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Abstract

We propose the Unified Visual-Semantic Embeddings

(Unified VSE) for learning a joint space of visual representa-

tion and textual semantics. The model unifies the embeddings

of concepts at different levels: objects, attributes, relations,

and full scenes. We view the sentential semantics as a combi-

nation of different semantic components such as objects and

relations; their embeddings are aligned with different image

regions. A contrastive learning approach is proposed for the

effective learning of this fine-grained alignment from only

image-caption pairs. We also present a simple yet effective

approach that enforces the coverage of caption embeddings

on the semantic components that appear in the sentence. We

demonstrate that the Unified VSE outperforms baselines on

cross-modal retrieval tasks; the enforcement of the seman-

tic coverage improves the model’s robustness in defending

text-domain adversarial attacks. Moreover, our model em-

powers the use of visual cues to accurately resolve word

dependencies in novel sentences.

1. Introduction

We study the problem of establishing accurate and gener-

alizable alignments between visual concepts and textual se-

mantics efficiently, based upon rich but few, paired but noisy,

or even biased visual-textual inputs (e.g., image-caption

pairs). Consider the image-caption pair A shown in Fig. 1:

“A white clock on the wall is above a wooden table”. The align-

ments are formed at multiple levels: This short sentence can

be decomposed into a rich set of semantic components [3]:

∗indicates equal contribution.
†Work was done when HW, JM and YZ were intern researchers at the

Bytedance AI Lab.
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Figure 1. Two examplar image-caption pairs. Humans are able to

establish accurate and generalizable alignments between vision and

language, at different levels: objects, relations and full sentences.

Pair A and B form a pair of contrastive example for the concepts

clock and basin.

objects (clock, table and wall) and relations (clock

above table, and clock on wall). These components are

linked with different parts of the scene.

This motives our work to introduce Unified Visual-

Semantic Embeddings (Unified VSE for short) Shown in

Fig. 2, Unified VSE bridges visual and textual representation

in a joint embedding space that unifies the embeddings for

objects (noun phrases vs. visual objects), attributes (prenom-

inal phrases vs. visual attributes), relations (verbs or prepo-

sitional phrases vs. visual relations) and scenes (sentence vs.

image).

There are two major challenges in establishing such a

factorized alignment. First, the link between the textual

description of an object and the corresponding image region

is ambiguous: A visual scene consists of multiple objects,

and thus it is unclear to the learner which object should be

aligned with the description. Second, it could be problematic

to directly learn a neural network that combines various

semantic components in a caption and form an encoding for

the full sentence, with the training objective to maximize the
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Figure 2. We build a visual-semantic embedding space, which

unifies the embeddings for objects, attributes, relations and full

scenes.

cross-modal retrieval performance in the training set (e.g., in

[49, 30, 40]). As reported by [40], because of the inevitable

bias in the dataset (e.g., two objects may co-occur with each

other in most cases, see the table and the wall in Fig. 1

as an example), the learned sentence encoders usually pay

attention to only part of the sentence. As a result, they are

vulnerable to text-domain adversarial attacks: Adversarial

captions constructed from original captions by adding small

perturbations (e.g., by changing wall to be shelf) can

easily fool the model [40, 39].

We resolve the aforementioned challenges by a natu-

ral combination of two ideas: cross-situational learning

and the enforcement of semantic coverage that regularizes

the encoder. Cross-situational learning, or learning from

contrastive examples [12], uses contrastive examples in the

dataset to resolve the referential ambiguity of objects: Look-

ing at both Pair A and B in Fig. 1, we know that Clock

should refer to an object that occurs only in scene A but

not B. Meanwhile, to alleviate the biases of datasets such as

object co-occurrence, we present an effective approach that

enforces the semantic converage: The meaning of a caption

is a composition of all semantic components in the sentence

[3]. Reflectively, the embedding of a caption should have a

coverage of all semantic components, while changing any of

them should affect the global caption embedding.

Conceptually and empirically, Unified VSE makes the

following three contributions.

First, the explicit factorization of the visual-semantic em-

bedding space enables us to build a fine-grained correspon-

dence between visual and textual data, which further benefits

a set of downstream visual-textual tasks. We achieve this

through a contrastive example mining technique that uni-

formly applies to different semantic components, in contrast

to the sentence or image-level contrastive samples used by

existing visual-semantic learning [49, 30, 11]. Unified VSE

consistently outperforms pre-existing approaches on a di-

verse set of retrieval-based tasks.

