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Abstract

Though deep learning techniques have made great

progress in salient object detection recently, the predicted

saliency maps still suffer from incomplete predictions due

to the internal complexity of objects and inaccurate bound-

aries caused by strides in convolution and pooling opera-

tions. To alleviate these issues, we propose to train saliency

detection networks by exploiting the supervision from not

only salient object detection, but also foreground contour

detection and edge detection. First, we leverage salient ob-

ject detection and foreground contour detection tasks in an

intertwined manner to generate saliency maps with uniform

highlight. Second, the foreground contour and edge detec-

tion tasks guide each other simultaneously, thereby leading

to precise foreground contour prediction and reducing the

local noises for edge prediction. In addition, we develop a

novel mutual learning module (MLM) which serves as the

building block of our method. Each MLM consists of multi-

ple network branches trained in a mutual learning manner,

which improves the performance by a large margin. Exten-

sive experiments on seven challenging datasets demonstrate

that the proposed method has delivered state-of-the-art re-

sults in both salient object detection and edge detection.

1. Introduction

Salient object detection aims to segment the most dis-

tinctive object regions in a given image, acting as an impor-

tant pre-processing step for various vision tasks, including

image captioning [8], visual tracking [3], visual question

answering [15], and person re-identification [35].

By integrating multi-scale features, previous deep learn-

ing based methods [32, 10, 16, 22] are capable of detecting

the salient objects from a global and coarse view. Though

good performance has been achieved, they still suffer from
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Figure 1. Visual comparison of different CNN based methods.

(a) E (b) E-gt (c) S (d) S-gt (e) FC-gt

Figure 2. The examples of our two inputs and three supervisions.

E and E-gt are collected from edge detection dataset. S and S-gt

are collected from salient object detection dataset, and FC-gt is the

foreground contour extracted from S-gt.

two major drawbacks shown in Figure 1: 1) the entire

salient objects can hardly be uniformly highlighted due to

their complex internal structures; 2) the predictions around

object contours are inaccurate due to the information loss

caused by strided convolution and pooling operations.

To address the above-mentioned issues, we present a new

training strategy and a network design which simultane-

ously leverage three tasks, including salient object detec-

tion, foreground contour detection and edge detection. We

feed two images into our network, one for salient object

detection and another for edge detection, with three kinds

of corresponding supervisions. The two input images are

collected from salient object detection and edge detection

data-sets respectively. For description convenience, we use

E and E-gt to denote the input image and ground truth from

the dataset for edge detection, and S and S-gt for the input

image and ground truth for salient object detection. Ad-

8150



ditionally, the foreground contour ground truth, denoted as

FC-gt, is extracted by the Canny [19] operator on the salient

object masks (S-gt). The two input images and three super-

visions are shown in Figure 2.

First, to generate the saliency maps entirely with uni-

form highlight, we employ salient object detection and fore-

ground contour detection in an intertwined manner. These

two tasks are highly correlated since both demanding ac-

curate foreground detection. Nevertheless, they are also

different from each other in the scenes that saliency detec-

tion involves dense labeling (i.e., “filling” the internal of

object regions) and is more likely to be affected by the in-

ternal complexity of salient objects, giving rise to uneven

foreground highlight. In contrast, the foreground contour

can be “extracted” based on low-level cues, such as edges

and textures, given the rough location of foreground objects.

Therefore, the contour detection task is more robust to ob-

jects’ internal structures, but may be misled by rich edge

informations around object contours.

In the proposed intertwined strategy, the two tasks are

interlaced at different blocks of the network, forcing the

network to learn “filling” and “extracting” the foreground

contour alternatively. As a consequence, the network can

benefit from the strengths of both tasks and overcome their

defects, leading to more entirely highlighted salient regions.

Second, to alleviate the blur boundary issue in the pre-

dicted saliency maps, we propose to improve foreground

contour detection with auxiliary supervision from edge de-

tection task. To this end, an edge module is designed and

jointly trained with our backbone network. Since the edge

module takes as input the saliency features from our back-

bone network, the semantic information encoded in these

features can effectively suppress noisy local edges. Mean-

while, the edge features extracted by the edge module serve

as additional input to foreground contour detection, ensur-

ing more accurate detection results with low-level cues.

