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Abstract

In generative modeling, the Wasserstein distance (WD)

has emerged as a useful metric to measure the discrepancy

between generated and real data distributions. Unfortu-

nately, it is challenging to approximate the WD of high-

dimensional distributions. In contrast, the sliced Wasserstein

distance (SWD) factorizes high-dimensional distributions

into their multiple one-dimensional marginal distributions

and is thus easier to approximate.

In this paper, we introduce novel approximations of the

primal and dual SWD. Instead of using a large number of

random projections, as it is done by conventional SWD ap-

proximation methods, we propose to approximate SWDs with

a small number of parameterized orthogonal projections in

an end-to-end deep learning fashion. As concrete appli-

cations of our SWD approximations, we design two types

of differentiable SWD blocks to equip modern generative

frameworks—Auto-Encoders (AE) and Generative Adversar-

ial Networks (GAN).

In the experiments, we not only show the superiority of

the proposed generative models on standard image synthesis

benchmarks, but also demonstrate the state-of-the-art per-

formance on challenging high resolution image and video

generation in an unsupervised manner 1.

1. Introduction

The Wasserstein distance (WD) is an important metric,

which was originally applied in the optimal transport prob-

lem2 [33]. Recently, [3, 11, 30, 36, 31, 23, 1, 2] discovered

the advantages of the WD in generative models and achieved

state-of-the-art performance for image synthesis. However,

the WD has some drawbacks. For instance, its primal form

is generally intractable for high-dimensional probability dis-

tributions, although some works [31, 10, 30] have proposed

1Code: https://github.com/musikisomorphie/swd.git
2Optimal transport addresses the problem of finding an optimal plan to

transfer a source distribution to a target distribution at minimal cost.

relaxed versions of the primal form. The dual form of the

WD can be more easily derived, but it remains difficult to

approximate its k-Lipschitz constraint [36, 37].

Given the weaknesses of the WD, the sliced Wasserstein

distance (SWD) suggests itself as a potential alternative. The

SWD factorizes high-dimensional distributions into their

multiple one-dimensional marginal distributions and can

therefore be approximated more easily, as studied in [5, 21,

19, 9]. However, due to the inefficient approximations of

the SWD in existing methods, its potential in generative

modeling has not been fully explored yet.

In this paper, we address this issue. Our contributions can

be summarized as follows:

• Relying on our novel primal SWD approximation,

we propose sliced Wasserstein Auto-Encoder (SWAE)

models. By seamlessly stacking the proposed primal

SWD blocks (layers) on top of the standard encoder, we

give the traditional AE generative capabilities. State-of-

the-art AE-based generative models usually require an

additional regularizer to achieve the same effect.

• Based on our new dual SWD approximation, we intro-

duce a sliced version of Wasserstein Generative Adver-

sarial Networks (SWGAN) by applying the proposed

dual SWD blocks to the discriminator. To the best of

our knowledge, this is the first work to study the dual

SWD and its application to generative models.

• To satisfy the orthogonality constraint required by the

projection matrices of the proposed SWD blocks, we ap-

ply a non-Euclidean optimization algorithm on Stiefel

manifolds to update the projection matrices.

• Motivated by the improvements of visual quality and

model stability demonstrated on the standard image

synthesis benchmarks, we apply our proposed model

to the challenging task of unsupervised high resolution

image and video synthesis. These evaluations confirm

the advantage of our model under non-trivial cases.
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2. Background

2.1. Wasserstein Distance & Related Models

The primal Wasserstein distance (WD) is given by

Wp(PX , PY ) = inf
γ∈Π(PX ,PY )

E(X,Y )∼γ [d
p(X,Y )]

1
p , (1)

where X,Y are random variables, Π(PX , PY ) denotes the

set of all joint distributions γ(X,Y ) whose marginal distri-

butions are PX , PY respectively, d is a metric, and p > 0.

For p = 1, the Kantorovich’s dual of the WD is

W1(PX , PY ) = sup
f∈Lip1

EX∼PX
[f(X)]− EY∼PY

[f(Y )],

(2)

where Lip1 is the set of all 1-Lipschitz functions. The dual

WD becomes k ·W1 if we replace Lip1 with Lipk for k > 0.

The original form of the primal WD (Eq. 1) is generally in-

tractable. For the case of Auto-Encoders (AE), however, [31]

have proven that optimizing the primal WD over tractable en-

coders is equivalent to optimizing it over the intractable joint

distributions γ(X,Y ). This idea yields Wasserstein Auto-

Encoders (WAE). Another way of avoiding the intractable

primal WD is to use its dual form instead. By parameteriz-

ing the f in Eq. 2 with a neural network, [3] have found a

natural way of introducing the dual WD to the GAN frame-

work. WAE and WGAN stand for typical applications of the

primal and dual WD in generative models and are closely

related to our proposed methods. We therefore summarize

the necessary details in the following.

