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Abstract

To fight against real-life image forgery, which commonly

involves different types and combined manipulations, we

propose a unified deep neural architecture called ManTra-

Net. Unlike many existing solutions, ManTra-Net is an

end-to-end network that performs both detection and lo-

calization without extra preprocessing and postprocessing.

ManTra-Net is a fully convolutional network and handles

images of arbitrary sizes and many known forgery types

such splicing, copy-move, removal, enhancement, and even

unknown types. This paper has three salient contributions.

We design a simple yet effective self-supervised learning

task to learn robust image manipulation traces from clas-

sifying 385 image manipulation types. Further, we formu-

late the forgery localization problem as a local anomaly

detection problem, design a Z-score feature to capture lo-

cal anomaly, and propose a novel long short-term memory

solution to assess local anomalies. Finally, we carefully

conduct ablation experiments to systematically optimize the

proposed network design. Our extensive experimental re-

sults demonstrate the generalizability, robustness and supe-

riority of ManTra-Net, not only in single types of manipula-

tions/forgeries, but also in their complicated combinations.

1. Introduction

Image forgery has recently become an epidemic, nega-

tively affecting many aspects of our life, e.g., fake news,

Internet rumors, insurance fraud, blackmail, and even aca-

demic publications [51]. Yet, most cases of image forg-

eries are not detected. Just in biomedical research publi-

cations alone, 3.8% of 20,621 papers (published in 40 sci-

entific journals from 1995 to 2004) contained problematic

figures, with at least half exhibiting features suggestive of

This work was done prior to Amazon involvement of the authors.

(a)

(b)

(c)

(d)

Figure 1. Win the Photoshop battle [27] using ManTra-Net, which

is capable of localize various complicated real-life forgeries.

Columns from left to right are: pristine donor image, forged image

(also the input of ManTra-Net), and the ManTra-Net’s prediction.

deliberate manipulation [12]. In 2014, Stern et al. [41] esti-

mate that each of the retracted articles could account for a

mean of $392,582 in direct costs, implying much higher in-

direct costs caused by misled research—and this is only in

the biomedical field and these numbers are five years out-

dated. It is therefore imperative to develop new algorithms

to assist in the fight against image manipulation and forgery.

Many image forgery techniques exist. However, splic-

ing [19, 44, 28], copy-move [18, 43, 37, 46, 45], re-

moval [58], and enhancement [9, 10, 17] are the four that

have been studied the most. Both splicing and copy-move

involve pasting image content to the target (i.e., forged)
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image. However, in splicing the added content is ob-

tained from a different image, while in copy-move it is

from the target image. Removal, also known as inpaint-

ing, removes a selected image region (e.g. hiding an object)

and fills the space with new pixel values estimated from

background. Finally, image enhancement is a wide col-

lection of local manipulations, such as sharpening, bright-

ness adjustment, etc. Depending on the characteristics of

the forgery, different clues can be used as the foundation

for detection/localization. These clues include JPEG com-

pression artifacts [25, 30, 5], edge inconsistencies [39, 53],

noise pattern [33, 49, 20], color consistency [21], visual

similarity [44, 45, 46], EXIF consistency [28], and cam-

era model [14, 13]. However, real-life forgeries are more

complex, as illustrated in Fig. 1, and malicious forgers of-

ten use a sequence of manipulations to hide the forgery, in-

cluding up-to-date techniques such as deep neural network-

based (DNN) face swapping [36, 57], as shown in Fig. 1-(c).

This compels us to develop new unified forgery detection

techniques that are not limited to one or several known ma-

nipulation types but capable of handling more complicated

and/or unknown types.

Another issue that has often been overlooked is forgery

region localization. Most of the existing methods [9,

25, 37, 38, 49] only focus on image-level detection—

whether or not an image is forged. Furthermore, methods

that provide localization capabilities often rely on heavy,

time-consuming pre- and/or post-processing, e.g., patch

extraction [53], expectation-maximization [19, 20], fea-

ture clustering [14, 11, 32, 28], segmentation [32, 28, 15],

etc. Finally, the disconnection between feature learning

and forgery mask generation suggest an under-optimized

forgery detection and localization method.

In this paper, we address the above issues, and propose

a novel solution called ManTra-Net for generalized image

forgery localization/detection (IFLD). It detects forged pix-

els by identifying local anomalous features, and thus is not

limited to a specific forgery or manipulation type. It is an

end-to-end solution, and thus no need to apply pre- and/or

post-processing. It is also composed of all trainable mod-

ules, and thus all modules can be jointly optimized towards

to the IFLD task. The remainder of this paper is organized

as follows. Sec. 2 discusses the related works and gives the

ManTra-Net overview. Sec. 3 presents our study to obtain

robust image manipulation-trace features. Sec. 4 proposes

our local anomaly detection network. Sec. 5 shows our ex-

perimental results; and we conclude this paper in Sec. 6.