Third, to further improve performance, we propose a

novel Mutual Learning Module (MLM) inspired by the suc-

cess of Deep Mutual Learning (DML) [34]. A MLM is

built on top of each block of our backbone network and

comprises of multiple subnetworks which are trained in the

peer-teaching strategy by a mimicry loss, yielding an addi-

tional performance gain.

Our main contributions can be summarized as follows.

• We propose to train deep networks for saliency detec-

tion using multi-task intertwined supervision, where

foreground contour detection is effectively leveraged

to render accurate saliency detection.

• We employ the foreground contour detection and edge

detection task to guide each other to generate more ac-

curate foreground contour and reduce the noise in edge

detection simultaneously.

• We design a novel network architecture named Mutual

Learning Module, which can better leverage the cor-

relation of multiple tasks and significantly improves

saliency detection accuracy.

We compare our method with 15 state-of-the-art salient

object detection on 7 challenging datasets and 6 popular

edge detection methods on BSD500 [1]. The results show

that the proposed algorithm performs much better than other

competing saliency models, meanwhile, it achieves compa-

rable edge detection performance with much faster speed.

2. Related Work

Effectively utilizing spatial details and semantic infor-

mation is a crucial factor in achieving the state-of-the-art

performance on salient object detection. Most existing

methods use skip-connection or recurrent architecture to in-

tegrate hierarchical features from convolution Neural Net-

works (CNNs). They can roughly detect the targets but can-

not uniformly highlight the entire objects, and also suffer

from the blur boundary. To generate clear boundaries, some

methods attempt to introduce extra edge information to the

saliency network.

2.1. Integrating Hierarchical Features

2.1.1 Skip-connection

In HED [27], the authors propose to build skip-connections

to exploit multi-scale deep features for edge detection. The

edge detection is an easier task since it does not rely too

much on high-level information. On the contrary, the salient

object detection is in great need of semantic features. Thus

directly introducing skip-connections into salient object de-

tection is unsatisfactory. A promoted version called short-

connections, proposed in DSS [10], resolves this issue by

linking the deeper layers towards shallower ones and skip-

ping the middle ones. Another work by SRM [23] proposes

a stage-wise refinement model and a pyramid pooling mod-

ule to integrate both local and global context information

for saliency prediction. In this way, the multi-scale feature

maps can assist to locate salient targets and recover local

details more effectively.

2.1.2 Recurrent Architecture

A Recurrent Fully convolution Network (RFCN) [22] is

proposed to incorporate saliency prior knowledge for more

accurate inference. It can refine the saliency map by rem-

edying its previous errors through the recurrent architec-

ture. A recurrent convolution layer (RCL) is introduced in

DHS [16] to progressively recover image details of saliency

maps through integrating local context information.
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LDec =
4∑

i=0

rideclbce(D
i, Ŝ) (7)

where the ridec are set as 0.5 except the r4dec is set as 1.

3.3.2 Training Steps

We alternatively train our encoder and decoder networks

and the training steps are as follows,

Step.1 We first train the encoder network, i.e. the back-

bone network with MLMs and EMs, with LEnc.

Step.2 We fix the encoder and feed features in MLMs

into the decoder network then train the decoder network

alone with LDec.

Step.3 After training the decoder, we then fix the decoder

and fine-tune the encoder using the supervision of decoder,

i.e. LDec, to optimize the parameters of encoder.

We repeat the steps above iteratively, and in each training

step we stay for 10 epochs before switch to the next.