Second, we propose a caption encoder that ensures a cov-

erage of all semantic components appeared in the sentence.

We show that this regularization helps our model to learn

a robust semantic representation for captions. It effectively

defends adversarial attacks on the text domain.

Furthermore, we show how our learned embeddings can

provide visual cues to assist the parsing of novel sentences,

including determining content word dependencies and la-

belling semantic roles for certain verbs. It ends up that our

model can build reliable connections between vision and

language using given semantic cues and in return, bootstrap

the acquisition of language.

2. Related work

Visual semantic embedding. Visual semantic embedding

[13] is a common technique for learning a joint represen-

tation of vision and language. The embedding space em-

powers a set of cross-modal tasks such as image captioning

[43, 48, 8] and visual question answering [4, 47].

A fundamental technique proposed in [13] for aligning

two modalities is to use the pairwise ranking to learn a dis-

tance metric from similar and dissimilar cross-modal pairs

[44, 35, 23, 9, 28, 24]. As a representative, VSE++ [11] uses

the online hard negative mining (OHEM) strategy [41] for

data sampling and shows the performance gain. VSE-C [40],

based on VSE++, enhances the robustness of the learned

visual-semantic embeddings by incorporating rule-generated

textual adversarial samples as hard negatives during training.

In this paper, we present a contrastive learning approach

based on semantic components.

There are multiple VSE approaches that also use

linguistically-aware techniques for the sentence encoding

and learning. Hierarchical multimodal LSTM (HM-LSTM)

[33] and [46], as two examples, both leverage the con-

stituency parsing tree. Multimodal-CNN (m-CNN) [30] and

CSE [49] apply convolutional neural networks to the caption

and extract the a hierarchical representation of sentences.

Our model differs with them in two aspects. First, Unified

VSE is built upon a factorized semantic space instead of

the syntactic knowledge. Second, we employ a contrastive

example mining approach that uniformly applies to different

semantic components. It substantially improves the learned

embeddings, while the related works use only sentence-level

contrastive examples.

The learning of object-level alignment in unified VSE is

also related to [19, 21, 36], where the authors incorporate

pre-trained object detectors for the semantic alignment. [10]

propose a selective pooling technique for the aggregation of

object features. Compared with them, Unified VSE presents

a more general approach that embeds concepts of different

levels, while still requiring no extra supervisions.

Structured representation for vision and language. We

connect visual and textual representations in a structured

embedding space. The design of its structure is partially

motivated by the papers on relational visual representations

(scene graphs) [29, 18, 17], where a scene is represented by

a set of objects and their relations. Compared with them, our

6610



“ ”

“ ”

“ ”

“ ”

   

     

       

 

       

“ ”

“ ”

“ ”

“ ”

“ ”

     
 

“ ”

“ ”

“ ”

     
 

“

”

“ ”

“ ”

C
N

N

Object

Encoder

Share

Global 

Pooling

1x1 conv

Object

Encoder

Object

Encoder

Neural 

Combiner

Share

Share

Embeddings of 

Image Local Regions

Sentence 

Combination

Global Image 

Embedding

clock 

A white clock on the wall is above a table.

tableabovewhite clock 

Object

Encoder

Share

white clock 

Semantic Component 

Combination

Semantic Component Alignment Loss

Neural 

Combiner

0.63 0.110.08 0.03( )basic

nw

( )modif

aw

( )modif

nw

( )basic

nw

uobj uattr urel usent

ucomp

ucap

uobj

uattr

urel

obj attr rel

sent

comp

Share

Text-to-Image Retrieval

“ ”

“ ”

“ ”

“

”

Caption Alignment Loss

ucomp

usent

v

object 

alignment

attribute 

alignment

relation 

alignment
Caption Embedding 

for Retrieval

V

7×7×d

Figure 3. Left: the architecture of Unified VSE. The semantic component alignment is learned from contrastive examples sampled from

factorized semantic space. The model also learns a caption encoder that combines the semantic components and aligns the caption with

the corresponding image. Right: An exemplar computation graph for retrieving images from texts. The presence of ucomp in the caption

encoding enforces the coverage of all semantic components. See Sec. 3.2 for details.

model does not rely on labelled graphs during training.