2. Manipulation Tracing Network

2.1. Related Works

Table 1 summarizes the most notable image forgery de-

tection and localization work in the last four years. Several

Method Clue/Feature DNN Type Localize? PP? Target Forgery

2
0
1
5

[33] Noise pattern N/a Patch-Lv Y

[18] Patch co-occur. N/a Pixel-Lv Y

[16] Pixel residual DNN – –

[21] Color consistency N/a Patch-Lv Y

2
0
1
6 [9] Artifacts AlexNet – – 4

[25] DCT correlation N/a – –

[37] Pixel residual DNN – –

2
0
1
7

[5] DCT Artifacts DNN N/a N/a 1

[17] Artifacts VGG Patch-Lv N 7

[30] DCT correlation N/a – –

[39] Edge consistency MulitTaskFCN Pixel-Lv N

[44] Similarity VGG + FCN Pixel-Lv N

[54] Artifact 2Br-DNN Patch-Lv N 1

2
0
1
8

[8] DNN implicit CNN – – 1

[28] EXIF-Consistency SiameseNet Pixel-Lv Y

[35] Camera model DNN Patch-Lv Y

[42] Pixel co-occurr. CNN – – 1

[46] Patch co-occurr. CNN Pixel-Lv N

[55] Artifacts+Noise FastRCNN Region-Lv N

[58] DNN implicit FCN Pixel-Lv N

Ours Anomalous feature FCN Pixel-Lv N

Table 1. Summary of recent IFLD methods. Non-DNN methods

are labeled as N/a. Detection only methods are labeled as –. PP

stands for pre-/post-processing, and target forgery types are color

coded as follows: splicing, copy-move, removal, and K K-

type enhancement.

trends can be observed — (1) varieties of clue/feature are

used, ranging from handcrafted features, such as DCT cor-

relation to completely implicit learned DNN features, (2)

even though DNN methods are becoming more popular, no

dominant DNN architecture, or more precisely, almost not

any two DNN approaches, adopt the same network archi-

tecture, and (3) most methods focus on one specific type of

forgery. A more comprehensive review can be found in [6].

2.2. Overview

As shown in Fig. 2, the proposed ManTra-Net solu-

tion is composed of two sub-networks, i.e., the image

manipulation-trace feature extractor that creates a unified

feature representation, and the local anomaly detection net-

work (LADN) for directly localizing forgery regions with-

out postprocessing. We make three major contributions to

the IFLD community.

First, we reinvent the image manipulation trace feature,

which was limited to differentiate a small number of known

manipulations [17, 5], but is now capable to distinguish 385

types of known manipulations, and is robust to encode ma-

nipulations of unknown types, even for those DNN-based

manipulations (e.g. deep image inpainting) and sequential

manipulations (e.g. enhancement, resizing, and compres-

sion in a row.) We demonstrate that this feature is suitable

to IFLD tasks and that it can be effectively and efficiently

learned from the self-supervised learning task – image ma-

nipulation classification (IMC).

Second, we abandon the common semantic segmenta-
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Figure 2. The overview of the proposed ManTra-Net architecture for the image forgery localization and detection task. Detailed discussions

of the two sub-nets, i.e. image manipulation tracing feature extractor and local anomaly detection network, can be found in Sec. 3 and Sec. 4,

respectively. A layer is color framed if additional non-linear activation is applied.

tion like IFLD formulations [58, 56, 39], but formulate the

IFLD task as a local anomaly detection problem to improve

the model generalizability. More precisely, we want to learn

a decision function mapping from the difference between a

local feature and its reference to its forgery label. To ful-

fill this goal, we invent a simple yet effective LADN archi-

tecture that mimics the human decision process by using

two novel designs: (1) ZPool2D DNN layer, which stan-

dardizes the difference between a local feature and its refer-

ence in the Z-score manner; and (2) the far-to-near analysis,

which performs the Conv2DLSTM sequential analysis on

ZPool2D feature maps pooled from different resolutions.

Finally, we carefully conduct ablation experiments to

systematically optimize both the IMC and LADN architec-

tures, and provide theoretical groundings and/or experimen-

tal results to support our network designs.

2.3. Experimental Setup

To systematically study manipulation trace feature and

anomaly detection, we use the following common setup for

all ablation experiments, unless otherwise specified.

