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Abstract

Deep mutual learning jointly trains multiple essen-

tial networks having similar properties to improve semi-

supervised classification. However, the commonly used

consistency regularization between the outputs of the net-

works may not fully leverage the difference between them.

In this paper, we explore how to capture the complemen-

tary information to enhance mutual learning. For this pur-

pose, we propose a complementary correction network (C-

CN), built on top of the essential networks, to learn the

mapping from the output of one essential network to the

ground truth label, conditioned on the features learnt by

another. To make the second essential network increasingly

complementary to the first one, this network is supervised

by the corrected predictions. As a result, minimizing the

prediction divergence between the two complementary net-

works can lead to significant performance gains in semi-

supervised learning. Our experimental results demonstrate

that the proposed approach clearly improves mutual learn-

ing between essential networks, and achieves state-of-the-

art results on multiple semi-supervised classification bench-

marks. In particular, the test error rates are reduced from

previous 21.23% and 14.65% to 12.05% and 10.37% on

CIFAR-10 with 1000 and 2000 labels, respectively.

1. Introduction

One of the main limitations of applying deep convolu-

tional networks [16] [36] [12] is the need for massive col-

lection of labeled images. To bypass expensive manual

annotations, many studies have been performed on semi-

supervised learning [21] [5] [40] [2], such that the model-

s can be trained on partially labeled data, since it is more

practical to expect that only a small fraction of samples

can receive human annotations. In order to use unlabeled

data to improve the generalization capability of classifiers,

Figure 1. An example to illustrate how the proposed CCN im-

proves semi-supervised classification on CIFAR-10 with 1000 la-

bels (classes 0-9 denote ‘plane’, ‘auto’, ‘bird’, ‘cat’, ‘deer’, ‘dog’,

‘frog’, ‘horse’, ‘ship’ and ‘truck’, respectively). CCN learns the

mapping from the raw output (input of the softmax layer) of one

network (Net 1) to the ground truth label, conditioned on the fea-

tures learnt by another network (Net 2). According to the raw

output, the ‘ship’ image is misidentified as ‘truck’. CCN is able to

produce a compensatory residual to correct the misclassification.

semi-supervised methods rely on an important assumption

that it is more likely for neighboring data points to belong

to the same class, which means that the decision bound-

aries should be located in low-density regions. There are

many deep models that have been developed based on this

assumption, such as [35] [25] [34]. The prediction of a clas-

sifier should be consistent on the unlabeled data irrespective

of whether perturbations have been added. Previous meth-

ods including Temporal Ensembling [18], virtual adversari-

al training (VAT) [26] and adversarial dropout (VAdD) [29]

follow similar principles. On the other hand, mutual learn-

ing between separate networks is also effective for deter-

mining more reliable decision boundaries. Recent method-

s, such as dual learning [11], Mean-Teacher [38] and deep

mutual learning (DML) [42], have brought improvement in

semi-supervised classification. Most of them penalize in-

consistent predictions of different networks on unlabeled

data. However, these methods only consider the difference

between them, while ignoring the complementarity.

We are concerned with the task of improving mutual
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Figure 2. An overview of our enhanced mutual learning model for semi-supervised classification. Our model consists of two essential

networks having similar properties and a complementary correction network (CCN). CCN learns to more accurately classify the unlabeled

instances, conditioned on the output of one network and the features of the other network. The second essential network is supervised by

the output of CCN, and becomes increasingly complementary to the first one as it learns. The resulting essential networks lead to significant

performance gains due to complementary knowledge transfer via mutual learning.

learning for semi-supervised classification. To fully utilize

the complementary information contained in the different

networks, we aim to learn the mapping from the output of

one network to the ground truth label, conditioned on the

feature learnt by another, as shown in Figure 1. This map-

ping not only learns the prediction deviation, but also helps

in improving classification on unlabeled data. The result-

ing better predictions provide further guidance to the train-

ing of complementary networks, such that mutual learning

between these networks is able to bring significant perfor-

mance gains.

