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Figure 1: We present the first method to simultaneously capture the 3D total body motion of a target person from a monocular

view input. For each example, (left) input image and (right) 3D total body motion capture results overlaid on the input.

Abstract

We present the first method to capture the 3D total mo-

tion of a target person from a monocular view input. Given

an image or a monocular video, our method reconstructs

the motion from body, face, and fingers represented by a

3D deformable mesh model. We use an efficient represen-

tation called 3D Part Orientation Fields (POFs), to encode

the 3D orientations of all body parts in the common 2D im-

age space. POFs are predicted by a Fully Convolutional

Network, along with the joint confidence maps. To train our

network, we collect a new 3D human motion dataset captur-

ing diverse total body motion of 40 subjects in a multiview

system. We leverage a 3D deformable human model to re-

construct total body pose from the CNN outputs with the aid

of the pose and shape prior in the model. We also present

a texture-based tracking method to obtain temporally co-

herent motion capture output. We perform thorough quan-

titative evaluations including comparison with the existing

body-specific and hand-specific methods, and performance

analysis on camera viewpoint and human pose changes. Fi-

nally, we demonstrate the results of our total body motion

capture on various challenging in-the-wild videos.

∗Website: http://domedb.perception.cs.cmu.edu/mtc

1. Introduction

Human motion capture is essential for many applications

including visual effects, robotics, sports analytics, medi-

cal applications, and human social behavior understanding.

However, capturing 3D human motion is often costly, re-

quiring a special motion capture system with multiple cam-

eras. For example, the most widely used system [2] needs

multiple calibrated cameras with reflective markers care-

fully attached to the subjects’ body. The actively-studied

markerless approaches are also based on multi-view sys-

tems [21, 29, 19, 25, 26] or depth cameras [50, 7]. For this

reason, the amount of available 3D motion data is extremely

limited. Capturing 3D human motion from single images or

videos can provide a huge breakthrough for many applica-

tions by increasing the accessibility of 3D human motion

data, especially by converting all human-activity videos on

the Internet into a large-scale 3D human motion corpus.

Reconstructing 3D human pose or motion from a monoc-

ular image or video, however, is extremely challenging due

to the fundamental depth ambiguity. Interestingly, humans

are able to almost effortlessly reason about the 3D human

body motion from a single view, presumably by leverag-

ing strong prior knowledge about feasible 3D human mo-

tions. Inspired by this, several learning-based approaches

have been proposed over the last few years to predict 3D

human body motion (pose) from a monocular video (im-
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age) [58, 44, 4, 60, 9, 35, 33, 73, 27, 36, 69] using available

2D and 3D human pose datasets [5, 28, 1, 22, 25]. Recently,

similar approaches have been introduced to predict 3D hand

poses from a monocular view [74, 37, 12]. However, fun-

damental difficulty still remains due to the lack of available

in-the-wild 3D body or hand datasets that provide paired

images and 3D pose data; thus most of the previous meth-

ods only demonstrate results in controlled lab environments.

Importantly, there exists no method that can reconstruct mo-

tion from all body parts including body, hands, and face al-

together from a single view, although this is important for

fully understanding human behavior.

In this paper, we aim to reconstruct the 3D total mo-

tions [26] of a human using a monocular imagery captured

in the wild. This ambitious goal requires solving challeng-

ing 3D pose estimation problems for different body parts

altogether, which are often considered as separate research

domains. Notably, we apply our method to in-the-wild sit-

uations (e.g., videos from YouTube), which has rarely been

demonstrated in previous work. We use a 3D representation

named Part Orientation Fields (POFs) to efficiently encode

the 3D orientation of a body part in the 2D space. A POF is

defined for each body part that connects adjacent joints in

torso, limbs, and fingers, and represents relative 3D orien-

tation of the rigid part regardless of the origin of 3D Carte-

sian coordinates. POFs are efficiently predicted by a Fully

Convolutional Network (FCN), along with 2D joint confi-

dence maps [63, 68, 15]. To train our networks, we collect

a new 3D human motion dataset containing diverse body,

hands, and face motions from 40 subjects. Separate CNNs

are adopted for body, hand and face, and their outputs are

consolidated together in a unified optimization framework.