For manipulation trace feature, we use the Dresden

Image Database [24] for pristine base images. Training,

validation, and testing are divided with respect to image

IDs with the ratio of 8:1:1. Each image is further broken

into 256×256 patches. After rejecting patches with high ho-

mogeneity (i.e., intensity deviation < 32), we have 1.25M

patches in total. We synthesize a sample for image manip-

ulation classification by: (1) selecting a random patch P
and a random manipulation y(·), both in a uniform random

manner, (2) applying manipulation y to P , and 3) cropping

a random 128×128 region in y(P ) as X . This (X, y) pair

is a sample of input and output for the classification task.

The Kaggle Camera Model Identification (KCMI)

dataset [4] is used to check the generalizability and sensitiv-

ity of a manipulation classification network. It contains 10

camera models with 2475 samples. To evaluate KCMI per-

formance, we randomly divide the dataset into two halves—

one half to fit a (K=7) nearest-neighbor classifier, and the

other half to test. The camera model feature is obtained by

averaging over all manipulation trace features in the center

512×512 patch of a given image.

For anomaly detection, we use four synthetic datasets

for training and validation — namely the splicing dataset

from [44], the copy-move dataset from [45], the removal

dataset synthesized by using built-in OpenCV inpainting

function (with Dresden base images), and the enhancement

dataset synthesized by using manipulation classification set-

tings discussed previously. More precisely, we synthesize

an enhanced sample by (1) introducing a random structured

binary mask M (see [31]), (2) composing a forged image

by using Z=P · (1−M)+y(P ) ·M , where P and y(·) are a

pristine patch and a random manipulation, respectively. The

resulting (Z,M) pair is a sample of input and output for an

LADN task. Training patch size is set to 256×256.

In terms of training settings, we set batch size to 64

and 1000 batches per epoch, and use the Adam optimizer

with the initial learning rate of 1e-4 but without decay. This

learning rate will be halved if validation loss fails to im-

prove for 20 epochs. The image manipulation classifica-

tion and anomaly detection tasks are optimized towards the

cross-entropy loss.

3. Manipulation-Trace Feature

In this section, we study the image manipulation trace

feature extractor (see the yellow shaded block in Fig. 2) via

the image manipulation classification problem. Although

image manipulation trace feature have been previously used

for forgery detection and localization purposes for a long

time, the total number of image manipulations was usually

below 10 — e.g., [17, 5] use 7 and 9 types, respectively.

Such few types of manipulations is clearly inadequate for a

unified feature representation. We therefore systematically

study manipulations with more types and finer differences,

with 385 manipulation types. To the best of our knowledge,

we this work is the first to consider this large number of

fine-grained manipulation types.

3.1. Study of Backbone Network Architecture

Since no dominant IFLD network architecture (see

Table 1) and very few studies on IMC networks, we

conduct backbone architecture comparisons among three
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networks—VGG [40], ResNet [26], and DnCNN [52], all

of which are proposed outside of the IFLD community but

used previously for IFLD [20, 28, 44, 45, 55].

For fair comparison, we customize backbone models to

have the same receptive field sizes, and similar numbers

of filters and hyper-parameters (see Table 2). It is worth

noting that all listed manipulation classification models are

fully convolutional networks (FCN) (i.e. no down-sampling

or Dense layer).

IMC-VGG IMC-ResNet IMC-DnCNN

FirstBlock
[

16@(3,3)
ReLU

]

×2

[

16@(3,3)
ReLU

]

×1

[

72@(3,3)
ReLU

]

×1

MiddleBlock
[

16k@(3,3)
ReLU

]

×m













16(k−1)@(3,3)
ReLU

16(k−1)@(3,3)
BN + ReLU

ProjShortcut













×m

[

72@(3,3)
BN + ReLU

]

×m

m [2, 3, 2] [1, 1, 1, 1] [1,1,1,1,1,1,1,1,1]

LastBlock
[

128@(3,3) + L2Norm
]

×1

DecisionBlock
[

7@(3,3) + Softmax
]

×1

#Conv2D 11 14 12

#Param. 487K 465K 482K

IMC-7 Train Acc. 94.5% 94.3% 94.7%

IMC-7 Valid Acc. 92.1% 90.8% 91.2%

KCMI Test Acc 55.1% 48.1% 49.4%

Table 2. IMC-7 network architecture and performance compar-

isons. Building blocks are shown in brackets. N@(3,3) indicates

a Conv2D layer with N filters of kernel size 3-by-3. k in IMC-

VGG is the block index, e.g. the number of filters used in block 2

is 32 = 16 × 2. m is the unit repetitiveness; e.g. m = [2, 3, 2]
indicates three middle blocks repeat the unit 2, 3, and 2 times, re-

spectively. Conv2D of projection shortcut in ResNet is not listed.