In this paper, we present an enhanced mutual learn-

ing approach to train complementary networks for improv-

ing semi-supervised classification. Specifically, we extend

the DML model by including a complementary correction

network (CCN) to capture complementary information be-

tween two essential networks. This new network is built on

top of the essential networks, and is conditionally depen-

dent on the raw output (input of the softmax layer) of one

network and the features provided by another. We adopt a

residual architecture, such that CCN is able to learn the dif-

ference between the raw output and ground truth label con-

ditioned on the input features. As a result, more accurate

classification on unlabeled data is produced and utilized to

train the second essential network, which in turn becomes

more discriminative and complementary to the first one as

it learns. By minimizing the divergence between these t-

wo essential networks, the knowledge learnt by CCN can

be ultimately transferred to the first one, and lead to addi-

tional performance gains. An overview of the proposed ap-

proach is shown in Figure 2. In the experiments, we present

state-of-the-art results achieved on multiple standard semi-

supervised classification benchmarks, and insights on why

the proposed approach works.

This work makes the following contributions. (1) In-

stead of directly minimizing the prediction divergence be-

tween separate networks, we propose the CCN to signifi-

cantly improve semi-supervised mutual learning, by captur-

ing and transferring complementary knowledge between the

networks. (2) CCN is able to use the learnt features of one

network to help correct the outputs of the other network.

The resulting more accurate classification on unlabeled da-

ta is further leveraged to guide model training, such that

the networks become increasingly complementary as they

learn. (3) We demonstrate that the proposed enhanced mu-

tual learning model is more effective than the DML model,

and improves the state-of-the-art results on multiple stan-

dard semi-supervised learning benchmarks.

2. Related Work

We restrict our review to the closely related work, espe-

cially the recent advances in semi-supervised learning using

deep models. To aid classifiers to explore the categories of

unlabeled data, Generative Adversarial Networks (GANs)

[8] [30] [24] have been applied to semi-supervised learn-

ing, such as [14] [28] [17]. In [37], Springenberg proposed

a categorical GAN to regularize a discriminatively trained

classifier, such that a robust classification model can be

achieved. In [33], Salimans et al. explored various practical

techniques for improving the training of generative mod-

els and semi-supervised classification. Furthermore, Wei

et al. [39] improved the training of Wasserstein GANs [1]

by including a consistency regularization to the discrimina-

tor, such that the Lipschitz continuity can be enhanced and

promising results are achieved. To characterize the class-

conditional distributions, Li et al. [20] proposed a triple

generative adversarial network to include a classifier in a

three-player formulation. Another similar work reported in

[7] presented a triangle GAN framework, in which two gen-

erators and two discriminators are employed to characterize

the joint distribution of instances and labels. In contrast to

the above GAN-based methods which aim to generate im-

ages as good as possible, the GAN in [4] generates ‘bad’

images which are located at the low density regions and
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thus may be close to the decision boundaries in the latent

space, based on which the discriminative capability of the

classifier can be improved.

The perturbation-based models have shown promising

results through introducing noise to model training for re-

ducing overfitting, such as [31] [32]. In [18], the training is

performed by penalizing the difference between the predic-

tions of the network with and without stochastic augmenta-

tion, such that the smoothness in the output of the network

with respect to the input is encouraged. Similar to adver-

sarial training [9], Miyato et al. [26] [25] proposed a virtual

adversarial training method to select the perturbations in the

direction sensitive to the prediction of the classifier. From

another perspective, adversarial dropout [29] was proposed

to generate the perturbation to model updating by maximiz-

ing the divergence between the predicted class distribution

and ground truth label.

Mutual learning is another effective strategy for improv-

ing semi-supervised learning. To acquire training experi-

ence from another network, distillation based methods [13]

were proposed to train a separate and relatively small net-

work. Different from distillation, mutual learning starts

with a set of essential networks, which jointly learn to solve

the tasks. In [3], Batra and Parikh proposed a cooperative

learning paradigm to jointly train multiple models special-

izing to different domains, and learn domain-invariant visu-

al attributes. In [42], Zhang et al. proposed a deep mutu-

al learning model which minimizes the divergence between

the outputs of two networks having different parameter ini-

tializations and dropout. To construct a better teacher model

for enhancing mutual learning, Tarvainen and Valpola [38]

adopted the exponential moving average of a student net-

work as a teacher to provide training targets for the student.