We leverage a 3D deformable model that is built for total

capture [25] in order to exploit the shape and motion prior

embedded in the model. In our optimization framework, we

fit the model to the CNN measurements at each frame to

simultaneously estimate the 3D motion of body, face, fin-

gers, and feet. Our mesh output also enables us to addi-

tionally refine our motion capture results for better temporal

coherency by optimizing the photometric consistency in the

texture space.

This paper presents the first approach to monocular total

motion capture in various challenging in-the-wild scenar-

ios (e.g., Fig. 1). We demonstrate that our single frame-

work achieves comparable results to existing state-of-the-

art 3D body-only or hand-only pose estimation methods on

public benchmarks. Notably, our method is applied to vari-

ous in-the-wild videos, which has rarely been demonstrated

in either 3D body or hand estimation area. We also con-

duct thorough experiments on our newly collected dataset

to quantitatively evaluate the performance of our method

with respect to viewpoint and body pose changes. The ma-

jor contributions of our paper are summarized as follows:

• We present the first method to produce 3D total mo-

tion capture results from a monocular image or video

in various challenging in-the-wild scenarios.

• We introduce an optimization framework to fit a de-

formable human model on 3D POFs and 2D keypoint

measurements for total body pose estimation, showing

comparable results to the state-of-the-art methods on

both 3D body and 3D hand estimation benchmarks.

• We present a method to enforce photometric consis-

tency across time to reduce motion jitters.

• We capture a new 3D human motion dataset with 40

subjects as training and evaluation data for monocular

total motion capture.

2. Related Work

Single Image 2D Human Pose Estimation: Over the

last few years, great progress has been made in detecting

2D human body keypoints from a single image [64, 63,

11, 68, 38, 15] by leveraging large-scale manually anno-

tated datasets [28, 5] with deep Convolutional Neural Net-

work (CNN) framework. In particular, the major break-

through is boosted by using the fully convolutional archi-

tectures to produce confidence scores for each joint with a

heatmap representation [63, 68, 38, 15], which is known to

be more efficient than directly regressing the joint locations

with fully connected layers [64]. A recent work [15] learns

the connectivity between pairs of adjacent joints, called the

Part Affinity Fields (PAFs) in the form of 2D heatmaps,

to assemble 2D keypoints for different individuals in the

multi-person 2D pose estimation problem.

Single Image 3D Human Pose Estimation: Early

work [44, 4] models the 3D human pose space as an

over-complete dictionary learned from a 3D human motion

database [1]. More recent approaches rely on deep neural

networks, which are roughly divided into two-stage meth-

ods and direct estimation methods. The two-stage meth-

ods take 2D keypoint estimation as input and focus on lift-

ing 2D human poses to 3D without considering input im-

age [9, 17, 33, 36, 39, 20]. These methods ignore rich in-

formation in images that encodes 3D information, such as

shading and appearance, and also suffer from sensitivity to

2D localization error. Direct estimation methods predict 3D

human pose directly from images, in the form of direct co-

ordinate regression [46, 55, 56], voxel [42, 32, 66] or depth

map [73]. Similar to ours, a recent work uses 3D orienta-

tion fields [31] as an intermediate representation for the 3D

body pose. However, these models are usually trained on

MoCap datasets, with limited ability to generalize to in-the-

wild scenarios.

Due to the above limitations, some methods have been

proposed to integrate prior knowledge about human pose
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Figure 2: An overview of our method. Our method is composed of CNN part, mesh fitting part, and mesh tracking part.

for better in-the-wild performance. Some work [41, 48, 67]

proposes to use ordinal depth as additional supervision for

CNN training. Additional loss functions are introduced in

[73, 18] to enforce constraints on predicted bone length and

joint angles. Some work [27, 70] uses Generative Adver-

sarial Networks (GAN) to exploit human pose prior in a

data-driven manner.

Monocular Hand Pose Estimation: Hand pose estima-

tion is often considered as an independent research domain

from body pose estimation. Most of previous work is based

on depth image as input [40, 54, 49, 52, 65, 71]. RGB-based

methods have been introduced recently, for 2D keypoint es-

timation [51] and 3D pose estimation [74, 12, 23].

3D Deformable Human Models: 3D deformable mod-

els are commonly used for markerless body [6, 30, 43] and

face motion capture [8, 13] to restrict the reconstruction out-

put to the shape and motion spaces defined by the models.