To speed up training and offer training to many models,

we study the simple IMC-7 problem, i.e., classification on

the seven general manipulation families: compression, blur-

ring, morphology, contrast manipulation, additive noise, re-

sampling, and quantization. Specifically, we train each ar-

chitecture with three models, but only the model with the

best validation loss is reported in the lower half of Table 2.

It turns out that all three architectures achieve similar IMC-

7 performance. However, VGG outperforms the rest with

a smaller gap between training and validation, but a much

higher accuracy in KCMI testing. We thus use the VGG

architecture in the remainder of our studies.

1st Conv. Layer Conv2D Conv2D BayarConv2D SRMConv2D Combined

#Filters 16 16 3 3 10+3+3

Kernel Size (3,3) (5,5) (5,5) (5,5) (5,5)

IMC-7 Train Acc. 94.5% 94.9% 93.8% 95.2% 95.5%

IMC-7 Valid Acc. 92.1% 92.5% 92.0% 93.1% 93.4%

KCMI Test Acc. 55.1% 55.2% 49.9% 57.1% 57.2%

Table 3. IMC-7 performance comparisons on feature type.

We also study the feature choice of the first layer.

We compare the known optimal settings for SRMConv2D

from [55] and BayarConv2D from [10] with the classic

Conv2D layers, and a combined version of all three, which

is simply the feature concatenation as shown in Fig. 2. From

Table 3, it is safe to conclude that different feature types

make small differences in IMC-7 performance, usually 1%

to 2%, while using the combined setting gives the best per-

formance. We therefore use the combined features for the

first convolutional layer.

3.2. Study of FineGrained Manipulation Types

To make the manipulation trace feature more sensitive

and robust, we study the IMC problem for more and finer

manipulation types. Specifically, we gradually break down

the seven manipulation families (hierarchy level 0) until

they are individual algorithms (hierarchy level 5). For ex-

ample, the blurring family is broken down to Gaussian

blurring, box blurring, wavelet denoising, and median fil-

tering for hierarchy level 1. Then we proceed to an even

finer level by specifying algorithm parameters, e.g., Gaus-

sian blurring w.r.t. small kernel sizes like 3, 5, and 7 for

hierarchy level 2. This continues on until reaching the in-

dividual kernel size for hierarchy level 5. The complete hi-

erarchy map is included in our code repository, as there are

different hierarchy levels for 7, 25, 49, 96, 185, and 385

classes for manipulation classification.

All IMC models in this study share the same VGG net-

work architecture discussed earlier, except for the number

of output classes in the decision block (see Table 2). Their

scores are listed in Table 4. Because of the predefined hi-

erarchy map, an IMC trained on hierarchy i can be used

to also predict labels of hierarchy j for i > j. All un-

derlined scores in Table 4 are obtained in this way. It is

clear that fine-grained manipulation classes help improve,

not only validation accuracy for lower hierarchies, but also

the KCMI accuracy from 57.2% to 82.6%.

Hierarchy Level HL0 HL1 HL2 HL3 HL4 HL5

# IMC Classes 7 25 49 96 185 385

IMC-7 Valid. Acc. 93.4% 95.1% 96.1% 96.3% 96.3% 96.2%

IMC-25 Valid. Acc. - 85.1% 85.7% 85.4% 85.5% 85.7%

IMC-49 Valid. Acc. - - 77.5% 79.6% 78.9% 79.2%

IMC-96 Valid. Acc. - - - 72.4% 72.7% 73.2%

IMC-185 Valid. Acc. - - - - 53.4% 63.3%

IMC-385 Valid. Acc. - - - - - 47.3%

KCMI Test Acc. 57.2% 62.7% 71.9% 78.4% 82.0% 82.6%

Table 4. IMC performance analysis w.r.t. manipulation types.

IMC-385 validation accuracy (47.3%) is relatively low.

We therefore adjust the baseline IMC-VGG architecture in

two orthogonal directions—(1) make it wider [50], i.e., us-

ing more filters in each convolutional layer, and (2) make

it deeper, i.e., using more convolutional blocks. Both at-

tempts improve the baseline performance, and the combi-

nation of wider and deeper (W&D) improves even more.

Table 5 shows these results. We therefore use the IMC-

VGG W&D architecture excluding the decision block for

the manipulation trace feature extractor (see Fig. 2).

