
Photo Wake-Up: 3D Character Animation from a Single Photo

Chung-Yi Weng, Brian Curless, Ira Kemelmacher-Shlizerman

UW Reality Lab

Paul G. Allen School of Computer Science and Engineering

University of Washington

Figure 1: Given a single photo as input (far left), we create a 3D animatable version of the subject, which can now walk

towards the viewer (middle). The 3D result can be experienced in augmented reality (right); in the result above the user has

virtually hung the artwork with a HoloLens headset and can watch the character run out of the painting from different views.

Please see all results in the supplementary video: https://youtu.be/G63goXc5MyU. Photo credit: wikiart.org.

Abstract

We present a method and application for animating a

human subject from a single photo. E.g., the character

can walk out, run, sit, or jump in 3D. The key contribu-

tions of this paper are: 1) an application of viewing and

animating humans in single photos in 3D, 2) a novel 2D

warping method to deform a posable template body model

to fit the person’s complex silhouette to create an ani-

matable mesh, and 3) a method for handling partial self

occlusions. We compare to state-of-the-art related meth-

ods and evaluate results with human studies. Further, we

present an interactive interface that allows re-posing the

person in 3D, and an augmented reality setup where the

animated 3D person can emerge from the photo into the

real world. We demonstrate the method on photos, posters,

and art. The project page is at https://grail.cs.

washington.edu/projects/wakeup/.

1. Introduction

Whether you come back by page or by the big screen,

Hogwarts will always be there to welcome you home.

J.K. Rowling

In this paper, we propose to “wake up a photo” by bring-

ing the foreground character to life, so that it can be ani-

mated in 3D and emerge from the photo. Related to our

application are cinemagraphs and GIFs1 where a small mo-

tion is introduced to a photo to visualize dominant dynamic

areas. Unlike a cinemagraph, which is a 2D experience cre-

ated from video, our method takes a single photo as input

and results in a fully 3D experience. The output animation

can be played as a video, viewed interactively on a monitor,

and as an augmented or virtual reality experience, where a

user with an headset can enjoy the central figure of a photo

coming out into the real world.

A central challenge in delivering a compelling experi-

ence is to have the reconstructed subject closely match the

silhouette of the clothed person in the photo, including self-

occlusion of, e.g., the subject’s arm against the torso. Our

approach begins with existing methods for segmenting a

person from an image, 2D skeleton estimation, and fitting

a (semi-nude) morphable, posable 3D model. The result of

this first stage, while animatable, does not conform to the

silhouette and does not look natural.

Our key technical contribution, then, is a method for con-

structing an animatable 3D model that matches the silhou-

ette in a single photo and handles self-occlusion. Rather

1Artistic cinemagraphs: http://cinemagraphs.com/

15908



than deforming the 3D mesh from the first stage – a dif-

ficult problem for intricate regions such as fingers and for

scenarios like abstract artwork – we map the problem to

2D, perform a silhouette-aligning warp in image space, and

then lift the result back into 3D. This 2D warping approach

works well for handling complex silhouettes. Further, by in-

troducing label maps that delineate the boundaries between

body parts, we extend our method to handle certain self-

occlusions.

Our operating range on input and output is as follows.

The person should be shown in whole (full body photo) as

a fairly frontal view. We support partial occlusion, specif-

ically of arms in front of the body. While we aim for a

mesh that is sufficient for convincing animation, we do not

guarantee a metrically correct 3D mesh, due to the inherent

ambiguity in reconstructing a 3D model from 2D input. Fi-

nally, as existing methods for automatic detection, segmen-

tation, and skeleton fitting are not yet fully reliable (esp. for

abstract artwork), and hallucinating the appearance of the

back of a person is an open research problem, we provide

a user interface so that a small amount of input can correct

errors and guide texturing when needed or desired.