Although the outputs are limited by the expressive power

of models (e.g., some body models cannot express cloth-

ing and some face models cannot express wrinkles), they

greatly simplify the 3D motion capture problem. We can fit

the models based on available measurements by optimizing

cost functions with respect to the model parameters. Re-

cently, a generative 3D model that can express body and

hands is introduced by Romero et al. [47]; the Adam model

is introduced by Joo et al. [26] to enable the total body mo-

tion capture (face, body and hands), which we adopt for

monocular total capture.

Photometric Consistency for Human Tracking: Pho-

tometric consistency of texture has been used in various pre-

vious work to improve the robustness of body tracking [45]

and face tracking [61, 62]. Some work [16, 10] also uses op-

tical flow to align rendered 3D human models. In this work,

we improve temporal coherency of our output by a photo-

consistency term which significantly reduces jitters. This is

the first time that such technique is applied to monocular

body motion tracking to the best of our knowledge.

3. Method Overview

Our method takes as input a sequence of images cap-

turing the motion of a single person from a monocular RGB

camera, and outputs the 3D total body motion (including the

motion from body, face, hands, and feet) of the target per-

son in the form of a deformable 3D human model [30, 26]

for each frame. Given an N -frame video sequence, our

method produces the parameters of the 3D human body

model, including body motion parameters {θi}
N
i=1, facial

expression parameters {σi}
N
i=1, and global translation pa-

rameters {ti}
N
i=1. The body motion parameters θ includes

hands and foot motions, together with the global rotation of

the body. Our method also estimates shape coefficients φ

shared among all frames in the sequence, while θ, σ, and t

are estimated for each frame respectively. Here, the output

parameters are defined by the 3D deformable human model

Adam [26]. However, our method can be also applied to

capture only a subset of total motions (e.g., body motion

only with the SMPL model [30] or hand motion only by

separate hand model of Frankenstein in [26]). We denote a

set of all parameters (φ,θ,σ, t) by Ψ, and denote the result

for the i-th frame by Ψi.

Our method is divided into 3 stages, as shown in Fig. 2.

In the first stage, each image is fed into a Convolutional

Neural Network (CNN) obtain the joint confidence maps

and the 3D orientation information of body parts, which we

call the 3D Part Orientation Fields (POFs). In the second

stage, we estimate total body pose by fitting a deformable

human mesh model [26] on the image measurements pro-

duced by the CNN. We utilize the prior information embed-

ded in the human body model for better robustness against

the noise in CNN outputs. This stage produces the 3D pose

for each frame independently, represented by parameters of

the deformable model {Ψi}
N
i=1. In the third stage, we ad-

ditionally enforce temporal consistency across frames to re-

duce motion jitters. We define a cost function to ensure pho-

tometric consistency in the texture domain of mesh model,

based on the fitting outputs of the second stage. This stage

produces refined model parameters {Ψ+
i }

N
i=1. This stage is

crucial for obtaining realistic body motion capture output.

4. Predicting 3D Part Orientation Fields

The 3D Part Orientation Field (POF) encodes the 3D

orientation of a body part of an articulated structure (e.g.,

limbs, torso, and fingers) in 2D image space. The same rep-

resentation is used in a very recent literature [31], and we

describe the details and notations used in our framework.

We pre-define a human skeleton hierarchy S in the form of

a set of ‘(parent, child)’ pairs1. A rigid body part connect-

1See the appendix for our body and hand skeleton definition.
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Figure 3: An illustration of a Part Orientation Field. The

orientation P̂(m,n) for body part P(m,n) is a unit vector

from Jm to Jn. All pixels belong to this part in the POF

are assigned the value of this vector in x, y, z channels.

ing a 3D parent joint Jm ∈ R
3 and a child joint Jn ∈ R

3

is denoted by P(m,n), with Jm,Jn defined in the camera

coordinate, if (m,n) ∈ S. Its 3D orientation P̂(m,n) is rep-

resented by a unit vector from Jm to Jn in R
3 :

P̂(m,n) =
Jn − Jm

||Jn − Jm||
. (1)

For a specific body part P(m,n), its Part Orientation Field

L(m,n) ∈ R
3×h×w encodes its 3D orientation P̂(m,n) as a

3-channel heatmap (in x, y, z directions respectively) in the

image space, where h and w are the size of image. The

value of the POF L(m,n) at a pixel x is defined as,

L(m,n)(x) =

{

P̂(m,n) if x ∈ P(m,n),

0 otherwise.
(2)

Note that the POF values are non-zero only for the pixels

belonging to the current target part P(m,n) and we follow

[15] to define the pixels belonging to the part as a rectangle.