There are substantial differences between our proposed

framework and existing works. The main difference is in

the way the models are learnt. We propose the CCN which

is built on top of two essential networks. Its main role is

to learn to correct the output of one network, and guide the

training of the other network. As a result, the complemen-

tarity between the essential networks can be significantly

enhanced. To our best knowledge, there have been no pre-

vious attempts to capture the complementary information

between separate networks for enhancing mutual learning,

in the way that our CCN is designed to do.

3. Proposed Approach

The semi-supervised setting naturally occurs for cases

in which a large number of images can be easily collected

from the web but only a small portion of them are man-

ually labeled. In our problem, we consider that the train-

ing set X = L ∪ U contains N instances, out of which

the subset L = {(xi, yi)}
NL

i=1 is labeled and the remainder

U = {xj}
NU

j=1 is unlabeled, where (xi, yi) denotes a labeled

instance and the corresponding class label, and xj denotes

an unlabeled instance. In the semi-supervised setting, we

have NL ≪ NU .

Deep mutual learning models usually consist of two or

more essential networks. Since deep convolutional net-

works for image classification have high capacity, joint-

ly training two networks can achieve a trade-off between

performance gains and computational cost in most cases.

Here we introduce a dual-net based mutual learning mod-

el. Specifically, we design a CCN, parameterized by θC , to

leverage the complementary information between the two

essential networks parameterized by θ1 and θ2, respective-

ly. CCN can be expected to produce more accurate classifi-

cation on unlabeled data, and guide the training of comple-

mentary essential networks in our model.

3.1. Enhanced Mutual Learning Model

We extend the DML model by including a CCN to lever-

age complementary information from essential networks.

CCN has two separate inputs, the raw output of one es-

sential network, as well as the learnt features of the other

essential network for modeling the divergence between the

raw output and ground truth label. Compared to the first

network, CCN is able to produce more accurate classifica-

tion on unlabeled data, which can be utilized for guiding

the training of the second network. By minimizing the di-

vergence between the two essential networks, both of them

can be further improved.

Specifically, the overall loss function L1 for the first es-

sential network is composed of the following four terms:

L1(θ1;X ) =
∑

(xi,yi)∈L

ℓ
(

yi, hθ1(xi)
)

+
∑

xj∈U

H
(

hθ1(xj)
)

+ η
∑

xj∈U

A(θ1;xj) + λ
∑

xj∈U

DKL

(

hθ2(xj)‖hθ1(xj)
)

,
(1)

where hθ1(·) (hθ2(·)) denotes the predicted class probabil-

ity distribution of the network θ1 (θ2) for an input, ℓ(·, ·)
denotes the cross-entropy function, H(·) denotes the con-

ditional entropy function with respect to the posterior class

probability distribution,A denotes a perturbation-based vir-

tual adversarial training term, and DKL(·‖·) denotes the

Kullback-Leibler (KL) divergence between two differen-

t distributions. The coefficients η and λ are the weighting

factors for achieving a balance among the terms in L1. In

Eq.(1), H(·) is used to quantify the amount of information

needed to describe the class label of an unlabeled instance

according to the network prediction as follows:

H
(

hθ1(xj)
)

= −hθ1(xj)
T lnhθ1(xj). (2)

Minimization of the conditional entropy term enhances the

confidence of the classifier on unlabeled instances, which

in turn drives the decision boundaries away from data-dense
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regions to facilitate semi-supervised learning, as pointed out

in [10] [26]. To stabilize the estimation of the conditional

entropy on the unlabeled instances, A is used to smooth the

classifier with respect to input perturbations as follows:

A(θ1;xj) = max
‖ν‖≤ǫ

DKL

(

hθ1(xj)‖hθ1(xj + ν)
)

, (3)

where ǫ denotes a hyper-parameter controlling the intensity

of the adversarial perturbation ν. Furthermore, minimizing

the last term in L1 encourages the two networks to produce

consistent predictions. In fact, this mutual learning term is

important for providing training experience in the form of

predicted class distributions on unlabeled instances.