To the best of our knowledge, our system is the first to

enable 3D animation of a clothed subject from a single im-

age. The closest related work either does not recover fully

3D models [26] or is built on monocular video input [11].

We compare to these prior approaches, and finally show re-

sults for a wide variety of examples as 3D animations and

AR experiences.

2. Related Work

General animation from video has led to many cre-

ative effects over the years. The seminal “Video Textures”

[46] work shows how to create a video of infinite length

starting from a single video. Human-specific video tex-

tures were produced from motion capture videos via mo-

tion graphs [22]. [51] explore multi-view captures for hu-

man motion animation, and [54] demonstrate that clothing

can be deformed in user videos guided by body skeleton and

videos of models wearing the same clothing. Cinemagraphs

[47, 13] or Cliplets [28] create a still with small motion in

some part of the still, by segmenting part of a given video

in time and space.

Relevant also are animations created from big data sets

of images, e.g., personal photo collections of a person

where the animation shows a transformation of a face

through years [32], or Internet photos to animate transfor-

mation of a location in the world through years [40], e.g.,

how flowers grow on Lombard street in San Francisco, or

the change of glaciers over a decade.

Animating from a single photo, rather than videos or

photo collections, also resulted in fascinating effects. [18]

animate segmented regions to create an effect of water rip-

ples or swaying flowers. [52] predict motion cycles of ani-

mals from a still photo of a group of animals, e.g., a group of

birds where each bird has a different wing pose. [33] show

that it’s possible to modify the 3D viewpoint of an object in

a still by matching to a database of 3D shapes, e.g., rotating

a car on in a street photo. [12] showed how to use a video

of an actor making facial expressions and moving their head

to create a similar motion in a still photo. Specific to body

shapes, [53] showed that it’s possible to change the body

weight and height from a single image and in a full video

[27]. [26] presented a user-intensive, as-rigid-as-possible

2D animation of a human character in a photo, while ours

is 3D.

For 3D body shape estimation from single photo, [16]

provided the SMPL model which captures diverse body

shapes and proved highly useful for 3D pose and shape es-

timation applications. Further, using deep networks and the

SMPL model, [49, 29, 43, 42] present end-to-end frame-

works for single view body pose and shape estimation. [48]

directly infer a volumetric body shape. [24] finds dense

correspondence between human subjects and UV texture

maps. For multi-view, [37, 20] reconstruct a 3D mesh from

sketches or silhouettes. [11] applied SMPL model fitting

to a video of a subject rotating in front of a static camera,

and is further extended in [10] to improve mesh and tex-

ture quality with shape from shading. Recently, the idea of

parametric model has further been extended from humans

to animals [55, 30].

Most single-image person animation has focused on pri-

marily 2D or pseudo-3D animation (e.g., [26]) while we

aim to provide a fully 3D experience. Most methods for

3D body shape estimation focus on semi-nude body recon-

struction and not necessarily ready for animation, while we

take cloth into account and look for an animatable solution.

The most similar 3D reconstruction work is [11] although

they take a video as input. We compare our results to [26]

and [11] in Sec. 6.

3. Overview

Given a single photo, we propose to animate the human

subject in the photo. The overall system works as follows

(Fig. 2): We first apply state-of-the-art algorithms to per-

form person detection, segmentation, and 2D pose estima-

tion. From the results, we devise a method to construct a

rigged mesh (Section 4). Any 3D motion sequence can then

be used to animate the rigged mesh.

To be more specific, we use Mask R-CNN [25] for per-

son detection and segmentation (implementation by [41]).

2D body pose is estimated using [50], and person segmen-

tation is refined using Dense CRF [35]. Once the person is

segmented out of the photo, we apply PatchMatch [14] to

fill in the regions where the person used to be.