Researchers have designed various types of representa-

tions [5, 32] as well as different models [26, 50] for trans-

lating natural language sentences into structured represen-

tations. In this paper, we present how the usage of such

semantic parsing into visual-semantic embedding facilitates

the learning of the embedding space. Moreover, we present

how the learned VSE can, in return, helps the parser to re-

solve parsing ambiguities using visual cues.

3. Unified Visual-Semantic Embeddings

We now describe the overall architecture and training

paradigm for the proposed Unified Visual-Semantic Embed-

dings. Shown in Fig. 3, given an image-caption pair, we

first parse the caption into a structured meaning represen-

tation, composed by a set of semantic components: object

nouns, prenominal modifiers, and relational dependencies.

We encode different types of semantic components with

type-specific encoders. A caption encoder combines the em-

bedding of the semantic components into a caption semantic

embedding. Jointly, we encode images with a convolutional

neural network (CNN) into the same, unified VSE space. The

distance between the image embedding and the sentential

embedding measures the semantic similarity between the

image and the caption.

We employ a multi-task learning approach for the joint

learning of embeddings for semantic components (as the

“basis” of the VSE space) as well as the caption encoder (as

the combiner of semantic components).

3.1. Visual-Semantic Embedding: A Revisit

We begin the section with an introduction to the two-

stream VSE approach. It jointly learns the embedding spaces

of two modalities: vision and language, and aligns them

using parallel image-text pairs (e.g., image and captions

from the MS-COCO dataset [27]).

Let v 2 R
d be the representation of the image and

u 2 R
d be the representation of a caption matching this

image, both encoded by neural modules. To archive the align-

ment, a bidirectional margin-based ranking loss has been

widely applied [11, 49, 15]. Formally, for an image (cap-

tion) embedding v (u), denote the embedding of its matched

caption (image) as u+ (v+). A negative (unmatched) cap-

tion (image) is sampled whose embedding is denoted as u−

(v−). We define the bidirectional ranking loss `sent between

captions and images as:

`sent =
X

u

F
v
−

�

|� + s(u,v−)� s(u,v+)|+
�

+
X

v

F
u

−

�

|� + s(u−,v)� s(u+,v)|+
�

(1)

, where � is a predefined margin, |x|+ = max(x, 0) is the tra-

ditional ranking loss and Fx(·) = maxx(·) denotes the hard

negative mining strategy [11, 41]. s(·, ·) is a similarity func-

tion between two embeddings and is usually implemented

as cosine similarity [11, 40, 49].

3.2. Semantic Encodings

The encoding of a caption is made up of three steps.

As an example, consider the caption shown in Fig. 3, “A

white clock on the wall is above a wooden table”. 1)

We extract a structured meaning representation as a col-

lection of three types of semantic components: object

(clock, wall, table), attribute-object dependencies

(white clock, wooden table) and relational dependencies

(clock above table, clock on wall). 2) We encode each

component as well as the full sentence with type-specific

encoders into the unified VSE space. 3) We compose the em-

bedding of the caption by combining semantic components.

Semantic parsing. We implement a semantic parser 1 of

image captions based on [38]. Given the input sentence, the

parser first performs a syntactic dependency parsing. A set

of rules is applied to the dependency tree and extracts object

entities appeared in the sentence, adjectives that modify the

1https://github.com/vacancy/SceneGraphParser
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object nouns, subjects/objects of the verbs and prepositional

phrases. For simplicity, we consider only single-word nouns

for objects and single-word adjectives for object attributes.

Encoding objects and attributes. We use an unified object

encoder � for nouns and adjective-noun pairs. For each word

w in the vocabulary, we initialize a basic semantic embed-

ding w
(basic) 2 R

dbasic and a modifier semantic embedding

w
(modif) 2 R

dmodif .

For a single noun word wn (e.g., clock), we define its

embedding wn as w
(basic)
n � w

(modif)
n , where � means

the concatenation of vectors. For an (adjective, noun) pair

(wa, wn) (e.g., (white, clock)), its embedding wa,n is

defined as w
(basic)
n �w

(modif)
a where w

(modif)
a encodes the

attribute information. In implementation, the basic semantic

embedding is initialized from GloVe [34]. The modifier

semantic embeddings (both w
(modif)
n and w

(modif)
a ) are

randomly initialized and jointly learned. w
(modif)
n can be

regarded as an intrinsic modifier for each nouns.

To fuse the embeddings of basic and modifier semantics,

we employ a gated fusion function:

�(wn) = Norm(�(W1wn + b1)) tanh(W2wn + b2)),

�(wa,n) = Norm(�(W1wa,n + b1) tanh(W2wa,n + b2)).