2.1.1 Wasserstein AE (WAE)

The WAE proposed by [31] optimizes a relaxed version of

the primal WD. In order to impose the prior distribution on

the encoder, an additional divergence D is introduced to the

objective:

inf
PQ(Z|X)∈Q

EX∼PX
EQ∼PQ(Z|X)

[c(X,G(Z))] + λD(PQ, PZ),

(3)

where Z is random noise, G is the decoder, Q is any non-

parametric set of marginal distributions PQ on encoders Q,

c is the Euclidean distance, λ > 0 is a hyperparameter, and

D is the divergence between the PQ of the encoder and the

prior distribution PZ of Z. [31] instantiate D by using either

maximum mean discrepancy (MMD) or GAN, both of which

can be regarded as a distribution matching strategy.

2.1.2 Wasserstein GAN (WGAN)

The key challenge of WGAN is the k-Lipschitz constraint

required in Eq. 2. The original WGAN [3] adopt a weight

clipping strategy; however, it satisfies the k-Lipschitz con-

straint poorly. To alleviate this problem, the improved train-

ing of Wasserstein GAN (WGAN-GP) [11] penalizes the

norm of the discriminator’s gradient with respect to a few

input samples. This gradient penalty is then added to the

basic WGAN loss (i.e. the dual form of the WD) resulting in

the following full objective:

min
G

max
D

EX∼PX
[D(X)]− EX̃∼PG

[D(G(Z))]+

λEX̂∼P
X̂
[(‖∇X̂D(X̂)‖2 − 1)2],

(4)

where G,D denotes the generator and discriminator respec-

tively, Z is random noise, X̂ is random samples follow-

ing the distribution PX̂ which is sampled uniformly along

straight lines between pairs of points sampled from PX and

PG, and ∇X̂D(X̂) is the gradient with respect to X̂ . As

studied in [36], a limited number of samples is not sufficient

to impose the k-Lipschitz constraint on a high-dimensional

domain. Thus, [36] further improved the Wasserstein GAN

with an additional consistency term (CTGAN). Furthermore,

[26] introduced a spectral normalization (SN) technique

which also improves the training of GAN including the

family of WGAN. The SNGAN imposes the 1-Lipschitz

constraint by normalizing the weights of each layer. To

strengthen GAN training stability and to achieve high res-

olution image generation, [16] applied WGAN-GP to a

progressive growing scheme (PG-WGAN).

2.2. Sliced Wasserstein Distance & Related Models

The idea underlying the sliced Wasserstein distance

(SWD) is to decompose the challenging estimation of a

high-dimensional distribution into the simpler estimation

of multiple one-dimensional distributions. Formally, let

PX , PY be probability distributions of random variables

X,Y . For a unit vector θ ∈ S
n−1 we define the correspond-

ing inner product πθ(x) = θTx and marginal distribution

π∗
θPX = PX ◦ π−1

θ . Then the primal SWD is given by

SWp(PX , PY ) =

(
∫

Sn−1

Wp(π
∗
θPX , π∗

θPY )
pdθ

)
1
p

.

(5)

Several works [5, 21, 19] exploit the fact that the WD has a

closed form solution for the optimal transport plan between

one-dimensional probability distributions. More concretely,

let FX , FY be the cumulative distribution functions (CDFs)

corresponding to PX , PY , then for all θ ∈ S
n−1 there exists

a unique closed form solution

τθ = (π∗
θFY )

−1 ◦ π∗
θFX , (6)

such that the integrand of Eq. 5 can be computed by

Wp(π
∗
θPX , π∗

θPY )
p =

∫

R

dp(x, τθ(x))dπ
∗
θPX . (7)
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Furthermore, as proven by [6] (Chapter 5), the SWD is not

only a valid distance, but also equivalent3 to the WD

SWp(PX , PY )
p ≤ α1Wp(PX , PY )

p ≤ α2SWp(PX , PY )
1

n+1 ,
(8)

where α1, α2 are constants and n is the dimension of sample

vectors from X,Y . Given such favorable properties, the

SWD has the potential to improve modern generative model-

ing especially when processing samples of high-dimensional

distributions such as images and videos.

The SWD is typically approximated by using a summa-

tion over the projections along random directions (random

projections) [28, 21, 16, 9]. For example, [28] iteratively

use a large number of random projections to estimate the

SWD from samples and update the samples by gradient de-

scent. Similarly, the sliced Wasserstein Generator (SWG) [9]

optimizes its generator with an SWD loss. This SWD loss

computes the difference between marginal distributions of

feature maps decomposed by random projections. Unfor-

tunately, these methods require a large amount of random

projections and have not fully unlocked the potential of the

SWD yet.

3. Proposed Method

Compared to a set of random vectors (projections), a

set of orthogonal projections is more efficient to span an

entire space. Also, neural networks have been shown to

possess robust generalization abilities. We thus propose to

approximate the primal and dual SWD with a small set of

parameterized orthogonal matrices in a deep learning fash-

ion. In the following, we give a detailed description of our

primal and dual SWD approximations. Later, we introduce

two generative modeling applications of the resulting SWD

blocks—sliced Wasserstein AE (SWAE) and sliced Wasser-

stein GAN (SWGAN).