5909



Figure 2: Overview of our method. Given a photo, person detection, 2D pose estimation, and person segmentation, is
performed using off-the-shelf algorithms. Then, A SMPL template model is fit to the 2D pose and projected into the image
as a normal map and a skinning map. The core of our system is: find a mapping between person’s silhouette and the SMPL
silhouette, warp the SMPL normal/skinning maps to the output, and build a depth map by integrating the warped normal
map. This process is repeated to simulate the model’s back view and combine depth and skinning maps to create a complete,
rigged 3D mesh. The mesh is further textured, and animated using motion capture sequences on an inpainted background.
Photo credit: gettyimages

4. Mesh Construction and Rigging

The key technical idea of this paper is how to recover an

animatable, textured 3D mesh from a single photo to fit the

proposed application.

We begin by fitting the SMPL morphable body

model [36] to a photo, including the follow-on method for

fitting a shape in 3D to the 2D skeleton [16]. The recovered

SMPL model provides an excellent starting point, but it is

semi-nude, does not conform to the underlying body shape

of the person and, importantly, does not match the clothed

silhouette of the person.

One way is to force the SMPL model to fit the silhouettes

by optimizing vertex locations on the SMPL mesh, taking

care to respect silhouette boundaries, avoid pinching, and

self-intersection. This is challenging especially around in-

tricate regions such as fingers. This was indeed explored by

[11], and we compare to those results in the experiments.

Instead, we take a 2D approach: warp the SMPL silhou-

ette to match the person silhouette in the original image and

then apply that warp to projected SMPL normal maps and

skinning maps. The resulting normal and skinning maps

can be constructed for both front and (imputed) back views

and then lifted into 3D, along with the fitted 3D skeleton,

to recover a rigged body mesh that exactly agrees with the

silhouettes, ready for animation. The center box in Figure 2

illustrates our approach.

In the following, we describe how we construct a rigged

mesh using 2D warping (Section 4.1), then present how to

handle arm-over-body self-occlusion (Section 4.2).

4.1. Mesh Warping, Rigging, & Skinning

In this section, we describe the process for constructing

a rigged mesh for a subject without self-occlusion.

We start with the 2D pose of the person and the person’s

silhouette mask S. For simplicity, we refer to S both as a

set and as a function, i.e., as the set of all pixels within the

silhouette, and as a binary function S(x) = 1 for pixel x in-

side the silhouette or S(x) = 0 for x outside the silhouette.

To construct a 3D mesh with skeletal rigging, we first fit

a SMPL model to the 2D input pose using the method pro-

posed by [16], which additionally recovers camera parame-

ters. We then project this mesh into the camera view to form

a silhouette mask SSMPL. The projection additionally gives

us a depth map ZSMPL(x), a normal map NSMPL(x) and a

skinning map WSMPL(x) for pixels x ∈ SSMPL. The skin-

ning map is derived from the per-vertex skinning weights

in the SMPL model and is thus vector-valued at each pixel

(one skinning weight per bone).

Guided by SSMPL and the input photo’s silhouette mask

S, we then warp ZSMPL, NSMPL, and WSMPL to construct

an output depth map (at the silhouette only) Z∂S(x ∈ ∂S),
normal map N(x), and skinning map W (x), respectively,

for pixels x ∈ S. N(x) is then integrated to recover the

final depth map Z(x), subject to matching Z∂S(x) at the

silhouette boundary ∂S. More concretely, we solve for a

5910



smooth inverse warp, f(x), such that:

S(x) = SSMPL(f(x)) (1)

and then apply this warp to the depth and skinning maps:

Z∂S(x ∈ ∂S) = ZSMPL(f(x)) (2)

N(x) = NSMPL(f(x)) (3)

Z(x) = Integrate[N ;Z∂S ] (4)

W (x) = WSMPL(f(x)) (5)

We experimented with setting Z(x) = ZSMPL(f(x)),
but the resulting meshes were usually too flat in the z di-

rection (See Fig. 3b). The warping procedure typically

stretches the geometry in the plane (the SMPL model is usu-

ally thinner than the clothed subject, often thinner than even

the unclothed subject), without similarly stretching (typi-

cally inflating) the depth. We address this problem by in-

stead warping the normals to arrive at N(x) and then in-

tegrating them to produce Z(x). In particular, following

[15], we solve a sparse linear system to produce a Z(x)
that agrees closely with the warped normals N(x) subject

to the boundary constraint that Z(x) = Z∂S(x) for pixels

x ∈ ∂S. Fig. 3 shows the difference between the two meth-

ods we experimented with.