An example POF is shown in Fig. 3.

Implementation Details: We train a CNN to predict joint

confidence maps S and Part Orientation Fields L. The input

image is cropped around the target person to 368 × 368.

The bounding box is given by OpenPose2 [15, 51, 14] for

testing. We follow [15] for CNN architecture with minimal

change. 3 channels are used to estimate POF instead of 2

channels in [15] for every body part in S. L2 loss is applied

to network prediction on S and L. We also train our network

on images with 2D pose annotations (e.g. COCO). In this

situation we only supervise the network with loss on S. Two

networks are trained for body and hands separately.

5. Model-Based 3D Pose Estimation

Ideally the joint confidence maps S and POFs L pro-

duced by CNN provide sufficient information to reconstruct

2https://github.com/CMU-Perceptual-Computing-Lab/

openpose

a 3D skeletal structure up to scale [31]. In practice, S and

L can be noisy, so we exploit a 3D deformable mesh model

to more robustly estimate 3D human pose with the shape

and pose priors embedded in the model. In this section, we

first describe our mesh fitting process for body, and then

extend it to hand pose and facial expression for total body

motion capture. We use superscripts B,LH,RH, T and

F to denote functions and parameters for body, left hand,

right hand, toes, and face respectively. We use Adam [26]

which encompasses the expressive power for body, hands

and facial expression in a single model. Other human mod-

els (e.g., SMPL [30]) can be also used if the goal is to re-

construct only part of the total body motion.

5.1. Deformable Mesh Model Fitting with POFs

Given 2D joint confidence maps SB predicted by our

CNN for body, we obtain 2D keypoint locations {jBm}Jm=1

by taking channel-wise argmax on SB . Given {jBm}Jm=1 and

the other CNN output POFs LB , we compute the 3D orien-

tation of each bone P̂B
(m,n) by averaging the values of LB

along the segment from jBm to jBn as in [15]. We obtain a set

of mesh parameters θ, φ, and t that agree with these image

measurements by minimizing the following objective:

FB(θ,φ, t) = FB
2D(θ,φ, t) + FB

POF
(θ,φ) + FB

p (θ), (3)

where FB
2D, FB

POF
, and FB

p are different constraints as de-

fined below. The 2D keypoint constraint FB
2D penalizes the

discrepancy between network-predicted 2D keypoints and

the projections of the joints in the human body model:

FB
2D(θ,φ, t) =

∑

m

‖jBm −Π(J̃B
m(θ,φ, t))‖2, (4)

where J̃B
m(θ,φ, t) is m-th joint of the human model and

Π(·) is projection function from 3D space to image, where

we assume a weak perspective camera model. The POF

constraint FB
POF

penalizes the difference between POF pre-

diction and the orientation of body part in mesh model:

FB
POF(θ,φ) = wB

POF

∑

(m,n)∈S

1− P̂B
(m,n) · P̃

B
(m,n)(θ,φ),

(5)

where P̃B
(m,n) is the unit directional vector for the bone

PB
(m,n) in the human mesh model, wB

POF
is a balancing

weight for this term, and · is the inner product between vec-

tors. The prior term FB
p is used to restrict our output to

a feasible human pose distribution (especially for rotation

around bones), defined as:

FB
p (θ) = wB

p ‖AB
θ (θ − µB

θ )‖
2, (6)

where AB
θ and µB

θ are pose prior learned from CMU Mo-

cap dataset [1], and wB
p is a balancing weight. We use

Levenberg-Marquardt algorithm [3] to optimize Eq. 3. The

mesh fitting process is illustrated in Fig. 4.
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Figure 4: Human model fitting on estimated POFs and joint

confidence maps. We extract 2D joint locations from joint

confidence maps (left) and then body part orientation from

POFs (middle). Then we optimize a cost function (Eq. 3)

that minimizes the distance between Π(J̃B
m) and jBm and

angle between P̃B
(m,n) and P̂B

(m,n).