Throughout the text, � denotes the sigmoid function: �(x) =
1/(1 + exp(�x)), and Norm denotes the L2 normalization,

i.e., Norm(w) = w/kwk2. One may interpret � as a GRU

cell [7] taking no historical state.

Encoding relations and full sentence. Since relations and

sentences are the composed based on objects, we encode

them with a neural combiner  , which takes the embeddings

of word-level semantics encoded by � as input. In practice,

we implement  as an uni-directional GRU [7], and pick the

L2-normalized last state as the output.

To obtain a visual-semantic embedding for a relational

triple (ws, wr, wo) (e.g., (clock, above, table)), we

first extract the word embeddings for the subject, relational

word and the object using �. We then feed the encoded

word embeddings in the same order into  and takes the

L2-normalized last state of the GRU cell. Mathematically,

urel =  (ws, wr, wo) =  ({�(ws),�(wr),�(wo)}).
The embedding of a sentence usent is computed over the

word sequence w1, w2, · · ·wk of the caption:

usent =  ({�(w1),�(w2), · · · ,�(wk)}),

where for any word x, �(wx) = �(w
(basic)
x �w

(modif)
x )

Note that we share the weights of the encoders  and �

among the encoding processes of all semantic levels. This

allows our encoders of various types of components to boot-

strap the learning of each other.

Combining all of the components. A straight-forward im-

plementation of the caption encoder is to directly use the

sentence embedding usent, as it has already combined the

semantics of components in a contextually-weighted manner

[25]. However, it has been revealed in [40] that such com-

bination is vulnerable to adversarial attacks: Because of the

biases in the dataset, the combiner  usually focuses on only

a small set of semantic components appeared in the caption.

We alleviate such biases by enforcing the coverage

of the semantic components appeared in the sentence.

Specifically, to form the caption embedding ucap, the

sentence embedding usent is combined with an explicit

bag-of-components embedding ucomp, as illustrated in

Fig. 3 (right). Mathematically, we define ucomp is computed

by the aggregation of all components in the sentence:

ucomp = Norm (Φ ({uobj} [ {uattr} [ {urel})),

where Φ(·) is the aggregation function of semantic compo-

nents. Then the caption is encoded as: ucap = ↵usent +
(1 � ↵)ucomp, where 0  ↵  1 is a scalar weight. The

presence of ucomp disallows the ignorance of any of the

components in the final caption embedding ucap.

3.3. Image Encodings

We use CNN to encode the input RGB image into the

unified VSE space. Specifically, we choose a ResNet-152

model [14] pretrained on ImageNet [37] as the image en-

coder. We apply a layer of 1⇥ 1 convolution on top of the

last convolutaion layer (i.e., conv5_3) and obtain a convo-

lutional feature map of shape 7 ⇥ 7 ⇥ d for each image. d
denotes the dimension of the unified VSE space.

The feature map, denoted as V 2 R
7×7×d, can be view

as the embeddings of 7⇥ 7 local regions in the image. The

embedding v for the whole image is defined as the aggrega-

tion Ψ(·) of the embeddings at all regions through a global

spatial pooling operator.

3.4. Learning Paradigm

In this section, we present how to align vision and lan-

guage into the unified space using contrastive learning on

different semantic levels. The training pipeline is illustrated

in Fig. 3. We start from the generation of contrastive exampls

for different semantic components.

Negative example sampling. It has been discussed in [40]

that to explore a large compositional space of semantics, di-

rectly sampling negative captions from a human-built dataset

(e.g., MS-COCO captions) is not sufficient. In this paper, in-

stead of manually define rules that augment the training data

as in [40], we address this problem by sampling contrastive

negative examples in the explicitly factorized semantic space.

The generation does not require manually labelled data, and

can be easily applied to any datasets. For a specific caption,

we generate the following four types of contrastive negative

samples.
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• Nouns. We sample negative noun words from all nouns

that do not appear in the caption. 2

• Attribute-noun pairs. We sample negative pairs by

randomly substituting the adjective by another adjective

or substituting the noun.

• Relational triples. We sample negative triples by ran-

domly substituting the subject, or the relation, or the

object. Moreover, we also sample the whole relational

triples of captions in the dataset which describe other

images, as the negative triples.