Figure 3: Comparison of different depth map constructions,

after stitching front and back depth maps together (Sec-

tion 4.1.3). Given (a) a reference SMPL model, we can

reconstruct a mesh (b) by warping the SMPL depth maps or

(c) by warping the SMPL normal maps and then integrat-

ing. Notice the flattening evident in (b), particularly around

the head.

To construct the inverse warp, f(x), many smooth warp-

ing functions are possible; we choose one based on mean-

value coordinates [23] because it is well defined over the

entire plane for arbitrary planar polygons without self-

intersections, which fits our cases very well. In particu-

lar, given the ordered set of points (vertices) on the closed

polygonal boundary of the input silhouette, pi ∈ ∂S =
(p0, p1, . . . , pm−1), we can represent any point inside of S
as:

x =

m−1
∑

i=0

λi(x)pi (6)

where (λ0(x), λ1(x), . . . , λm−1(x)) are the mean-value co-

ordinates of any x ∈ S with respect to the boundary vertices

pi.
Suppose we have a correspondence function φ that iden-

tifies pi on the input silhouette boundary ∂S with points

on the SMPL silhouette boundary pSMPL
i ∈ ∂SSMPL =

(pSMPL
0 , pSMPL

1 , . . . , pSMPL
n−1 ):

pi → pSMPL
φ[i] . (7)

Then, using the same mean-value coordinates from Eq. 6,

we define the warp function to be:

f(x) =

m−1
∑

i=0

λi(x)p
SMPL
φ[i] . (8)

Next, we describe how we compute the correspondence

function φ, fill holes in the normal and skinning maps, and

then construct a complete mesh with texture.

4.1.1 Boundary matching

We now seek a mapping φ that provides correspondence

between points pi ∈ ∂S and points pSMPL
j ∈ ∂SSMPL. We

would like each point pi to be close to its corresponding

point pSMPL
φ[i] , and, to encourage smoothness, we would like

the mapping to be monotonic without large jumps in the

indexing. To this end, we solve for φ[i] to satisfy:

argmin
φ[0],...,φ[m−1]

m−1
∑

i=0

D(pi, p
SMPL
φ[i] ) + T (φ[i], φ([i+ 1]))

(9)

where

D(pi, p
SMPL
φ[i] ) = ‖pi − pSMPL

φ[i] ‖2 (10)

and

T (φ[i], φ[i+ 1]) =

{

1, if 0 ≤ φ[i+ 1]− φ[i] ≤ κ

∞, otherwise

(11)

D(pi, p
SMPL
φ[i] ) is designed to encourage closeness of corre-

sponding points, and T (φ[i], φ[i+ 1]) avoids generating an

out-of-order sequence with big jumps. Because we are in-

dexing over closed polygons, we actually use φ[i%m]%n in

the objective. With κ = 32, we solve for φ with dynamic

programming.

4.1.2 Hole-filling

In practice, holes may arise when warping by f(x), i.e.,

small regions in which f(x) /∈ SSMPL, due to non-bijective

mapping between ∂S and ∂SSMPL. We smoothly fill these

holes in the warped normal and skinning weight maps.

Please refer to the supplemental material for more detail and

illustration of the results of this step.

5911



4.1.3 Constructing the complete mesh

The method described so far recovers depth and skinning

maps for the front of a person. To recover the back of the

person, we virtually render back view of the fitted SMPL

model, mirror the person mask, and then apply the warping

method described previously.