4. Experiments

4.1. Datasets

For the saliency detection task, we use the training set

of DUTS [21] and evaluate our algorithm on the the test set

of the dataset and other six popular datasets, ECSSD [28],

DUT- OMRON [29], SOD [18], and HKU-IS [12]. DUTS

is the biggest released dataset containing 10,553 images for

training and 5,019 images for testing. Both training and test

sets contain very complex scenarios with high content va-

riety. ECSSD contains 1,000 natural and complex images

with pixel-accurate ground truth annotations. The images

are manually selected from the Internet. DUT-OMRON has

more challenging images with 5,168 images. All images

are resized so as to the maximal dimension is 400 pixels

long. SOD has 300 images contained multiple, low-contrast

objects. HKU-IS has 4,447 images which are selected by

meeting at least one of the following three criteria, i.e. mul-

tiple salient objects with overlapping, objects touching the

image boundary and low color contrast. PASCAL-S dataset

is part of the PASCAL VOC [6] dataset and contains 850

image. SOC dataset is a latest dataset which contains 6000

images including 3000 images with salient objects and 3000

images with non-salient objects from more than 80 daily ob-

ject categories, besides, these salient objects have challeng-

ing attributes such as motion blur, occlusion and cluttered

background. We only use the valid set for testing to evalu-

ate the robustness of our method.

Regarding the edge detection task, we use BSD500 [1]

to train and test. The BSD500 dataset contains 200 training,

100 validation and 200 test images.

4.2. Implementation Details

All experiments are conducted using a single Nvidia

GTX TITAN X GPU. A pretrained VGG-16 model is used

to initialize the convolution layers in the backbone net-

work. The parameters in other convolution layers are ran-

domly initialized. All training and test images are resized

to 256×256 before being fed into the network. We use the

‘Adam’ method with the weight decay 0.005. The learn-

ing rate is set to 0.0004 for the encoder and 0.0001 for

the decoder. Our source codes are available on the web-

site: https://github.com/JosephineRabbit/

MLMSNet.

4.3. Evaluation Metrics

For the salient object detection task, we use four ef-

fective metrics to evaluate the performance, including the

precision-recall curves, F-measure, Mean Absolute Er-

ror [2] and S-measure [7]. We first compute pairs of preci-

sion and recall values by thresholding the predicted saliency

map for the use of plotting PR curves. Besides, F-measure

value is used as another metric, which is computed on ev-

ery binarized saliency map and is averaged on the whole

dataset. The threshold is determined to be twice the mean

saliency value. The S-measure is calculated by a region-

aware structural similarity Sr and a object-aware structural

similarity So: Sm = α∗So+(1−α)∗Sr where α ∈ [0, 1].
We set α = 0.5 as recommended in [7].

As for the edge detection task, we evaluate the edge

probability map using F-measure of both Optimal Dataset

Scale (ODS) and Optimal Image Scale (OIS).

4.4. Performance Comparison

We compare our method with 14 state-of-the-art saliency

detection methods, including BMPM [31], DGRL [24],

PAGR [33], RAS [4], PiCANet [17], R3Net [5],

MSRNet[11], SRM [23], Amulet [32], DSS [10], DHS [16],

DCL [13], RFCN [22] and DS [14]. We compare our edge

detection results with some popular algorithms in Table 2

such as gPb-UCM [1] as HED [27]. When evaluating for

edge detection, only the first three blocks of our backbone

network and corresponding EMs are utilized. Therefore,

our edge detection network is a relative simple and tiny

architecture compared with other edge detection models.

Quantitative Evaluation. For the saliency detection task,

we compare the proposed method with the others in terms of

MAE scores, mean F-measure scores and S-measure scores,

which are shown in Table 1. The proposed method performs

favorably against other counterparts among all datasets over

these evaluation metrics.

As for the edge detection task, the results are illustrated

in Table 2. Our edge detection network achieves around

3× faster than other methods due to its lightweight, and

achieves a comparable accuracy.
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Table 1. Quantitative evaluations. The best three scores are shown in red, green and black, respectively.