• Sentences. We sample negative sentences from the

whole dataset. Meanwhile, following [13, 11], we also

sample negative images from the whole dataset as con-

trastive images.

The key motivation behind our visual-semantic alignment

is that: an object appears in a local region of the image, while

the aggregation of all local regions should be aligned with

the full semantics of a caption.

Local region-level alignment. In detail, we propose a

relevance-weighted alignment mechanism for linking textual

object descriptors and local image regions. As shown in

Fig. 4, consider the embedding of a positive textual object

descriptor u+
o , a negative textual object descriptor u−

o and

the set image local region embeddings Vi where i 2 7⇥ 7
extracted from the image. We generate a relevance map

M 2 R
7×7 with Mi, i 2 7 ⇥ 7 representing the relevance

between u
+
o and Vi, computed as as Eq. (2). We compute

the loss for noun and (adjective, noun) pairs by:

Mi =
exp(s(u+

o ,Vi))
P

j exp(s(u
+
o ,Vj))

(2)

`obj =
X

i∈7×7

⇣

Mi ·
�

�� + s(u−

o ,Vi)� s(u+
o ,Vi)

�

�

+

⌘

(3)

The intuition behind the definition is that, we explicitly try

to align the embedding at each image region with u
+
o . The

losses are weighted by the matching score, thus reinforce the

correspondence between u
+
o and the matched region. This

technique is related to multi-instance learning [45].

Global image-level alignment. For relational triples urel,

semantic components aggregations ucomp and sentences

usent, their semantics usually cover multiple objects. Thus,

we align them with the full image embedding v via bidi-

rectional ranking losses as Eq. (1)3. The alignment loss is

denoted as `rel, `comp and `sent, respectively.

We want to highlight that, during training, we separately

align the two type of semantic representations of the caption,

i.e., usent and ucomp, with the image. This differs from the

inference-time computation of the caption. Recall that ↵ can

be viewed as a factor that balances the training objective and

2For the MS-COCO dataset, in all 5 captions associated with the same

image. This also applies to other components.
3Only textual negative samples are used for `rel.
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Figure 4. An illustration of our relevance-weighted alignment mech-

anism. The relevance map shows the similarity of each region with

the object embedding u<clock>. We weight the alignment loss with

the map to reinforce the correspondence between the u<clock> and

its matched region.

the enforcement of semantic coverage. This allows us to

flexibly adjust ↵ during inference.

3.5. Implementation details

We use d = 1024 as the dimension of the unified VSE

space like [11, 40, 49]. We train the model by minimizing

the alignment losses in a multi-task learning way.

` = `sent + ⌘c`comp + ⌘o`obj + ⌘a`attr + ⌘r`rel (4)

In the first 2 epochs, we set ⌘c, ⌘o and ⌘a to 0.5 and ⌘r to 0

for learning single-object level representations. Then we turn

up ⌘r to 1.0 to make the model learn relational semantics. To

make the comparison with related works fair, we always fix

the weights of the ResNet. We use the Adam [22] optimizer

with learning rate at 0.001. For model details, please refer to

our supplementary material.

4. Experiments

We evaluate our model on the MS-COCO [27] dataset. It

contains 82,783 training images with each image annotated

by 5 captions. We use the common 1K validation and test

split from [19]. We also report the performance on a 5K test

split for comparison with [49, 11, 42].

We begin this section with the evaluation of traditional

cross-modal retrieval. Next, we validate the effectiveness of

enforcing the semantic coverage of caption embeddings by

comparing models on cross-modal retrieval tasks with ad-

versarial examples. We then propose a unified text-to-image

retrieval task to support the contrastive learning on various

semantic components. We end this section with an applica-

tion of using visual cues to facilitate the semantic parsing

of novel sentences. Due to the limitation of the text length,

for mode details on data processing, metrics and model im-

plementation, we refer the readers to our supplementary

material.