In addition, the overall loss function L2 for the second

essential network is defined as follows:

L2(θ2;X ) =
∑

(xi,yi)∈L

ℓ
(

yi, hθ2(xi)
)

+
∑

xj∈U

H
(

hθ2(xj)
)

+
∑

xj∈U

ℓ
(

y
θC
j , hθ2(xj)

)

+ η
∑

xj∈U

A(θ2;xj)

+ λ
∑

xj∈U

DKL

(

hθ1(xj)‖hθ2(xj)
)

,

(4)

where yθC
j denotes the pseudo label of instance xj accord-

ing to the prediction of CCN (to be introduced in detail in

the next subsection). Note that the two essential networks

are trained under different supervision. Different from the

first one, the second network learns to predict class labels

of unlabeled instances by imitating the outputs of CCN as

ground truth targets. As a result, the second network be-

comes increasingly complementary to the first one, since it

should have similar classification performance with CCN.

3.2. Complementary Correction Networks

We propose CCN to leverage the complementary infor-

mation from essential networks to produce more accurate

predictions. This network learns a mapping from the output

of one essential network to the ground truth label, condi-

tioned on the high level features of the other essential net-

work. Inspired by the work of He et al. [12], an important

feature of our CCN is an identity-skip connection, which

adds the raw output of the first essential network to the end

of this correction module. This skip connection is different

from the residual network, due to the reason that we take

into account the learnt features of the second essential net-

work as side input, and thus our correction network is able

to capture the complementary information.

As shown in Figure 3, the raw output of the first network

is projected into a higher dimensional embedding. The ab-

stract features of the second network are similarly projected

into a lower dimensional embedding. To combine these two

modalities, we concatenate the two embedding vectors, and

feed the resulting vector to two fully connected layers, such

that the vector is projected back into a valid label space. To

Figure 3. Illustration of the proposed CCN.

Table 1. The architecture of the CCN used in the proposed enhanced mu-

tual learning model.

Layer Description

Input Raw output of Net 1 Features of Net 2

L− 4 Fully connected 10→64,

LReLU

Fully connected 128→64,

LReLU

L− 3 Fully connected 64→64,

LReLU

L− 2 Concatenation, Fully connected 128→32, LReLU

L− 1 Fully connected 32→10

L− 0 Addition to the raw output, Softmax

formulate the overall loss function of CCN, we adopt the

cross entropy function as a classification term to capture the

difference between the predicted and ground truth labels.

In addition, we choose the mean square distance to measure

the difference between the current and temporal ensemble

predictions as follows:

LC(θ1, θ2, θC ;X ) =
∑

(xi,yi)∈L

ℓ
(

yi, hθC (xi)
)

+ µ
∑

xj∈U

∥

∥hθC (xj)− τθCj
∥

∥

2
,

(5)

where τθCj denotes the temporal ensemble prediction of C-

CN to the label of instance xj over previous training epochs.

Since there are only a small number of labeled samples, the

majority of training samples are unlabeled and may dom-

inate the overall loss of CCN. Similar to [18], we use a

ramp-up coefficient µ for the second term at the beginning

to avoid this dominance. In our model, the temporal ensem-

ble predictions are the following exponential moving aver-

ages of label predictions

τθCj ← ατθCj + (1− α)hθC (xj). (6)

In each training epoch, the output of the network is accu-

mulated into a temporal ensemble output, and a momentum

coefficient α is used to control the extent of ensembling in

the temporal dimension. Aggregating the previous predic-

tions is expected to be more accurate.

Since CCN learns the mapping from the raw output of

the first essential network to the ground truth label, the cor-

rected class probability distribution can be computed as fol-

lows:

hθC (xj) = N
(

gθ1(xj) + δθC
(

gθ1(xj), fθ2(xj)
)

)

, (7)
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where N (·) denotes the normalized exponential function,

gθ1(·) denotes the raw output of the first essential network,

fθ2(·) denotes the learnt representation on the global pool-

ing layer of the second essential network, and δθC (·, ·) de-

notes the residual learnt by CCN.