3.1. Primal SWD Approximation

Given i ∈ N, guided by the target distribution PY , we

define the i-th computational block which transfers the input

distribution PXi to PXi+1 as follows

Qi
Θ(x) = Oi

ΘΠ
i
Θ((Oi

Θ)Tx), (9)

where x is a sample vector from PXi , Oi
Θ

= [θi
1, . . . ,θ

i
n] ∈

R
n×n is a random orthogonal matrix, and Π

i
Θ

=
(τ iθ1

, τ iθ2
, . . . , τ iθn

) (Eq. 6) are optimal transport maps with

respect to the marginal distributions of PXi , PY projected by

Oi
Θ

. Stacking m computational blocks Qm
Θ
◦ . . .◦Q2

Θ
◦Q1

Θ

results in the iterative distribution transfer (IDT) method [27].

As studied in [6], let the target distribution PY be Gaussian,

then PXm converges to PY with respect to the primal SWD,

3Here, we adopt the usage of ‘equivalent’ from [6], which is an abuse of

notation.

source n-dim PDF

target n-dim PDF

target 1-dim marginal PDF

source 1-dim marginal PDF

project n-dim PDFs to 

1-dim marginal PDFs 

by orthogonal matrix 

match n-dim PDFs

by comparing 1-dim 

marginal PDFs

(2)

(1)

(3)

Figure 1. Illustration of our primal and dual SWD approximations.

(1) - (2): By projecting samples along orthogonal unit vectors (or-

thogonal matrix), we decompose n-dimensional target and source

probability distribution functions (PDFs) into their one-dimensional

marginal PDFs. (2) - (3): We match the n-dimensional PDFs by

comparing their marginal PDFs. For the primal SWD approxima-

tion, this is done implicitly through the iterative transformation of

source to target distribution. For the dual approximation, the dual

SWD is calculated explicitly.

and the convergence holds when m → ∞. To reduce the

number of computational blocks (Eq. 9) required by IDT, we

propose to parameterize the orthogonal matrices and learn

them in an end-to-end deep learning fashion. As a result, a

small number of such parameterized computational blocks

is sufficient to approximate the primal SWD.

3.2. Dual SWD Approximation

Since the integrand of the SWD (Eq. 5) is nothing but a

one-dimensional WD, its Kantorovich’s dual can be seam-

lessly applied and Eq. 5 can be rewritten as

∫

Sn−1

(

sup
f∈Lipk

EXθ∼π∗
θ
PX

[f(Xθ)]− EYθ∼π∗
θ
PY

[f(Yθ)]

)

dθ.

(10)

Similar to the primal SWD approximation, we propose to

employ orthogonal matrices to estimate the integral over

S
n−1. These orthogonal matrices are also parametrized and

learned in the context of deep learning. It therefore suffices

to use a moderate number of orthogonal matrices to achieve

a good estimation. The proposed SWD approximations are

conceptually illustrated in Fig. 1.

3.3. Sliced Wasserstein AE (SWAE)

Since AE-based generative models require to impose a

prior distribution on the encoder, it is natural to make Eq. 9

learnable and incorporate it into the encoder. By stacking our

primal SWD blocks (layers) on top of the standard encoder,

we give generative capability to the traditional Auto-encoder.

In other words, we can implicitly match the encoder and prior

distributions without introducing an extra regularizer such

as D required in Eq. 3. Specifically, our encoder Q is the

composition of a standard encoding network E and m primal

SWD blocks Sp,1, . . . , Sp,m, that is, Q = Sp,m◦. . .◦Sp,1◦E.
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Algorithm 1 The proposed primal SWD block

Require: Orthogonal matrix OΘ = [θ1, . . . ,θr] ∈ R
r×r ,

batch of latent codes My = [y1, . . . ,yb] ∈ R
r×b, batch of

Gaussian noise Mz = [z1, . . . , zb] ∈ R
r×b, and bin number l

Output: Batch of transferred latent codes Mỹ = [ỹ1, . . . , ỹb]
for i← 1, r do

y′
i = θT

i My, z
′
i = θT

i Mz

y′′
i =

y′
i−minj{y

′
i,j}

maxj{y
′
i,j

}−minj{y
′
i,j

}
, z′′

i =
z′
i−minj{z

′
i,j}

maxj{z
′
i,j

}−minj{z
′
i,j

}
,

y′
i,j , z

′
i,j are the j-th element of y′

i, z
′
i respectively.