DUTS PASCAL-S ECSSD SOD HKU-IS OMRON

Fβ MAE Sm Fβ MAE Sm Fβ MAE Sm Fβ MAE Sm Fβ MAE Sm Fβ MAE Sm

Ours 0.802 0.045 0.856 0.838 0.069 0.849 0.914 0.038 0.911 0.811 0.106 0.780 0.893 0.034 0.901 0.742 0.056 0.817

BMPM 0.751 0.049 0.861 0.769 0.074 0.845 0.869 0.045 0.911 0.763 0.107 0.787 0.871 0.039 0.907 0.692 0.064 0.809

DGRL 0.768 0.050 0.841 0.825 0.072 0.836 0.903 0.041 0.903 0.799 0.104 0.771 0.890 0.036 0.895 0.733 0.062 0.806

PAGR 0.788 0.056 0.837 0.807 0.093 0.818 0.894 0.061 0.889 - - - 0.886 0.048 0.887 0.711 0.071 0.805

RAS 0.755 0.060 0.839 0.785 0.104 0.795 0.889 0.056 0.893 0.799 0.124 0.764 0.871 0.045 0.887 0.713 0.062 0.814

PiCANet 0.755 0.054 0.861 0.801 0.077 0.850 0.884 0.047 0.914 0.791 0.102 0.791 0.870 0.042 0.906 0.713 0.062 0.814

R3Net 0.802 0.045 0.829 0.807 0.097 0.800 0.917 0.046 0.900 0.789 0.136 0.732 0.905 0.038 0.891 0.756 0.061 0.815

MSRNet 0.708 0.061 0.840 0.744 0.081 0.840 0.839 0.054 0.896 0.741 0.113 0.779 0.868 0.036 0.912 0.676 0.073 0.808

SRM 0.757 0.059 0.834 0.801 0.085 0.832 0.892 0.054 0.895 0.800 0.127 0.742 0.874 0.046 0.887 0.707 0.069 0.797

Amulet 0.676 0.085 0.803 0.768 0.098 0.820 0.870 0.059 0.894 0.755 0.141 0.758 0.839 0.054 0.883 0.647 0.098 0.780

DSS 0.724 0.067 0.817 0.804 0.796 0.797 0.901 0.052 0.882 0.795 0.121 0.751 0.895 0.041 0.879 0.729 0.066 788

DHS 0.724 0.067 0.817 0.779 0.094 807 0.872 0.059 0.884 0.774 0.128 0.750 0.855 0.053 0.870 - - -

DCL 0.714 0.149 0.735 0.714 0.125 0.754 0.829 0.088 0.828 0.741 0.141 0.735 0.853 0.072 0.819 0.684 0.097 0.713

RFCN 0.712 0.091 0.792 0.751 0.118 0.808 0.834 0.107 0.852 0.751 0.170 0.730 0.835 0.079 0.858 0.627 0.111 0.774

DS 0.633 0.090 0.793 0.669 0.176 0.739 0.826 0.122 0.821 0.698 0.190 0.712 0.788 0.080 0.852 0.603 120 750

Table 2. The comparison of edge results with some wide-used

methods on BSDS500 dataset. † means GPU time. The leading

results are shown in bold.
Method ODS OIS FPS

gPb-UCM [1] .729 .755 1/240

HED [27] .788 .808 30†

Ours(baseline) .736 .751 102
†

Ours(joint learning) .769 .780 102
†

Table 3. Ablation analysis of each component. The best results are

shown in bold.

DUTS PASCAL-S ECSSD

Fβ MAE Fβ MAE Fβ MAE

Baseline 0.695 0.073 0.774 0.092 0.861 0.062

MLM 0.714 0.066 0.809 0.083 0.866 0.049

MLM + FC 0.790 0.046 0.827 0.071 0.909 0.038

MLM + FC + EM 0.802 0.045 0.838 0.069 0.914 0.038

FC + EM 0.789 0.049 0.781 0.077 0.902 0.043

Visual Comparison. We visualize some example saliency

maps of our method in Figure 7. From which we can see

that our method can produce more accurate results with

clear boundary and entire uniform highlight.

