN. On the two datasets, our IDN mod-
el outperforms other approaches by a large margin, which
proves the strength of our method.

4.5. Cross-Language Test

The datasets used in this work belong to four differen-
t languages. We would like to test if signature verification
can be done across different languages. Thus, we carried
out a cross-language experiment where a model is trained
on one dataset and tested on another dataset of a differ-
ent language. For example, we train a model on the Chi-
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Figure 7. The ROC curve comparison on four datasets. The ‘single’, and ‘double’ denote the Single Stream method and the Double Stream
method, respectively. (a) Our dataset. (b) CEDAR dataset. (c) BHSig-B dataset. (d) BHSig-H dataset.

nese Signature Dataset and test the model on the BHSig-H
Dataset. The training and test data division is the same to
the experiments on each independent dataset.

Table 5 shows the accuracy of the cross-language test,
where the rows correspond to the training languages and
the columns correspond to the testing languages. This ta-
ble shows that the signature verification performance across
languages drops considerably. After all, signatures are
closely dependent on the languages and individuals using
different languages have different writing habits and styles.

This table also shows that the performance drops of the
tests across Bengali and Hindi are not so drastic as other
cross-language tests. This can be attributed to the similarity
of Bengali and Hindi handwritten signatures in styles and
strokes.

5. Conclusion

In this paper, we propose a novel inverse discriminative
network (IDN) for writer-independent handwritten signa-
ture verification, which contains four weight-shared stream-
s: two discriminative streams that extract the convolutional
features of signatures, and two inverse streams that super-
vise the feature extraction to focus on the signature strokes.
An inverse supervision mechanism and a multi-path atten-
tion mechanism are used to resolve the sparse information
issue in signature verification. In testing, taking the inputs
of a reference signature image and a test signature image,
our model outputs whether the test signature is genuine or
forged. Since there was no proper Chinese signature dataset
in the community, we collected a large-scale and challeng-
ing Chinese signature dataset. We test our method on the
collected Chinese signature dataset and other three signa-
ture datasets of different languages. Experiments demon-
strate the strength and potential of the proposed method.
The future work will focus on the joint system of signature
verification and recognition across languages.
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