Compute soft PDF histogram py′′
i
, pz′′

i
of y′′

i , z
′′
i with l bins

Compute CDF Fy′′
i
, Fz′′

i
of py′′

i
, pz′′

i

Compute Fy′′
i
(y′′

i ) element-wise by linear interpolation

ŷi = (max
j

{z
′
i,j} − min

j
{z

′
i,j})(Fz′′

i
)
−1

Fy′′
i
(y

′′
i ) + min

j
{z

′
i,j}

end for

Compute Mỹ = OΘMT
ŷ , Mŷ = [ŷT

1 , . . . , ŷ
T
r ]

Algorithm 2 The proposed SWAE

Require: Primal SWD block number m, batch size b, decoder

G and encoder Q = Sp,m ◦ . . . ◦ Sp,2 ◦ Sp,1 ◦E, training steps

h, training hyperparameters, etc.

for t← 1, h do

Sample real data Mx = [x1, . . . ,xb] from PX

Sample Gaussian noise Mz = [z1, . . . , zb] fromN (0, 1)
Update the weights w of Q and G by descending:

w ← Adam(∇w( 1
b
‖Mx −G(Q(Mx,Mz))‖

2

2),w)
end for

By feeding the latent codes from E into the primal SWD

blocks Sp,1, . . . , Sp,m, the distribution of latent codes is

transferred to the prior distribution. In this paper, we choose

the prior distribution to be Gaussian, as it is frequently done

for AE-based models. However, supported by [6], more

complicated prior distributions are acceptable as well.

The implementation details of our primal SWD block are

presented in Alg. 1. The idea behind the algorithm is to

decompose Eq. 6 into multiple differentiable computational

steps. However, the conventional histogram computation

is not differentiable. We therefore propose a soft version

of histogram computation to make the PDF histogram com-

putation differentiable. More specifically, for an element y

we assign the weight e−α‖y−ci‖
2

/
∑l

j=1 e
−α‖y−cj‖

2

to the

i-th bin, where c1, . . . , cl are the bin centers. Eventually, we

obtain the histogram by summing the weights for each bin

over all elements y . Note that for α → ∞ this soft version

returns to the original non-differentiable version. In practice,

due to the minor impact of α on the generative capability, we

empirically determine α = 1. As a result, the primal SWD

block (Alg. 1) is differentiable and can be trained in a deep

learning manner.

The approximation error of Alg. 1 is dominated by its

core steps corresponding to Eq. 6. Since Alg. 1 rescales all

sample vectors to [0, 1], the inverse functions of its CDFs

are again CDFs. Together with the fact that a CDF can be

written as an empirical distribution function (EDF) [8], we

obtain the following error estimation for Alg. 1:

Theorem 1. Given b ∈ N, let Z1, Z2, . . . , Zb be real-

valued i.i.d. random variables with a continuous CDF F−1
Z

with domain [0, 1]. Then we define the associated EDF

F−1
Z,b(t) =

1
b

∑b
i=1 1{Zi≤t}. Assume F̃Y , FY are CDFs sat-

isfying ‖F̃Y − FY ‖∞ ≤ γ, then there exists a δ > 0 such

that for all ε− δγ ≥
√

1
2b ln 2 it holds that

Pr
(

‖F−1
Z,bF̃Y (t)− F−1

Z FY (t)‖∞ > ε
)

≤ e−2b(ε−δγ)2 .

(11)

For a proof of Theorem 1 please refer to our supplemen-

tary material. Since it is straightforward to estimate an EDF

on one-dimensional data using a moderate number of sam-

ples, Theorem 1 tells us that the core steps of our primal

SWD block approximate Eq. 6 well. Owing to the implicit

SWD approximation by the primal SWD blocks, it is un-

necessary to introduce an explicit regularization on the final

objective. The objective of our proposed SWAE model is:

inf
PQ(Z|X)∈Q

EX∼PX
EQ∼PQ(Z|X)

[‖X −G(Q(X,Z))‖22],

(12)

where Q,G are the encoder and decoder respectively, and

Q is implicitly constrained by our primal SWD blocks. The

corresponding algorithm is presented in Alg. 2.

3.4. Sliced Wasserstein GAN (SWGAN)

The success of WGAN indicates that the dual WD can

be used as a suitable objective for the discriminator of GAN

models. In order to keep the advantages of this setup, but

to avoid imposing the k-Lipschitz constraint on a high di-

mensional distribution, we propose to use the dual SWD

instead. Specifically, we introduce m dual SWD blocks

Sd,1, . . . , Sd,m to the discriminator D (see Alg. 3). Image

data distributions are supported by low-dimensional mani-

folds. For this reason, classic GAN discriminators encode

their input data into lower-dimensional feature maps. We

follow this setting. Our discriminator is the composition of

an encoding network E and dual SWD blocks Sd,s, that is,

D = [Sd,1 ◦ E, . . . , Sd,m ◦ E]T .

Eventually, we estimate the integral over S
n−1 of the

dual SWD by summing over the outputs’ mean value of

SWD blocks Sd,1, . . . , Sd,m (see Alg. 4). In order to approx-

imate the one-dimensional optimal f ∈ Lipk (Eq. 10) in our

SWD blocks, it suffices to use non-linear neural network

layers. This is supported by the universal approximation

theorem [14, 12]. For our case, we empirically set Fi in

Alg. 3 to be Fi(y
′
i) = uiLeakyReLU(wiy

′
i + vi), where

ui, vi, wi are scalar parameters.