To make the second essential network complementary to

the first one, the prediction of CCN can be used to produce

the training target of the second essential network. Specif-

ically, hθC (xj) = [hj;1,hj;2, . . . ,hj;M ] is transformed to

an one-hot vector yθC
j = [yj;1,yj;2, . . . ,yj;M ] as a pseudo

label of instance xj as follows:

yj;m =

{

1, if hj;m = argmaxl
[

hθC (xj)
]

l
,

0, otherwise,
(8)

where M denotes the number of classes, and [·]l denotes

the l-th component of the predicted class probability vector,

indicating the probability of an instance belonging to the

l-th class.

The architecture of our CCN is shown in Table 1. In

the training process, an input image is processed by the es-

sential networks to compute high-level image features and

produce class probability predictions. Then, the raw out-

put of the first network and the features learnt by the sec-

ond network pass through CCN. The prediction of CCN is

transformed into the pseudo label of the unlabeled instance

with respect to the second network, but cannot incur gradi-

ents propagated back to itself. The implementation details

of our proposed model are summarized in Algorithm 1.

4. Experiments and Discussion

In this section, we perform extensive experiments to

verify the effectiveness of the proposed enhanced mutual

learning model for improving semi-supervised classifica-

tion. Specifically, we first evaluate our proposed approach,

and then compare with the state-of-the-art methods on mul-

tiple semi-supervised learning benchmarks. For better un-

derstandings of our work, we also investigate the effective-

ness of our proposed CCN and enhanced mutual learning

mechanism through ablation studies and visualization.

4.1. Experimental Settings

We highlight the effectiveness of our CCN with a toy

example, and then evaluate the proposed approach on the

MNIST [19], SVHN [27], CIFAR-10 and CIFAR-100 [15]

benchmarks, on which existing state-of-the-art methods for

semi-supervised classification mostly focus. We report the

average classification error and the corresponding standard

deviation over 10 runs on the test data.

Model Variants. We build the following variants of our

proposed model to assess the effectiveness of the improve-

ment strategies to the final classification performance.

Algorithm 1 Pseudo-code of our enhanced mutual learning model for

training two essential networks and CCN.

1: Input: Labeled data (xi, yi) ∈ L and unlabeled data xj ∈ U , weight-

s η, λ and µ, and number of training epochs T.

2: Initialize: Essential networks θ1 and θ2, CCN θC , temporal ensemble

predictions τ
θC
j and pseudo labels y

θC
j of unlabeled samples, and

learning rate γ.

3: for t = 1 to T do

4: Randomly sample mini-batches from L and U .

5: for each mini-batch B do

6: Compute the raw outputs gθ1 (xi) and gθ1 (xj), and evaluate

the first essential network hθ1 (xi) and hθ1 (xj).
7: Compute the features fθ2 (xi) and fθ2 (xj), and evaluate the

second essential network hθ2 (xi) and hθ2 (xj).
8: Evaluate CCN hθC

(xi) and hθC
(xj).

9: Compute y
θC
j according to Eq.(8).

10: Apply stochastic gradient descent and update θC ←

Adam
(

∇θC
LC(θ1, θ2, θC ;B), θC , γ

)

.

11: Apply stochastic gradient descent and update θ1 ←

Adam
(

∇θ1

(

LC(θ1, θ2, θC ;B) +L1(θ1;B)
)

, θ1, γ
)

.

12: Apply stochastic gradient descent and update θ2 ←

Adam
(

∇θ2

(

LC(θ1, θ2, θC ;B) +L2(θ2;B)
)

, θ2, γ
)

.

13: Update τ
θC
j according to Eq.(6).

14: end for

15: end for

16: Return θ1, θ2 and θC .

‘Baseline’. We train two essential networks having the

same architecture as the proposed model by adopting the

DML model [42]. The ‘Baseline’ results serve as the lower

bound for our evaluation.

‘Our Model w/o ML’. We disable mutual learning be-

tween essential networks, by removing the divergence term

of their predictions from the corresponding loss functions,

to analyze the capability of CCN in correcting the predic-

tion of the first essential network.

‘Our Model w/o CCN’. We remove the CCN from our

model to investigate its effectiveness in exploiting the com-

plementary information for enhancing mutual learning be-

tween the essential networks.