We reconstruct front and back meshes in the standard

way: back-project depths into 3D and construct two trian-

gles for each 2x2 neighborhood. We assign corresponding

skinning weights to each vertex. Stitching the front and

back meshes together is straightforward as they correspond

at the boundary. Fig. 4 illustrates the front and back meshes

and the stitched model.

Figure 4: Reconstructed mesh results. We reconstruct the

front mesh (a) and the back mesh (c) separately and then

combine them into one mesh, viewed from the side in (b).

4.2. Self­occlusion

When the subject self-occludes – one body part over an-

other – reconstructing a single depth map (e.g., for the front)

from a binary silhouette will not be sufficient. To handle

self-occlusion, we segment the body into parts via body la-

bel map, complete the partially occluded segments, and then

reconstruct each part using the method described in Sec-

tion 4.1. Fig. 5 illustrates our approach.

We focus on self-occlusion when the arms partially cross

other body parts such that the covered parts are each still a

single connected component. Our method does not han-

dle all self-occlusion scenarios, but does significantly ex-

tend the operating range and show a path toward handling

more cases.

4.2.1 Body label map

The projected SMPL model provides a reference body label

map LSMPL that does not conform closely to the image. We

use this label map to construct a final label map L in two

stages: (1) estimate an initial label map Linit for each pixel

x ∈ S to be as similar as possible to LSMPL, then (2) refine

Linit at occlusion boundaries where the label discontinuities

should coincide with edges in the input image.

Initial Body Labeling. We solve for the initial (rough)

body label map Linit by minimizing a Markov Random

Field (MRF) objective:

min
Linit

∑

p∈S

U(Linit(p)) + γ
∑

p∈S,q∈N (p)∩S

V (Linit(p), Linit(q)) (12)

where

U(Linit(p)) = min
r|LSMPL(r)=L(p)

‖p− r‖2 (13)

V (Linit(p), Linit(q)) =

{

1 if Linit(p) 6= Linit(q)

0 otherwise

(14)

N (p) is the 8-neighborhood of p. U(.) scores a label ac-

cording to the distance to the nearest point in LSMPL with

the same label, thus encouraging Linit to be similar in shape

to LSMPL, while V (.) encourages spatially coherent labels.

We use α-expansion [17] to approximately solve for

Linit, with γ = 16. Fig. 5(b) illustrates the initial label

map produced by this step.

Refined Body Labeling. Next, we refine the body label

map to more cleanly separate occlusion boundaries.

Occlusion boundaries occur when two pixels with dif-

ferent part labels are neighbors in the image, but are not

neighbors on the 3D body surface. To identify these

pixels, we first compute warp functions fℓ that map

each body part Linit = ℓ to the corresponding body

part LSMPL = ℓ, using the mean-value coordinate ap-

proach described in Section 4.1, performed part-by-part.

Then, along the boundaries of arm parts of Linit, for

each pair of neighboring pixels (p, q) with different la-

bels, we determine the corresponding projected SMPL loca-

tions (fLinit(p)(p), fLinit(q)(q)), back-project them onto the

SMPL mesh, and check if they are near each other on the

surface. If not, these pixels are identified as occlusion pix-

els. Finally, we dilate around these occlusion pixels to gen-

erate an occlusion mask O. The result is shown in Fig. 5(c).

We now refine the labels within O to better follow color

discontinuities in the image I , giving us the final body label

map L. For this, we define another MRF:

min
L

∑

p∈O

U(L(p)) + γ
∑

p∈O,q∈N (p)

V (L(p), L(q)) (15)

where

U(L(p)) = − log(GMM(L(p), I(p))) (16)

V (L(p), L(q)) = C(L(p), L(q))e−β‖I(p)−I(q)‖2

(17)

C(L(p), L(q)) =

{

1/‖p− q‖ if L(p) 6= L(q)

0 otherwise
(18)

5912