The k-Lipschitz gradient penalty has its drawbacks in

high dimensional space. For one-dimensional functions,
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Algorithm 3 The proposed dual SWD block

Require: Orthogonal matrix OΘ = [θ1, . . . ,θr] ∈ R
r×r and batch

of latent codes My = [y1, . . . ,yb] ∈ R
r×b.

Output: Batch of ỹ for dual SWD

for i← 1, r do

Compute y′
i = θT

i My

Compute y′′
i = Fi(y

′
i) element-wise, where F = (F1, . . . , Fr)

are one-dimensional functions to approximate the f in Eq. 10.

end for

ỹ = [y′′
1 , . . . ,y

′′
b ]

T

Algorithm 4 The proposed SWGAN

Require: Number of dual SWD blocks m, batch size b, generator G

and discriminator D = [Sd,1 ◦E, . . . , Sd,m ◦E]T , latent code dimen-

sion r, Lipschitz constant k, training steps h, training hyperparameters,

etc.

for t← 1, h do

Sample real data Mx = [x1, . . . ,xb] from PX

Sample Gaussian noise Mz = [z1, . . . , zb] fromN (0, 1)
Sample two vectors µ1,µ2 from uniform distribution U [0, 1] and

for l = 1, . . . , b calculate the elements of Mx̂,Mŷ:

x̂l = (1− µ1,l)xl + µ1,lG(zl)
ŷl = (1− µ2,l)E(xl) + µ2,lE(G(zl))
Update the weights wG of G by descending:

wG ← Adam(∇wG
( 1
b

∑r×m,b

j,i=1
Dji(G(Mz))),wG)

Update the weights wD of D by descending:

wD ← Adam(∇wD
( 1
b

∑r×m,b

j,i=1
(Dji(Mx)−Dji(G(Mz))+

λ1‖∇Mx̂
D(Mx̂)‖

2

2+λ2‖∇Mŷ
F (Mŷ)−k ·1‖22),wD), where we

compute the gradients of F element-wise.

end for

however, it can easily impose the k-Lipschitz constraint.

Thus, we additionally apply the gradient penalty on each

dimension of the Fis’ output. Since dual WD with different

k-Lip constraints are equivalent to each other up to a scalar,

we treat k, k′ as tunable hyper-parameters for both F,D and

relax the search interval to k, k′ ≥ 0, this relaxation can be

justified by [37]. Consequently, the final objective is

min
G

max
D

∫

θ∈Sn−1

(

EX∼PX
[D(X)]− E

X̃∼PG
[D(G(Z))]

)

+

λ1EX̂∼P
X̂
[‖∇

X̂
D(X̂)− k′‖22] + λ2EŶ ∼P

Ŷ
[‖∇

Ŷ
F (Ŷ )− k · 1‖22],

(13)

where θ is embedded in D, and 1 is a vector with all entries

being 1. We sample X̂, Ŷ based on [11]. λ1, λ2 are coef-

ficients which balance the penalty terms (see Alg. 4). For

the sake of computational efficiency our objective swaps the

order of maximum and integral compared to Eq. 10. This

exchange results in a lower bound estimation of Eq. 10. It

implies that the objective can lead to the convergence of the

dual SWD.

Discussion. In addition to the proposed SWAE and

SWGAN, it is also possible to apply our proposed primal

and dual SWD approximations to other generative models.

For example, following [25], AE-based models can be en-

hanced by adversarial training using our dual SWD. Inspired

by [30] it is possible to regularize GAN with our primal

SWD. Moreover, by using a sorting algorithm [20] we can

incorporate a simple primal SWD loss into GAN models.

3.5. Training for SWAE and SWGAN

To train the proposed SWAE and SWGAN models,

we utilize the standard Adam optimization algorithm [17].

Throughout training, the projection matrices in the SWD

blocks should remain orthogonal. For this purpose we first

initialize the parameters of SWD blocks with random orthog-

onal matrices through QR decomposition, then update them

on a curved manifold instead of a Euclidean space. Building

upon the manifold-valued update rule [15], we optimize the

orthogonal matrices on Stiefel manifolds4.

In the t-th training step, after computing the Euclidean

gradient ∇L
(k)
Ot

of an orthogonal matrix Ot, we obtain

its tangential component by subtracting Ot(O
T
t ∇L

(k)
Ot

+

(∇L
(k)
Ot

)TOt)/2 (see [7]), where L(k) is the loss for the

k-th layer. For simplicity, we subsequently drop the index

k. Searching along the tangential direction yields the update

in the tangent space of the Stiefel manifold. In the end, the

resulting update is projected back to the Stiefel manifold

by a retraction operation Γ. Accordingly, the update of the

current orthogonal matrix Ot on the Stiefel manifold can be

written in the following form

∇̃LOt
= (∇LOt

−Ot(∇LOt
)TOt)/2, (14)

Ot+1 = Γ(Ot − Ω(∇̃LOt
)), (15)

where Γ denotes the retraction operation corresponding to

QR decomposition and Ω(·) denotes the standard Adam

optimization. Note that the retraction has complexity O(r3)
for r-dimensional data and is the main contributor to the time

complexity of the optimization method. We therefore encode

the n-dimensional input data into r-dimensional latent codes

(r < n) before applying the SWD blocks, such that the

training speed of our method remains comparable to the

existing methods (see Tab. 1). The inference speed is not

affected by the retraction operation.