3.3. Discussions

The IMC performance can be further improved if a larger

receptive field size is used. We, however, stop exploration
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IMC-VGG Baseline Wider(W) Deeper(D) W&D

FirstBlock
[

16@(3,3)
ReLU

]

×2

[

32@(3,3)
ReLU

]

×2

[

16@(3,3)
ReLU

]

×2

[

16@(3,3)
ReLU

]

×2

MiddleBlock
[

16k@(3,3)
ReLU

]

×m

[

32k@(3,3)
ReLU

]

×m

[

16k@(3,3)
ReLU

]

×m

[

32k@(3,3)
ReLU

]

×m

m [2, 3, 2] [2, 3, 2] [2, 3, 3] [2, 3, 3]

LastBlock
[

128@(3,3)
L2Norm

]

×1

[

256@(3,3)
L2Norm

]

×1

[

256@(3,3)
ReLU

]

×2
[

256@(3,3)
L2Norm

]

×1

[

256@(3,3)
ReLU

]

×2
[

256@(3,3)
L2Norm

]

×1

DecisionBlock
[

385@(3,3) + Softmax
]

#Conv2D 11 11 14 14

#Receptive Filed 23 × 23 23 × 23 29 × 29 29 × 29

IMC-385 Top-1 47.3% 48.6% 45.7% 51.8%

IMC-385 Top-3 66.5% 69.9% 69.8% 72.0%

IMC-385 Top-5 75.3% 79.5% 79.4% 81.1%

IMC-385 Top-10 85.8% 90.7% 92.5% 93.1%

KCMI Test Acc 82.6% 83.1% 83.0% 83.6%

Table 5. IMC-385 performance comparisons using different archi-

tectures. Building blocks are shown in brackets. N@(3,3) indi-

cates a Conv2D layer with N filters of kernel size 3-by-3.

and stick to the IMC-VGG-W&D architecture to ensure the

feature sensitivity to small manipulated regions.

Regarding the IMC-385 performance, Fig. 3-(a) illus-

trates the IMC-VGG-W&D confusion matrix at the hier-

archy level 1 (with 25 classes). It is quite close to the

identity matrix, and thus the most IMC-385 errors hap-

pen within the same type of manipulations, but with dif-

ferent parameters. Indeed, the only salient error in the

confusion matrix is to misclassify JPEGCompression

to JPEGDoubleCompression, possibly because most

pristine images in the Dresden dataset are of the JPEG for-

mat, indicating that they are already compressed.

Though the KCMI testing results confirm the generaliz-

ability of the learned manipulation trace feature, we double

check feature effectiveness for the IFLD task. As shown

in Fig. 3-(b), one can easily identify the correspondences

between the IMC membership maps and the ground truth

forgery masks, indicating (1) the proposed IMC feature is

useful for the IFLD task; and (2) one can easily identify

forged regions by identify anomalous local features that are

different from those in their surroundings.

4. Local Anomaly Detection Network

In this section, we propose a novel deep anomaly detec-

tion network architecture. As shown in Fig. 2, it is com-

posed of three stages: (1) adaptation, which adapts the ma-

nipulation trace feature for the anomaly detection task; (2)

anomalous feature extraction, which is inspired by human

thinking and extracts anomalous features; and (3) decision,

which holistically consider anomalous features and classify

whether a pixel is forged or not. Since both adaptation and

decision stages are straight-forward, we focus on the dis-

cussion of anomalous feature extraction.

4.1. Anomalous Feature Extraction

Given a feature map (e.g. the bottom row in Fig. 3-(b)),

how a human identifies potential forged regions. Though

(a) (b)

Figure 3. IMC discussion items. (a) IMC-385 HL1 confusion ma-

trix. (b) Sample IMC results, from top to bottom: testing image,

ground truth forgery mask, and the IMC membership map (color

coded in terms of HL1). Best viewed in color and zoom-in.

this question can be answered differently, one can first iden-

tify the dominant feature of an image, and any feature suffi-

ciently different from this dominant feature is thus anoma-

lous. In the rest of section, we follow this intuition and

discuss the solutions to the two key tasks (1) what is a dom-

inant feature, and how to compute it, and (2) how to quan-

tify the difference between a local feature and a reference

dominant feature, and what is the best way in practice.

Let us start with simple solutions. One choice for the

dominant feature is the average feature defined in Eq. (1)

µF =

H∑

i=1

W∑

j=1

F [i, j]/(HW ) (1)

where F is a raw feature tensor of size H×W×L. Similarly,

one may use the raw difference in Eq. (2) to quantify the

difference between a local feature and its reference.

DF [i, j] = F [i, j]− µF (2)

Considering the generalizability, the normalized Z-score

defined in Eq. (3) works better, (see Table 6)

ZF [i, j] = DF [i, j]/σF (3)

where σF is the standard deviation of F as shown in Eq (4).