4.1. Overall Evaluation on Cross-Modal Retrieval.

We first show the performance of image-to-sentence and

sentence-to-image retrieval tasks to evaluate learned visual-

semantic embeddings. We report the R@1 (recall@1), R@5,

6613



Task Image-to-sentence Retrieval Sentence-to-image Retrieval

Metric R@1 R@5 R@10 Med. r R@1 R@5 R@10 Med. r rsum

1K testing split (5,000 captions)

m-RNN [31] 41.0 73.0 83.5 2 29.0 42.2 77.0 3 345.7

DVSA [20] 38.4 69.9 80.5 1 27.4 60.2 74.8 3 351.2

MNLM [24] 43.4 75.7 85.8 - 31.0 66.7 79.9 - 382.5

m-CNN [30] 42.8 73.1 84.1 3 32.6 68.6 82.8 3 384.0

HM-LSTM[33] 43.9 - 87.8 2 36.1 - 86.7 3 -

Order-embedding [42] 46.7 - 88.9 2 37.9 - 85.9 2 -

VSE-C [40, 1] 48.0 81.0 89.2 2 39.7 72.9 83.2 2 414

DeepSP[44] 50.1 79.7 89.2 - 39.6 75.2 86.9 - 420.7

2WayNet [9] 55.8 75.2 - - 39.7 63.3 - - -

sm-LSTM [15] 53.2 83.1 91.5 1 40.7 75.8 87.4 2 431.8

RRF-Net[28] 56.4 85.3 91.5 - 43.9 78.1 88.6 - 443.8

VSE++ [11, 2] 57.7 86.0 94.0 1 42.8 77.2 87.4 2 445.1

CSE[49] 56.3 84.4 92.2 1 45.7 81.2 90.6 2 450.4

UniVSE (Ours) 64.3 89.2 94.8 1 48.3 81.7 91.2 2 469.5

5K testing split (25,000 captions)

Order-embedding [42] 23.3 - 65.0 5 18.0 - 57.6 7 -

VSE-C[11, 1] 22.3 51.1 65.1 5 18.7 43.8 56.7 7 257.7

CSE[49] 27.9 57.1 70.4 4 22.2 50.2 64.4 5 292.2

VSE++[11, 2] 31.7 60.9 72.7 3 22.1 49.0 62.7 6 299.1

UniVSE (Ours) 36.1 66.4 77.7 3 25.4 53.0 66.2 5 324.8

Table 1. Results of cross-modal retrieval task on MS-COCO dataset (1K and 5K testing split). All listed baselines and our models fix weights

of the image encoders. For fair comparison, we do not include [10] and [16] that finetunes the image encoder or adds extra training data.

Object attack Attribute attack Relation attack

Metric R@1 R@5 R@10 rsum R@1 R@5 R@10 rsum R@1 R@5 R@10 rsum total sum

VSE++ 32.3 69.6 81.4 183.3 19.8 59.4 76.0 155.2 26.1 66.8 78.7 171.6 510.1

VSE-C 41.1 76.0 85.6 202.7 26.7 61.0 74.3 162.0 35.5 71.1 81.5 188.1 552.8

UniVSE (usent+ucomp) 45.3 78.3 87.3 210.9 35.3 71.5 83.1 189.9 39.0 76.5 86.7 202.2 603.0

UniVSE (usent) 40.7 76.4 85.5 202.6 30.0 70.5 80.6 181.1 32.6 72.6 83.5 188.7 572.4

UniVSE (usent+uobj ) 42.9 77.2 85.6 205.7 30.1 69.0 79.8 178.9 34.0 71.2 83.6 188.8 573.4

UniVSE (usent+uattr) 40.1 73.9 83.3 197.3 37.4 72.0 81.9 191.3 30.5 70.0 81.9 182.4 571.0

UniVSE (usent+urel) 45.4 77.1 85.5 208.0 29.2 68.1 78.5 175.8 42.8 77.5 85.6 205.9 589.7

Table 2. Results on image-to-sentence retrieval task with text-domain adversarial attacks. For each caption, we generate 5 adversarial fake

captions which do not match the images. Thus, the models need to retrieve 5 positive captions from 30,000 candidate captions.

R@10, and the median retrieval rank as in [11, 40, 49, 15].

To summarize the performance, we compute rsum as the

summation of R@1, R@5, and R@10.

Shown in Table 1, Unified VSE outperforms other base-

lines with various model architecture and training techniques

[11, 49, 28, 40, 15]. This validates the effectiveness learn-

ing visual-semantic embeddings in the explicitly factorized

visual-semantic embedding space. We also include the re-

sults under more challenging 5K test split. The gap between

Unified VSE and other models gets further enlarged across

all metrics.