4. Experiments under Standard Training

After discussing the theoretical merits of SWD and its ap-

plications to generative modeling, we examine the practical

advantages of our proposed models under a standard training

setting.

4.1. Evaluation on Toy Datasets

Following [11], we first conduct experiments on three

toy datasets: Swiss Roll, 8 Gaussians and 25 Gaussians (see

Fig. 2). For a fair comparison, we respect the experimental

settings of [11] for the compared methods. For this exper-

iment, the SWAE and SWGAN use only one SWD block.

4A compact Stiefel manifold St(d, n) is defined as St(d, n) = {A ∈
Rn×d : ATA = Id}, where Id is the d× d identity matrix.
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WAE AE +100 IDT SWAE CT-GAN SWG SWGAN

0.04 (0.06) 0.05 (0.06) 0.04 (0.04) 0.01 0.03 0.01

0.07 (0.04) 0.06 (0.06) 0.03 (0.02) 0.03 0.05 0.02

0.05 (0.03) 0.05 (0.06) 0.04 (0.02) 0.02 0.05 0.01

Figure 2. Visual and FID results for generated samples (green dots)

compared to real samples (yellow dots) on Swiss Roll (top row), 8

Gaussians (middle row) and 25 Gaussians (bottom row). For the

AE-based models, the FID scores displayed in parentheses indicate

the discrepancy between generated latent codes and real noise. For

the GANs, value surfaces of the discriminators are also plotted.

The superiority of our models is illustrated by visual results

and the Fréchet inception distance (FID) [13].

SWD vs WD. Compared to the WD-based models–WAE

and CTGAN–Fig. 2 shows that our SWAE outperforms WAE

both visually and quantitatively. SWGAN also achieves bet-

ter scores than CTGAN. These results support the advantages

of SWD over WD for generative modeling.

SWAE vs AE + IDT. IDT [27] is the starting point of our

SWAE. Thus, we also use it as a baseline. For this purpose,

we stack IDT blocks on top of a regular encoder. We deter-

mine the optimal number of IDT blocks to be 100 by running

multiple experiments. Then we train the IDT enhanced AE

(AE + 100 IDT) under the standard Adam optimization. The

FID scores in parentheses in Fig. 2 indicate that our SWAE,

equipped with only one SWD block, better approximates

the real noise distribution than the IDT enhanced AE with

100 IDT blocks. Moreover, the visual results confirm the

improvement of SWAE over AE + 100 IDT for all three

datasets. This shows that a single learnable primal SWD

block is more effective than multiple original IDT blocks.

SWGAN vs SWG. We compare our SWGAN to the state-of-

the-art SWD-based GAN model SWG [9]. SWG is a typical

application of SWD approximation with projections along

random unit vectors. Despite the use of 10000 random unit

vectors in SWD, Fig. 2 shows that our SWGAN with only

one dual SWD block (128 orthogonal unit vectors) is more

successful at capturing the real data distribution in terms

of better visual and better FID results, leveraging learnable

projections along orthogonal unit vectors.

4.2. Evaluation on Standard Datasets

In addition to our toy dataset experiments, we also con-

duct various experiments on three widely-used benchmarks:

CIFAR-10 CelebA LSUN CIFAR-10 CelebA

VAE 144.7±9.6 66.8±2.2 – 0.16s 0.64s

WAE-MMD 109.1±1.5 59.1±4.9 – 0.17s 0.63s

AAE (WAE-GAN) 107.7±2.1 49.3±5.8 – 0.25s 1.61s

SWAE 107.9±5.2 48.9±4.3 – 0.16s 0.37s

DCGAN 30.2 ± 0.9 52.5 ± 2.2 61.7 ± 2.9 0.13s 1.57s

WGAN 51.3 ± 1.5 37.1 ± 1.9 73.3 ± 2.5 0.25s 2.12s

WGAN-GP 19.0 ± 0.8 18.0 ± 0.7 26.9 ± 1.1 0.60s 2.40s

SNGAN 21.5 ± 1.3 21.7 ± 1.5 31.3 ± 2.1 0.21s 0.53s

CTGAN 17.6 ± 0.7 15.8 ± 0.6 19.5 ± 1.2 0.63s 2.61s

SWG 33.7 ± 1.5 21.9 ± 2.0 67.9 ± 2.7 0.22s 0.83s

SWGAN 17.0 ± 1.0 13.2 ± 0.7 14.9 ± 1.0 0.64s 2.74s

Table 1. FID (left) and runtime (right) comparison of AE-based and

GAN models. The runtime is computed for one training step on a

TITAN Xp GPU.