4.5. Ablation Study

4.5.1 Saliency Detection

First, to demonstrate the impact of MLMs and EMs and the

power of the intertwined supervision strategy, we train four

models for comparison as follows: (1) baseline: a network

with simple encoder-decoder architecture as proposed using

only S-gt for supervision, and removes the EMs and redun-

dant student branches in MLMs; and (2) +MLM: adding

three student branches in each MLM; and (3) +FC: apply-

ing S-gt and FC-gt for supervision in intertwined manner;

and (4) +EM: the proposed whole network with S-gt and

FC-gt for supervision in intertwined manner and employing

the EM for edge detection simultaneously. The comparision

is conducted across three datasets (DUTS, PASCAL-S, EC-

SSD) and the results are shown in Table 3. We can observe

that our intertwined supervision strategy (+FC) contributes

most to the overall performance.

In addition, we calculate the average score of the high-

light pixel in saliency maps (ASHP). Given a saliency map

Ŝ, the ASHP could be given as:

ASHP (Ŝ) =
1

Ns

W∑

x=1

H∑

y=1

|Ŝ(x, y)|, (8)

where Ns is the number of pixels which satisfies Ŝ(x, y) >
0. Moreover, we calculate the accuracy of foreground con-

tour predictions (AFCP). Given a foreground contour pre-

diction map F , the AFCP can be calculated by

AFCP =
Nc

Nf

, (9)

where Nc is the numbers of pixels which satisfy |F (x, y)−
Ŝ(x, y)| < 60 and Ŝ(x, y) > 200, and Nf is the numbers

of pixels which satisfy Ŝ(x, y) > 200.

From the results in Figure 8, we can observe (1) the

MLMs could improve the low accurracy of baseline model

into a competitive scale; (2) the higher ASHP of +FC
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Image GT OURS DGRL SRM Amulet

Figure 7. Performance comparison of the proposed method with

the latest state-of-the-art methods. The rows 1 ∼2 show the com-

parison in edge complicated objects. The rows 3 ∼4 show the

comparison in multiple objects. The rows 5 ∼6 show the compar-

ison in small objects.

Table 4. The cost of MLM with three student sub-networks. The

Original stands for our baseline network with FC and EMs and the

training time is the time cost per epoch in DUTS training dataset.

Cost Original +MLM

Training time 1334.548s 1897.216s

Test time 13fps 13fps

GPU memory 7775M 7984M

(a) (b)

Figure 8. Ablation Study on Saliency Detection Task and Fore-

ground Contour Detection Task. (a) shows the comparison in

ASHP and (b) shows the comparison in AFCP.

demonstrates that the intertwined supervision contributes to

generating predictions with uniform highlight; and (3) the

improvement in AFCP of +EM illustrates that the EMs ben-

efit to generating more accurate foreground contour.

Second, we test the time and GPU cost brought by the

MLMs, which consists of three sub-network in our experi-

ments. The results are shown in Table 4. We can observe

that the MLMs cost a little resources.

(a) Input (b) GT (c) EM+MLM (d) EM Only

Figure 9. Ablation Study on Edge Detection Task. (a) and (b) are

test images and labels from BSD500 and (c) shows the results by

jointly learning EM and MLM (EM+MLM). (d) shows the results

with EM only.

4.5.2 Edge Detection

To investigate the effectiveness of the joint learning method

for edge detection, we evaluate the overall performance

between using edge-only supervision and training with

saliency tasks. The compared results are shown in Figure 9

and Table 2. We can find that the edge detection network en-

ables to capture better semantic information by joint learn-

ing with saliency tasks. This strategy suppresses the noises

of redundant local details and brings significant improve-

ment on the edge performance.

5. Conclusion

In this paper, we propose a multi-task algorithm for

salient object detection, foreground contour detection and

edge detection. We employ an intertwined supervision strat-

egy for salient object detection and foreground contour de-

tection, which encourages the network to produce high pre-

dicted score on the entire target objects. What’s more, we

utilize edge detection and saliency detection to guide each

other and both tasks gain benefits. In addition, we propose

a mutual learning module (MLM) to allow the network pa-

rameters to converge to a better local minimal thereby im-

proving the performance.

In this way, our model is capable to generate predictions

with uniform highlighted region inside the salient objects

and accurate boundaries. The experiments demonstrate

that these mechanisms can result in more accurate saliency

maps over a variety of images, in the meanwhile, our model

is capable of detecting the satisfactory edges much faster.
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