4.2. Retrieval under text-domain adversarial attack

Recent works [40, 39] have raised their concerns on the

robustness of the learned visual-semantic embeddings. They

show that existing models are vulnerable to text-domain

adversarial attacks (i.e., using adversarial captions) and can

be easily fooled. This is closely related to the bias in small

datasets over a large, compositional semantic space [40]. To

prove the robustness of the learned unifed VSE, we further

conduct experiments on the image-to-sentence retrieval task

with text-domain adversarial attacks. Following [40], we

first design several types of adversarial captions by adding

perturbations to existing captions.

1. Object attack: Randomly replace / append by an irrel-

evant one in the original caption.

2. Attribute attack: Randomly replace / add an irrelevant

attribute modifier for one object in the original caption.

3. Relational attack: 1) Randomly replace the sub-

ject/relation/object word by an irrelevant one. 2) Ran-

domly select an entity as a subject/object and add an

irrelevant relational word and object/subject.

We include VSE++ and VSE-C as the baselines and show

the results in Table 2 where different columns represent

different types of attacks. VSE++ performs worst as it is

only optimized for the retrieval performance on the dataset.

Its sentence encoder is insensitive to a small perturbation in

the text. VSE-C explicitly generates the adversarial captions

based on human-designed rules as hard negative examples

during training, which makes it relatively robust to those
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Figure 5. The performance of UniVSE on cross-modal retrieval

tasks with different combination weight α. Our model can effective

defending adversarial attacks, with no sacrifice for the performance

on other tasks by choosing a reasonable α (thus we set α = 0.75

in all other experiments).

adversarial attacks. Unified VSE shows strong robustness

across all types of adversarial attacks.

It is worth noting that VSE-C shows inferior perfor-

mances in the normal retrieval tasks without adversarial

captions (see Table 1), even compared with VSE++. Con-

sidering that VSE-C shares the exactly the same model ar-

chitecture as VSE++, we can conclude that directly adding

adversarial captions during training, although improves mod-

els’ robustness, may sacrifice the performance on other tasks.

In contrast, the ability of Unified VSE to defend adversar-

ial texts comes almost for free: we present zero adversarial

captions during training. Unified VSE builds fine-grained

semantic alignments via the contrastive learning of semantic

components. It use the explicit aggregation of the compo-

nents ucomp to alleviate the dataset biases.

Ablation study: semantic components. We now delve into

the effectiveness of different semantic components by choos-

ing different combinations of components for the caption

embedding. Shown in Table 2, we use different subsets of

the semantic components to form the bag-of-component em-

beddings ucomp. For example, in UniVSEobj , only object

nouns are selected and aggregated as ucomp.

The results demonstrate the effectiveness of the enforce-

ment of semantic coverage: even if the semantic compo-

nents have got fine-grained alignment with visual concepts,

directly using usent as the caption encoding still degener-

ates the robustness against adversarial examples. Consistent

with the intuition, enforcing of coverage of a certain type

of components (e.g., objects) helps the model to defend the

adversarial attacks of the same type (e.g., defending adver-

sarial attacks of nouns). Combining all components leads to

the best performance.

Choice of the combination factor: ↵. We study the choice

of ↵ by conducting experiments on both normal retrieval

tasks and the adversarial one. Fig 4.2 shows the R@1 perfor-

mance under the normal/adversarial retrieval scenario w.r.t.

different choices of ↵. We observe that the ucomp term con-

tributes little on the normal retrieval tasks but largely on tasks

Task obj attr rel obj (det) sum

VSE++ 29.95 26.64 27.54 50.57 134.70

VSE-C 27.48 28.76 26.55 46.20 128.99

UniVSEall 39.49 33.43 39.13 58.37 170.42

UniVSEobj 39.71 33.37 34.38 56.84 164.30

UniVSEattr 31.31 37.51 34.73 52.26 155.81

UniVSErel 37.55 32.70 39.57 59.12 168.94

Table 3. The mAP performance on the unified text-to-image

retrieval task. Please refer to the text for details.

with adversarial attacks. Recall that ↵ can be viewed as a fac-

tor that balances the training objective and the enforcement

of semantic coverage. By choosing ↵ from a reasonable

range (0.6 to 0.8), our model can effective defend adversarial

attacks, with no sacrifice for the overall performance.

4.3. Unified Text-to-Image Retrieval

We extend the word-to-scene retrieval used by [40] into

a general unified text-to-image retrieval task. In this task,

models receive queries of different semantic levels, including

single words (e.g., “Clock.”), noun phrases (e.g., “White

clock.”), relational phrases (e.g., “Clocks on wall”) and full

sentences. For all baselines, the texts of different types as

treated as full sentences. The result is presented in Table 3.