CIFAR-10 [22], CelebA [24], and LSUN [38]. We com-

pare our SWAE to VAE [18], WAE-MMD [31], and AAE

(WAE-GAN) [31, 25]. For GAN models, we compare

our SWGAN against DCGAN [29], WGAN [3], WGAN-

GP [11], SNGAN [26], CTGAN [36], and SWG [9].

Our proposed SWAE uses the decoder architecture sug-

gested by [4]. For the encoder, we stack our primal SWD

blocks on a shallow encoding network containing a down-

scaling and linear transform layer. Our SWGAN employs

the ResNet structure used by [11] for the generator. For the

discriminator, we apply our dual SWD blocks to an encoding

network containing multiple ResNet layers. Please refer to

our supplementary material for more architecture details. As

to the compared methods, we use the official implementation

if it is available online, and we apply the optimal settings

tuned by their authors.

The evaluations of AE-based models in Tab. 1, Fig. 3

(Right: MTurk preference score) and Fig. 4 show that our

proposed SWAE clearly outperforms the pure VAE model.

Furthermore, our FID score is only marginally higher than

the one of AAE (WAE-GAN), which additionally employs

adversarial training. Due to this adversarial training, AAE

(WAE-GAN) is generally less stable, while our model pro-

vides stable training (see Fig. 3 (Left a)) owing to a simple

l2 reconstruction loss without any additional regularizer.

Tab. 1 and Fig. 3 (Right) highlight the advantages of

our SWGAN model in terms of FID and MTurk preference

score. Relying on extra label information, SNGAN achieved

a competitive FID score of 17.5 on CIFAR-10 as reported

in [26]. Meanwhile, our SWGAN reaches an even lower

score of 17.4 without the use of ground truth labels. The

visual results reported in Fig. 4 are consistent with the FID

scores in Tab. 1. We believe that the good performance of

SWGAN mainly results from the efficient approximation of

the proposed SWD on multiple one-dimensional marginal

distributions of the training data.

Stability Study. In addition to the optimal architecture

comparison, we also study the model stability under a variety

of settings: ConvNet and ResNet, with normalization (w/

norm) and without normalization (w/o norm). As shown in

Tab. 2, our proposed models are less sensitive in terms of

FID scores, which is credited to the easier approximation of
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Human Preference Score

SWAE / VAE 0.74 / 0.26

SWAE / WAE-MMD 0.55 / 0.45

SWAE / AAE (WAE-GAN) 0.48 / 0.52

SWGAN / WGAN-GP 0.61 / 0.39

SWGAN / SNGAN 0.66 / 0.34

SWGAN / CTGAN 0.56 / 0.44

SWGAN / SWG 0.69 / 0.31

PG-SWGAN / PG-WGAN 0.55 / 0.45

PG-SWGAN-3D / VGAN 0.91 / 0.09

PG-SWGAN-3D / MoCoGAN 0.95 / 0.05

PG-SWGAN-3D / PG-WGAN-3D 0.54 / 0.46

Figure 3. Left: Training and hyperparameter study for SWAE (top row) and SWGAN (bottom row). Right: Preference score from MTurk

user study for generated images on CelebA and synthesized videos on TrailerFaces.

ResNet (w/ norm) ResNet (w/o norm) ConvNet (w/ norm) ConvNet (w/o norm)

WAE-MMD 64.0 61.8 55.8 67.8

AAE (WAE-GAN) 62.3 56.7 48.3 66.1

SWAE 63.2 59.1 65.2 48.6

CTGAN 16.0 16.5 19.5 19.7

SWG 24.3 29.1 22.2 28.5

SWGAN 13.0 14.8 19.2 18.8

Table 2. FID scores of various architectures on CelebA. The opti-

mal architectures are ConvNet for SWG, WAE-MMD, AAE (WAE-

GAN), ResNet for CTGAN, SWGAN, and ConvNet without nor-

malization (w/o norm) for SWAE.

SWD (see visual results in supplementary material).

Training and Hyperparameters. Fig. 3 (Left b, f) show

that the visual quality produced by our SWAE and SWGAN

increases progressively with increasing training iterations.

Also, using a small number of SWD blocks—3 primal and 4
dual blocks (Fig. 3 (Left c, g))—is sufficient to achieve top

performances. The 4 dual blocks (4×128 unit vectors) in our

SWGAN, stand in contrast to the 10000 random unit vectors

required by SWG [9]. This confirms the efficiency of our

learnable SWD blocks. In another experiment, we study the

impact of the Lipschitz constant k, k′ for SWGAN and bin

number l for SWAE. Fig. 3 (Left d, h) show that SWGAN

favors relatively small values of k. k′ is determined to be 0

(see supplementary material). The optimal bin number for

SWAE is 32. By analyzing the trade-off between computa-

tional complexity and performance, we set the r-dimension

to 128 (Alg. 1, 3). We also determine λ1, λ2 (Eq. 13) to be

20, 10 using grid search. Both studies are presented in the

supplementary material. The learning rate of SWGAN and

SWAE is determined empirically to be 0.0003. Finally, we

set the discriminator iterations per training step of SWGAN

to 4 for LSUN and CelebA and 5 for CIFAR-10.