‘Our Model w/o VAT’. We remove the divergence ter-

m of virtual adversarial training from the loss functions of

the essential networks to train another variant of our mod-

el, such that we can investigate the complementarity of our

model with the existing technique [26].

4.2. Toy Example

To highlight the effectiveness of our CCN, we test the

variant ‘Our Model w/o ML’ on the well-known ‘two-

spirals’ synthetic dataset. We generate 1000 data points per

class, and there are a total of 40 labeled data points. We

adopt two essential networks consisting of 3 hidden layer-

s of size 300 nodes with ReLU, and a corresponding CCN

in our model. In Figure 4, we visualize the learnt decision

boundaries during training to illustrate how the CCN cor-

rects the predictions of the first essential network.
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Table 2. Test error rates (%) of our models and the previous state-of-the-art methods on the MNIST, SVHN and CIFAR-10 datasets. The proposed approach

achieves more accurate classification than the competing methods in all the cases.

MNIST SVHN CIFAR-10

Method 50 labels 100 labels 500 labels 1000 labels 1000 labels 2000 labels 4000 labels

LadderNetwork[31] - 1.06±0.37 - - - - 20.40±0.47

CatGAN[37] - 1.39±0.28 - - - - 19.58±0.58

Improved GAN[33] 2.21±1.36 0.93±0.07 - 8.11±1.30 - 19.61±2.09 18.63±2.32

ALI[6] - - - 7.42±0.65 - - 17.99±1.62

TripleGAN[20] 1.56±0.72 0.91±0.58 - 5.77±0.17 - - 16.99±0.36

GoodBadGAN[4] - 0.80±0.10 - 4.25±0.03 - - 14.41±0.03

SPCTN[41] 1.72±0.13 1.00±0.11 9.79±1.24 7.37±0.30 - 17.99±0.50 14.17±0.27

Π-model[18] 1.02±0.37 0.89±0.15 6.65±0.53 4.82±0.17 31.65±1.20 17.57±0.44 12.36±0.31

Temporal-Ensembling[18] - - 5.12±0.13 4.42±0.16 23.31±1.01 15.64±0.39 12.16±0.24

Mean-Teacher[38] - - 4.18±0.27 3.95±0.19 - 15.73±0.31 12.31±0.28

VAT[26] - - - 3.74±0.09 - - 11.96±0.10

VAdD[29] - - - 4.16±0.08 - - 11.68±0.19

VAdD+VAT[29] - - - 3.55±0.05 - - 10.07±0.11

SNTG+Π-model[22] 0.94±0.42 0.66±0.07 4.52±0.30 3.82±0.25 21.23±1.27 14.65±0.31 11.00±0.13

SNTG+VAT[22] - - - 3.83±0.22 - - 9.89±0.34

CT-GAN[39] - 0.89±0.13 - - - - 9.98±0.21

Baseline 8.48±1.03 3.47±0.67 15.03±0.11 10.74±0.10 29.57±0.89 20.97±0.37 15.33±0.31

Our Model 0.67±0.13 0.42±0.11 3.63±0.21 3.36±0.18 12.05±0.42 10.37±0.31 8.80±0.24

Figure 4. Comparison between the first essential network (upper

row) and CCN (bottom row) in ‘Our Model w/o ML’ during train-

ing on the synthetic dataset. The labeled data points are marked

black. Different colors indicate different classes. CCN efficiently

converges to a better solution than the first network.

4.3. Comparison on Benchmarks

Comparison to Previous Work. We first report the re-

sults of the proposed approach, and perform a comparison

with the existing state-of-the-art semi-supervised learning

methods on the MNIST, SVHN and CIFAR-10 benchmark-

s. Table 2 shows the results of our model and the competing

methods on these benchmarks for the cases where different

number of labels are given. For a fair comparison, we evalu-

ate the first essential network of our model in the test phase,

instead of the ensemble of the essential networks, although

there are three well-trained networks available at the end

of training process. Compared to the competing methods,

‘Our Model’ achieves the best results in all the cases. In par-

Table 3. Test error rates (%) of our model and the variants on the

CIFAR-10 dataset.