We generate positive image-text pairs by randomly choos-

ing an image and a semantic component from 5 matched

captions with the chosen image. It is worth mention that

the semantic components extracted from captions may not

cover all visual concepts in the corresponding image, which

makes the annotation noisy. To address this, we also leverage

the MS-COCO detection annotations to facilitate the evalua-

tion (see obj(det) column). We treat the labels for detection

bounding boxes as the annotation of objects in the scene.

Ablation study: contrastive learning of components. We

evaluate the effectiveness of using contrastive samples

for different semantic components. Shown in Table 3,

UniVSEobj denotes the model trained with only contrastive

samples of noun components. The same notation applies

to other models. The UniVSE trained with a certain type

of contrastive examples (e.g., UniVSEobj with contrastive

nouns) consistently improves the retrieval performance of

the same type of queries (e.g., retrieving images from a sin-

gle noun). UniVSE trained with all kinds of contrastive

samples performs best in overall and shows a significant gap

w.r.t. other baselines.

Visualization of the semantic alignment. We visualize the

semantic-relevance map on an image w.r.t. a given query uq

for a qualitative evaluation of the alignment performance of

various semantic components. The map Mi is computed as

the similarity between each image region vi and uq, in a

similar way as Eq. (2). Shown as Fig. 6, this visualization

helps to verify that our model successfully aligns different

semantic components with the corresponding image regions.
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Figure 6. The relevance maps and grounded areas obtained from the retrieved images w.r.t. three queries. The temperature of the softmax

for visualizing the relevance map is τ = 0.1. Pixels in white indicates a higher matching score. Note that the third image of the query “black

dog” contains two dogs, while our model successfully locates the black one (on the left). It also succeeded in finding the white dog in the

first image of “white dog”. Moreover, for the query “player swing bat”, although there are many players in the image, our model only attend

to the man swinging the bat.
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Figure 7. Example showing that Unified VSE can leverage image to parse sentences with ambiguity. The matching score of “girl eat burger”

is much higher than “sweater eat burger”, which resolves the ambiguity. Other components are also correctly inferred.

Task attributed object relational phrase

Random 37.41 31.90

VSE++ 41.12 43.31

VSE-C 43.44 41.08

UniVSE 64.82 62.69

Table 4. The accuracy of different models on recovering word

dependencies with visual cues. In the “Random” baseline, we

randomly assign the word dependencies.

4.4. Semantic Parsing with Visual Cues

As a side application, we show how the learned unified

VSE space can provide the visual cues to help the semantic

parsing of sentences. Fig. 7 shows the general idea. When

parsing a sentence, ambiguity may occur, e.g., the subject of

the relational word eat may be sweater or burger. It

is not easy for a textual parser to decide which one is correct

because of the innate syntactic ambiguity. However, we can

use the image which is depicted by this sentence to assist the

parsing by. This is related to previous works on using image

segmentation models to facilitate the sentence parsing [6].

This motivates us to design two tasks, 1) recovering the

dependency between attributes and entities, and 2) recover-

ing the relational triples. In detail, we first extract the entities,

attributes and relational words from the raw sentence without

knowing their dependencies. For each possible combination

of certain semantic component, our model computes its em-

bedding in the unified joint space. E.g., in Fig. 7, there are

in total 3 ⇥ (3 � 1) = 6 possible dependencies for eat.

We choose the combination with the highest matching score

with the image to decide the subject/object dependencies of

the relation eat. We use parsed semantic components as the

ground-truth and report the accuracy, defined as the fraction

of the number of correct dependency resolution and the total

number of attributes/relations. Table 4 reports the results

on assisting semantic parsing with visual cues, compared

with other baselines. Fig. 7 shows a real case in which we

successfully resolve the textual ambiguity.

5. Conclusion

We present a unified visual-semantic embedding approach

that learns a joint representation space of vision and language

in a factorized manner: Different levels of textual semantic

components such as objects and relations get aligned with

regions of images. A contrastive learning approach for se-

mantic components is proposed for the efficient learning

of the fine-grained alignment. We also introduce the en-

forcement of semantic coverage: each caption embedding

should have a coverage of all semantic components in the

sentence. Unified VSE shows superiority on multiple cross-

modal retrieval tasks and can effectively defend text-domain

adversarial attacks. We hope the proposed approach can

empower machines that learn vision and language jointly,

efficiently and robustly.
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