5. Experiments under Progressive Training

Encouraged by the visual quality and stability improve-

ments on standard benchmarks, we evaluate our proposed

model for high resolution image and video generation under

the progressive training manner suggested by [16].

Higher Resolution Image Generation. For this task, we

use the CelebA-HQ [16] and LSUN [38] datasets, which

contain 1024×1024 and 256×256 images respectively. To

improve high resolution image generation, [16] introduces a

progressive growing training scheme for GANs (PG-GAN).

PG-GAN uses WGAN-GP loss (PG-WGAN) to achieve

state-of-the-art high resolution image synthesis. For fair

comparison, we equip the same progressive growing archi-

tecture with our proposed SWGAN objective and its dual

SWD blocks (PG-SWGAN). As shown in Fig. 3 (Right)

and Fig. 5, our PG-SWGAN can outperform PG-WGAN in

terms of both qualitative and quantitative comparison on the

CelebA-HQ and LSUN datasets.

Higher Resolution Video Generation. We introduce a new

baseline unsupervised video synthesis method along with a

new facial expression video dataset5. The dataset contains

approximately 200,000 individual clips of various facial ex-

pressions, where the faces are cropped with 256×256 resolu-

tion from about 6,000 Hollywood movie trailers on YouTube.

Thus, we name the dataset as TrailerFaces. For progressive

video generation, we exploit a new PG-GAN network de-

sign for unsupervised video generation. We progressively

scale the network in spatio-temporal dimension such that

it can produce spatial appearance and temporal movement

smoothly from coarse to fine. Fig. 3 (Right) shows the superi-

ority of our model over the state-of-the-art methods [34, 32]

in terms of preference score. For qualitative comparison,

please refer to our supplementary videos.

Based on the proposed PG-GAN design, we evaluate the

original WGAN loss (PG-WGAN-3D) and our proposed

SWGAN loss (PG-SWGAN-3D). Fig. 3 (Right) and Fig. 5

present their qualitative and quantitative comparison. For

the FID evaluation, we follow [35] to compute the video

FID scores for PG-WGAN-3D and PG-SWGAN-3D. The

higher preference score (Fig. 3 (Right)) and the lower FID

score (Fig. 5) of our PG-SWGAN-3D reflect the advantage

of using our proposed SWGAN.

Limitations. For pure AE-based generative models, includ-

ing SWAE, the extension to high resolution image and video

synthesis tasks is non-trivial. The challenges for SWAE

to generate high quality images and videos on par with

SWGAN remain. We plan to address this performance gap

in future research.

5Both the baseline code and dataset will be released at https://

github.com/musikisomorphie/swd.git
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VAE WAE-MMD AAE (WAE-GAN) SWAE

CIFAR-10

CelebA

SWG CTGAN WGAN-GP SWGAN

CIFAR-10

CelebA

LSUN

Figure 4. Visual results for SWAE, SWGAN, and compared methods. More results are available in the supplementary material.

PG-WGAN PG-SWGAN

CelebA-HQ

7.5 5.5

LSUN

8.4 8.0

PG-WGAN-3D PG-SWGAN-3D

TrailerFaces

462.6 404.1

Figure 5. Visual and FID results for compared methods on higher resolution images/videos. More results are available in the supplementary.

6. Conclusion

In this paper, we introduce a novel way of efficiently

approximating the primal and dual SWD. As concrete ap-

plications, we enhance modern AE-based and GAN models

with the resulting primal and dual SWD blocks. For image

and video synthesis, both qualitative and quantitative results

show the superiority of our models over other approaches.
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Hinne, Marcel AJ van Gerven, and Eric Maris. Wasserstein

variational inference. In NIPS, 2018. 1

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasser-
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Pfister. Sliced and radon Wasserstein barycenters of measures.

Journal of Mathematical Imaging and Vision, 51(1):22–45,

2015. 1, 2

[6] Nicolas Bonnotte. Unidimensional and evolution methods for

optimal transportation. PhD thesis, Paris 11, 2013. 3, 4

[7] Nicolas Boumal, Bamdev Mishra, P-A Absil, and Rodolphe

Sepulchre. Manopt, a matlab toolbox for optimization on

manifolds. The Journal of Machine Learning Research,

15(1):1455–1459, 2014. 5

[8] Rui Castro. The empirical distribution function and the his-

togram. Lecture Notes, 2WS17-Advanced Statistics. Depart-

ment of Mathematics, Eindhoven University of Technology,

2015. 4

[9] Ishan Deshpande, Ziyu Zhang, and Alexander Schwing. Gen-

erative modeling using the sliced Wasserstein distance. In

CVPR, 2018. 1, 3, 6, 7

[10] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning
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