Method 1000 labels 2000 labels 4000 labels

Baseline 29.57±0.89 20.97±0.37 15.33±0.31

Our Model w/o ML 19.71±0.86 14.59±0.75 11.50±0.42

Our Model w/o CCN 20.41±0.42 13.34±0.27 11.45±0.22

Our Model w/o VAT 16.74±0.19 13.06±0.20 10.54±0.18

Our Model 12.05±0.42 10.37±0.31 8.80±0.24

Figure 5. Comparison of the two essential networks and CCN in

our model on the MNIST, SVHN and CIFAR-10 datasets. The

three networks achieve very similar performance in all cases due

to complementary knowledge transfer during mutual learning.

ticular, the test error rate of the proposed approach reaches

12.05% and 10.37% on CIFAR-10 with 1000 and 2000 la-

bels, which are lower than those of the second best method

‘SNTG+Π-model’ (21.23% and 14.65%) by about 9.2 and

4.3 percentage points, respectively. It is noted that ‘Our

Model’ outperforms the previous state-of-the-art methods

by a large margin.

Comparison to Model Variants. To confirm the effec-

tiveness of the proposed approach, we also report the re-
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Figure 6. An example to illustrate the effectiveness of CCN on

CIFAR-10 with 1000 labels. In the left subfigure, CCN outper-

forms the first essential network. In the right subfigure, the amount

of true corrections is much greater than that of false corrections,

which indicates that CCN is able to produce more accurate classi-

fication on unlabeled data.

sults of ‘Baseline’ on the benchmarks. Table 2 shows that

‘Our Model’ significantly outperforms ‘Baseline’ in all the

cases. On MNIST with 50 labels, SVHN with 500 labels

and CIFAR-10 with 1000 labels, the test error rates are re-

duced from 8.48%, 15.03% and 29.57% to 0.67%, 3.63%

and 12.05%, and the corresponding performance gains are

7.8, 11.4 and 17.5 percentage points, respectively. Since the

essential networks in ‘Baseline’ have the same architecture

as the networks in ‘Our Model’, we consider that our CCN

and enhanced mutual learning mechanism lead to the sig-

nificant performance gains. To investigate the relative con-

tributions of the improvement strategies, we perform a com-

parison between our model and the variants on CIFAR-10,

and Table 3 shows that removing the corresponding terms

leads to a significant drop in performance. We consider that

CCN is important in facilitating mutual learning, and addi-

tional performance gains can be achieved by incorporating

perturbation-based adversarial training.

4.4. Model Analysis

To provide insights on why the proposed approach work-

s, we investigate how the proposed CCN and enhanced mu-

tual learning mechanism improve the classification perfor-

mance of the final model in the following four aspects.

Comparison of Member Networks. Our enhanced mu-

tual learning model consists of three networks: two essen-

tial networks (‘Net 1’ and ‘Net 2’) and CCN. We compare

these networks on all the three benchmarks. Figure 5 shows

the average test error rates of the three networks for the dif-

ferent cases. One can observe that the three networks have

very similar performance. This phenomenon is consisten-

t with the characteristics of mutual learning. The second

essential network learns to mimic CCN, and transfers the

learnt knowledge to the first essential network by minimiz-

ing their prediction divergence.

Effectiveness of CCN. To verify the capability of our

CCN in correcting the raw output of the first essential net-

work, we compare the three networks of the variant ‘Our

Figure 7. Representative results of CCN correcting the raw out-

put of the first essential network on CIFAR-10 with 1000 label-

s (classes 0-9 denote ‘plane’, ‘auto’, ‘bird’, ‘cat’, ‘deer’, ‘dog’,

‘frog’, ‘horse’, ‘ship’ and ‘truck’, respectively). Although these

images are misclassified according to the raw outputs, compen-

satory residuals can be learnt by CCN such that these misclassifi-

cations can be corrected.

Model w/o ML’ in Figure 6. The left subfigure shows the

performance of these three networks on CIFAR-10 with

1000 labels. Since CCN learns the residual between the

raw output and ground truth label by exploiting the comple-

mentary information from the second essential network, it

performs better than the first essential network. In addition,

the second essential network is supervised by the output of

CCN, and thus these two networks have very similar per-

formance. In the right subfigure, we plot the numbers of the

test instances on which the outputs of the first essential net-

work are truly corrected and falsely corrected, respectively.