σ2
F =

H∑

i=1

W∑

j=1

F [i, j]2/(HW )− µ2
F (4)

In practice, we replace σF with σ∗

F as shown in Eq. (5)

σ∗

F = maximum(σF , ǫ+ wσ), (5)

where ǫ =1e-5 and wσ is a learnable non-negative weight

vector of the same length as σF .

To this end, feature ZF encodes how different each local

feature is from a reference feature, but ZF suffers one ma-

jor drawback when two more regions are manipulated dif-

ferently. Say an image contains two disjoint forged regions

9547



R1 and R2, while the rest is pristine background region B.

Depending on the relative relationship among µR1 , µR2 and

µB , feature µF may fail to represent the dominant µB . To

simplify discussion, let F ’s feature dimension be 1. When

µR1
≫ µR2

> µB , µF can be some value much closer

to µR2 than µB , implying ZF is incapable of capture the

anomalous region R2.

One quick remedy is to compute the reference feature

from a local but big enough window, which mitigates if not

excludes the influence of features from other forged regions.

Specifically, we compute the window-wise deviation fea-

ture,

Dn×n
F [i, j] = F [i, j]− µn×n

F [i, j] (6)

where µn×n
F [i, j] is the average feature computed within the

n × n window centered at (i, j) location through the stan-

dard AveragePool2D layer. However, we have no idea

what n should be for a testing sample. We therefore fol-

low the common multi-resolution analysis (e.g. [47]), and

collect a series of Z-score features w.r.t. different window

sizes n1 through nk as shown in Eq. (7).

Z∗

F = [Zn1×n1

F , · · · , Znk×nk

F , ZF ] (7)

The process of converting from input feature F to a Z-score

feature is referred as to ZPool2D in Fig. 2.

Although one can concatenate Z∗

F along the feature di-

mension and produce a 3D feature (size of H×W×(k+1)L)

to represent the difference feature, this fails to capture the

essence of human decision progress – the far-to-near anal-

ysis, i.e. one will move closer if he can’t see something

clearly. We, therefore, concatenate Z∗

F along the new ar-

tificial time dimension and produce a 4D feature of size

(k+1)×H×W×L. By using the ConvLSTM2D layer [48], the

proposed anomaly detection network analyzes the Z-score

deviation belonging to different window sizes in a sequen-

tial order. In other words, we look into a fine-grained Z-

score map if we are uncertain, and thus conceptually fol-

lows the far-to-near analysis.

4.2. Anomaly Detection Ablation Experiment

We conduct a set of ablation experiments to study the

performance of previously mentioned anomalous features

using the ManTra-Net solution shown in Fig. 2. To ensure

fair comparisons, all experiments (1) differ from each other

only in the used anomaly detection feature; (2) share the

same pretrained manipulation trace feature extractor; and

(3) the manipulation trace feature extractor is set to non-

trainable. One may refer to Sec. 2.3 for other settings.

Table 6 compares all features in terms of validation

F1 scores. It is clear that the Z-score difference is bet-

ter, and that the more window sizes we consider, the

better the overall performance is. For the sake of effi-

ciency, we stop analyzing more windows. Compared to

the feature-axis-concatenation (FAC), using the time-axis-

concatenate (TAC) for Z∗

F feature further boosts perfor-

mance by roughly 7% in absolute and 15% in relative.

Dataset Validation F1-Score

Anomaly Detection Feature Splicing CopyMove Removal Enhance Overall

DF 13.26% 2.33% 6.79% 36.07% 14.61%

ZF 18.71% 5.01% 39.67% 72.45% 33.81%

FAC([Z
7×7
F

,ZF ]) 21.99% 9.20% 38.55% 74.59% 36.08%

FAC([Z
7×7
F

,Z
15×15
F

,ZF ]) 24.51% 11.47% 43.96% 75.78% 38.93%

FAC([Z
7×7
F

,Z
15×15
F

,Z
31×31
F

,ZF ]) 26.40% 17.88% 45.53% 77.92% 41.93%

TAC([Z
7×7
F

,Z
15×15
F

,Z
31×31
F

,ZF ]) 38.58% 21.19% 52.32% 81.47% 48.39%

Table 6. Anomaly detection features comparisons.

5. Experimental Evaluation

We have previously demonstrated the effectiveness of

the used image manipulation-trace feature and the local

anomaly detection network. In this section, we focus on

evaluating the performance of the end-to-end ManTra-Net

w.r.t. generalizability, sensitivity, robustness to postprocess-

ing, and standard benchmarks.