5.2. Total Body Capture with Hands, Feet and Face

Given the output of the hand network SLH ,LLH and

SRH ,LRH , we can additionally fit the Adam model to esti-

mate the hand pose using similar optimization objectives:

FLH(θ,φ, t) = FLH
2D (θ,φ, t) + FLH

POF
(θ,φ) + FLH

p (θ).
(7)

FLH is the objective function for left hand and each term is

defined similarly to Eq. 4, 5, 6. Similar to previous work on

hand tracking [59, 57], we use a hand pose prior constraint

FLH
p , learned from the MANO dataset [47]. The objective

function for the right hand FRH is similarly defined.

Once we fit the body and hand parts of the deformable

model to the CNN outputs, the projection of the model on

the image is already well aligned to the target person. Then

we can reconstruct other body parts by simply adding more

2D joint constraints using additional 2D keypoint measure-

ments. In particular, we include 2D face and foot keypoints

from the OpenPose detector. The additional cost function

for toes is defined as:

FT (θ,φ, t) =
∑

m

‖jTm −Π(J̃T
m(θ,φ, t))‖2, (8)

where {jTm} are 2D tiptoe keypoints on both feet from

OpenPose, and {J̃T
m} are the 3D joint location of the mesh

model in use. Similarly for face we define:

FF (θ,φ, t,σ) =
∑

m

‖jFm −Π(J̃F
m(θ,φ, t,σ))‖2. (9)

Note that the facial keypoints J̃F
m are determined by all the

mesh parameters θ,φ, t,σ together. In addition, we also

apply regularization for shape parameters and facial expres-

sion parameters:

R� (φ) = ‖φ‖2, R� (σ) = ‖σ‖2. (10)

Putting them together, the total optimization objective is

F(θ,φ, t,σ) = FB + FLH + FRH+

FT + FF +R� +R� ,
(11)

where the balancing weights for all the terms are omitted

for simplicity. We optimize this total objective function in

multiple stages to avoid local minima. We first fit the torso,

then add limbs, and finally optimize the full objective func-

tion including all constraints. This stage produces 3D total

body motion capture results for each frame independently

in the form of Adam model parameters {Ψi}
N
i=1.

6. Enforcing Photo-Consistency in Textures

In the previous stages, we perform per-frame process-

ing, which is vulnerable to motion jitters. Inspired by pre-

vious work on body and face tracking [45, 61], we propose

to reduce the jitters using the pixel-level image cues given

the initial model fitting results. The core idea is to enforce

photometric consistency in the model textures, extracted by

projecting the fitted mesh models on the input images. Ide-

ally, the textures should be consistent across frames, but in

practice there exist discrepancies due to motion jitters. In

order to efficiently implement this constraint in our opti-

mization framework, we compute optical flows from pro-

jected texture to the target input image. The destination of

each flow indicates the expected location of vertex projec-

tion. To describe our method, we define a function T which

extracts a texture given an image and a mesh structure:

T i = T (Ii,M(Ψi)) , (12)

where Ii is the input image of the i-th frame M(Ψi) is the

human model determined by parameters Ψi. The function

T extracts a texture map T i by projecting the mesh struc-

ture on the image for the visible parts. We ideally expect

the texture for (i+1)-th frame T i+1 to be the same as T i.

Instead of directly using this constraint for optimization, we

use optical flow to compute the discrepancy between these

textures for easier optimization. More specifically, we pre-

compute the optical flow between the image Ii+1 and the

rendering of the mesh model at (i+1)-th frame with the i-th

frame’s texture map T i, which we call ‘synthetic image’:

fi+1 = f(R(Mi+1,T i), Ii+1), (13)

where Mi+1 = M(Ψi+1) is the mesh for the (i+1)-th

frame, and R is a rendering function that renders a mesh

with a texture to an image. The function f computes optical

flows from the synthetic image to the input image Ii+1. The

output flow fi+1 : x −! x′ maps a 2D location x to a new

location x′ following the optical flow result. Intuitively, the

computed flow mapping fi+1 drives the projection of 3D

mesh vertices toward the directions for better photometric
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