The result shows that the amount of true corrections is much

greater than that of false corrections, which indicates that

our CCN does improve classification on unlabeled data by

utilizing the complementary information between essential

networks. Some representative corrections are visualized in

Figure 7.

Effectiveness of Enhanced Mutual Learning. In our

model, CCN contributes to forming a teacher by guiding

the training of the second essential network, and transfer-

ring the knowledge to the first essential network via mutual

learning with the second essential network. To demonstrate

the superiority of the proposed model, Figure 8 shows the

performance improvement of ‘Our Model’ over ‘Baseline’

during the training on SVHN with 500 labels and CIFAR-
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Figure 8. Comparison of the baseline model and our model on

SVHN with 500 labels (left) and CIFAR10 with 1000 labels

(right). Compared to the two networks of ‘Baseline’, the three

networks of ‘Our Model’ consistently and efficiently converge to

better solutions during training, which verifies the effectiveness

and superiority of the proposed approach in mutual learning.

Figure 9. The t-SNE plot of the last hidden layer on the test data

of CIFAR-10 with 1000 labels: the baseline model (left) and our

model (right). Our model can learn more discriminative represen-

tations on which separating the data points of the difficult classes

including ‘cat’, ‘deer’ and ‘dog’ becomes easier.

Table 4. Test error rates (%) of our model and the previous state-

of-the-art methods on the CIFAR-100 dataset.

Method 5000 labels 10000 labels

Π-model[18] - 39.19±0.36

Temporal Ensembling[18] - 38.65±0.51

SNTG+Π-model[22] - 37.97±0.29

Baseline 53.58±0.45 40.83±0.29

Our Model 43.42±0.31 35.28±0.23

10 with 1000 labels. In contrast to ‘Baseline’ which only

penalizes the prediction divergence between essential net-

works, CCN explores more information from both essential

networks, and is thus able to improve the prediction qual-

ity. Furthermore, the second essential network is able to

learn better abstract representations by using the corrected

prediction. In turn, the second network contributes to the

performance gains of the first network through penalizing

the prediction divergence between them.

Visualization. We further visualize the learnt represen-

tations of the baseline model and our model on CIFAR-

10 with 1000 labels. We use the first essential networks

in ‘Baseline’ and ‘Our Model’ for comparison. Figure 9

shows the features of the last hidden layer projected to 2 di-

mensions by using t-SNE [23]. The instances are all from

the test data, and different classes are encoded by different

colors. It can be observed that the learned representations

of the proposed model are more concentrated, and can be

easily divided into different groups.

4.5. Results on CIFAR­100

CIFAR-100 is a more challenging benchmark for semi-

supervised classification due to the reason that there are 100

categories. There are a few methods tested on this bench-

mark. Table 4 shows the results of our model and the com-

peting methods. Similar to the results achieved on the other

benchmarks, ‘Our Model’ significantly improves ‘Baseline’

in both cases. When given 10000 labels, the test error rate is

reduced to 35.28%, which is lower than the previous state-

of-the-art result (37.97%). The results on CIFAR-100 veri-

fy the effectiveness of our enhanced mutual learning when

dealing with more difficult benchmarks.

5. Conclusion

This work explores how to enhance mutual learning be-

tween deep convolutional networks for improving semi-

supervised classification. We show that simply minimiz-

ing the prediction divergence between two separate essen-

tial networks may not fully leverage the difference between

them. To capture this information, we propose a comple-

mentary correction network, built on top of the essential

networks, to correct the prediction of one network, con-

ditioned on the features learnt by another. The resulting

more accurate class predictions for the unlabeled instances

are used as the training targets to make the second essential

network become more complementary to the first one. As

a result, our enhanced mutual learning model leads to sig-

nificant performance gains, due to the reason that the learnt

knowledge can be ultimately transferred to the first essential

network. Our experiments demonstrate that the proposed

approach improves the state-of-the-art results on multiple

semi-supervised classification benchmarks.
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