Regarding evaluation metrics, we use the pixel-level area

under the receiver operating characteristic curve (AUC) un-

less otherwise specified. It is important to note that due to

the nature of local anomaly detection, ManTra-Net will la-

bel pristine pixels as forged if they are minorities. However,

this behavior should not be penalized. We thus negate a

ManTra-Net predicted mask when more than 50% of pixels

are forged in ground truth, as suggested in [28].

5.1. Pretrained Models and Generalizability Test

We train ManTra-Net models in the end-to-end manner

using the four synthetic datasets mentioned in Sec. 2.3. The

pretrained ManTra-Net models are available at 1.

To evaluate the generalizability of these models, the lat-

est partial convolution-based CNN inpainting method [31]

is selected as one typical out-of-domain DNN-based ma-

nipulation. In addition, the PhotoShop-battle dataset [27] is

also used, because it is large (total 102,028 samples) and di-

verse (contributed from 31,272 online artists), and it reflects

the level of real-life image manipulation. Since it only pro-

vides the image-level annotation (i.e., pristine or forged) in-

stead of the pixel-level, we evaluate model performance on

this dataset by computing the image-level AUC, where the

likelihood that an image is manipulated is simply computed

as the average likelihood of all pixels.

As one can see in Table 7, the fully random model trained

with full random weights does not generalize well because

it overfits to the synthesized data, while the forgery clues

presented in the used synthesized dataset are very differ-

ent from those in the real world. The half freeze model

trained by freezing the image manipulation-trace features

(IMTF) and with random LADN weights does prevents

1https://github.com/ISICV/ManTraNet.git
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overfitting, but eliminates the hope of finding better features

for other forgery types, because the manipulation-trace fea-

ture is known to be optimized to the enhancement dataset

(see the Enhance column in Table 6), but not to splicing,

copy-move or removal. In contrast, the half random model

that allows these weights to be updated at a lower learning

rate of 5e-5 prevents overfitting and converges to a better

feature representation for all forgery types. We thus use the

ManTra-Net half random model in later experiments.

Name IMTF Setting Testing F1 [31] F1 [27]AUC

Fully Random (FR) Random initialization 71.21% 68.37% 61.85%

Half Freeze (HF) Freezed IMC-385 48.39% 72.54% 70.33%

Half Random (HR) IMC-385 initialization 68.61% 78.32% 75.88%

Table 7. ManTra-Net performance under different settings.

5.2. Sensitivity and Robustness Evaluation

To evaluate how accurate ManTra-Net is to manipula-

tions of different distortions, we conduct the following sen-

sitivity study: (1) we synthesize manipulated samples using

a manipulation function f and a method parameter p for

5,000 patches in the Dresden testing split; (2) we evaluate

ManTra-Net on this synthesized dataset; and 3) we report

its performance as one data point in Fig. 4. As shown in

Fig. 4-(a), ManTra-Net is very accurate to additive noise

and blurring methods, even for subtle manipulations like

3×3 GaussianBlur, while less accurate to compression

methods, especially when the quality factor is above 95.

(a)

(b)

Figure 4. ManTra-Net’s (a) sensitivity and (b) robustness tests.

In real life, one may disguise a forged image X with

additional post-processing. Here we considered the three

common postprocessing methods: (1) resizing X to a

smaller size, (2) compressing X with a lower quality fac-

tor, and 3) smoothing X around the edges of forged re-

gions. Instead of a raw testing sample from the four syn-

thesized datasets, we feed in the pretrained ManTra-Net

with the post-processed version, and compute the testing

performance decay. These results are shown in Fig. 4-(b).

ManTra-Net’s overall performance almost drops linearly for

LinearResize and JPEGCompress, which is much

slower than the quadratic pixel reducing rate in resizing. Fi-

nally, though local blurring is known to be very effective in

fooling edge-based forgery detection methods, ManTra-Net

is quite immune to this type of attack.

5.3. Comparison Against SOTA Methods

Following [55], we compare ManTra-Net’s perfor-

mance against numbers reported in [55], which provides

scores of the classic unsupervised methods: ELA [29],

NOI1 [34], CFA1 [22], and the latest DNN-based solu-

tions, MFCN [39] and J-LSTM [7] on the four bench-

mark datasets, namely NIST 2016 [3], CASIA [2], COV-

ERAGE [43], and Columbia dataset [1]. These four datasets

contain 564, 6044, 100, and 180 samples, respectively. It

worth noting that we (1) use a pretrained model instead of

a finetuned one, and (2) evaluate performance on the full

dataset instead of a small testing split.

Methods NIST Columbia COVERAGE CASIA

Forgery Types , , , ,

ELA [29] 0% 42.9% 0% 58.1% 0% 58.3% 0% 61.3%

EOI1 [34] 0% 48.7% 0% 54.6% 0% 58.7% 0% 61.2%

CFA1 [22] 0% 50.1% 0% 72.0% 0% 48.5% 0% 52.2%

J-LSTM [7] 72% 76.4% N/a 75% 61.4% N/a

RGB-N [55] 72% 93.7% 0% 85.8% 75% 81.7% 85% 79.5%

ManTra-Net 0% 79.5% 0% 82.4% 0% 81.9% 0% 81.7%

Table 8. (training%, AUC) performance comparisons. Highest

scores and training% are highlighted in blue and red, respectively.

Forgery types are color coded as: splicing, copy-move,

removal, and enhancement.

These results are listed in Table 8. We rank second-

place in the NIST and Columbia datasets. A big perfor-

mance gap between ManTra-Net and that of the RGB-N

method is found in the NIST dataset, possibly because this

dataset contains many samples forged from the exact same

or very similar base images—where finetuning could defi-

nitely help. On the Columbia dataset, we fall just slightly

behind the best method RGB-N by 3%, since we do not

rely on any specific clue. The RGB-N method explicitly

analyzes the noise pattern, which is known to be super ef-

fective to the Columbia dataset [55].

On the COVERAGE and CASIA datasets, however, we

achieve even better performance on a larger evaluation por-

tion than the J-LSTM and RGB-N methods, which both ap-

ply dataset finetuning. One possible explanation why we

performed better is that images in these dataset are much

smaller than those in NIST and Columbia (e.g., a typical

CASIA image is of size 256×384, while it is common to

see images larger than 1000×1000 in NIST), and are closer

to the image size we used in training, which is 256×256.

It is safe to conclude that ManTra-Net: (1) clearly out-

performs those classic unsupervised methods by a large

margin, and (2) is comparable to those state-of-the-art DNN

methods, even though we do not apply any model finetun-

ing or post-processing. Importantly, one especially note-
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Figure 5. Sample ManTra-Net results. Mega columns are separated by dashed vertical lines. From left to right: the first two mega columns

are results from NIST, Columbia, COVERAGE, and CASIA datasets; the third mega column are those forged by the deep inpainting

technique [31]; and the last mega column are samples from the PS-battle dataset. Additional PS-battle results can be found in Fig. 1.

ManTra-Net is capable to work in the real-life scenario, including but not limited (1) multiple forgery regions, (2) small manipulations, (3)

compound manipulations, and (4) arbitrary input image sizes.

worthy feature is that the proposed ManTra-Net achieves

very consistent performance across all testing datasets, in-

dicating that it does generalize well on different datasets.

Qualitative results can be found in Fig. 5. In terms of pro-

cessing speed, ManTra-Net takes roughly 0.8 seconds per

image (1024×768) on a single NVIDIA 1080Ti GPU.

5.4. Limitations

Detection of real-life image forgery is a difficult prob-

lem. We observed that ManTra-Net may fail when: (1) a

forged image is fully regenerated (e.g. using the style trans-

fer [23]), see Fig. 6-(a); (2) a forged image is intention-

ally contaminated with highly correlated noise, see Fig. 6-

(b); and (3) multiple regions are manipulated differently,

see Fig. 6-(c). As shown in Fig. 6-(c), both the text region

and the wombat region are manipulated. ManTra-Net finds

the text region but not the wombat region. We find that a

quick remedy is to ask a user to select a region of interest

before applying ManTra-Net, and this time we successfully

catch the wombat. This indicates that ManTra-Net can be a

computer-aid IFLD tool for humans.

Figure 6. Failure cases. (a), (b), and (c) are results of the PS-battle

samples cr3n0xh 0,cg869bx 0, and cjulwwp 0. Three im-

ages in each set of result is arranged as donor image, forged image,

and predicted mask. Zoom-in for more details.

6. Conclusion

In this paper, we introduce a novel end-to-end DNN

solution to image forgery localization called ManTra-Net.

It first extracts image manipulation trace features for a test-

ing image, and identifies anomalous regions by assessing

how different a local feature is from its reference features.

Our extensive experimental results using only pretrained

models demonstrate that the proposed ManTra-Net is sen-

sitive to subtle manipulations, and robust to postprocessing

disguising manipulations, and that it attains good general-

izability to unseen data and unknown manipulation types,

even for those latest DNN-based manipulations like face

swapping [36] and deep image inpainting [32]. One may

further improve the ManTra-Net performance or adapt it to

new forgery types by simply introducing more manipulation

types to the IMC task and/or adding more training samples

to the end-to-end IFLD task.
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